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A B S T R A C T

Deep learning and remote sensing techniques have significantly advanced water surface monitoring; however,
the need for annotated data remains a challenge. This is particularly problematic in wetland detection, where
water extent varies over time and space, demanding multiple annotations for the same area. In this paper, we
present DeepAqua, a deep learning model inspired by knowledge distillation (a.k.a. teacher–student model) to
generate labeled data automatically and eliminate the need for manual annotations during the training phase.
We utilize the Normalized Difference Water Index (NDWI) as a teacher model to train a Convolutional Neural
Network (CNN) for segmenting water from Synthetic Aperture Radar (SAR) images. To train the student model,
we exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open
and vegetated water surfaces. DeepAqua represents a significant advancement in computer vision techniques
for water detection by effectively training semantic segmentation models without any manually annotated
data. Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy
by 3%, Intersection Over Union by 11%, and F1-score by 6%. This approach offers a practical solution for
monitoring wetland water extent changes without the need of ground truth data, making it highly adaptable
and scalable for wetland monitoring.
1. Introduction

Wetlands provide essential ecosystem services such as water pu-
rification, flood regulation, and carbon sequestration, and are criti-
cal for sustainable development (Jaramillo et al., 2019). They are,
however, increasingly threatened by climate change and human activ-
ity (Thorslund et al., 2017). The comprehensive monitoring of wetland
surface water extent, including both open and vegetated water surfaces,
is essential for their conservation and management.

The recognition of water surfaces in wetlands is usually achieved by
combining optical and Synthetic Aperture Radar (SAR) imagery. While
optical imagery helps recognize open water surfaces, SAR can addition-
ally identify some water surfaces covered by vegetation. Combining
optical and SAR imagery with deep learning improves the semantic
segmentation of wetlands to map their water extent (Jamali et al.,
2022; Jamali and Mahdianpari, 2022). Semantic segmentation refers
to the classification of different parts of an image (e.g., water and non-
water surfaces). However, annotating the data required for training
deep learning models is often time-consuming and costly. Hence, there
is a need to develop deep learning models that identify water surfaces
without manually annotated data.

∗ Corresponding author at: Department of Physical Geography, Stockholm University, Svante Arrhenius väg 8, Stockholm, 106 91, Sweden.
E-mail address: francisco.pena@natgeo.su.se (F.J. Peña).

In this paper, we present DeepAqua, a deep learning model that
eliminates the need for manual annotation during the training phase
and that is inspired by the concept of knowledge distillation (a.k.a.
teacher–student model). Knowledge distillation is the process of trans-
ferring knowledge from a large model to a smaller one. Utilizing the
Normalized Difference Water Index (NDWI) (McFeeters, 1996) as the
‘‘teacher’’ model, we train a ‘‘student’’ U-Net (Ronneberger et al., 2015)
to recognize water boundaries in SAR images. Using the signal from
non-vegetated water as a guide, the student model learns from the
teacher model, eventually recognizing both open and vegetated water
bodies. The NDWI ‘‘teacher’’ model can generate annotated images
of water surfaces without training. We aim to eliminate the costs of
collecting training data through fieldwork or manual annotations of
water on satellite imagery. In contrast to the traditional knowledge
distillation paradigm, where knowledge is transferred from a large
neural network to a smaller one, our model transfers the knowledge
from a thresholding method like NDWI into a neural network, using
NDWI as a replacement for manual annotations.

We test our model in three wetlands in Sweden with open water
and water surfaces covered by grassy and floating vegetation. We use
vailable online 19 December 2023
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C-band SAR to detect these covered water surfaces and map the total
surface water extent. The model could be even adjusted to work with
SAR sensors with longer wavelengths, such as L-band, to detect water
under thicker canopies (e.g., mangroves).

In summary:

• We present DeepAqua, a novel method for training semantic
segmentation models inspired by knowledge distillation without
manually annotated data.

• We employ NDWI masks in our method as proxies for semantic
labels and optical images as an auxiliary modality to supervise a
SAR-based U-Net.

• We present DeepAqua as a highly adaptable and scalable model,
as it does not require ground truth for training.

• Experimental results on three temperate wetlands in Sweden
show that DeepAqua has superior performance of the semantic
segmentation of water from SAR images when compared to other
unsupervised methods.

• DeepAqua can monitor changes in surface water coverage, en-
compassing both in open water surfaces and those covered by
vegetation.

. Related work

The challenge of accurately detecting wetlands — a critical task for
nvironmental and societal applications such as flood mapping and wa-
er resource management — relates to the existence of variable spectral
ignatures of water resulting from illumination, turbidity, and vegeta-
ion. Multispectral optical imagery from satellites such as Sentinel-2
as been widely used to map wetlands using deep learning meth-
ds (Jiang et al., 2019; Cui et al., 2020; Dang et al., 2020; Jamali et al.,
021b; Pham et al., 2022; Onojeghuo and Onojeghuo, 2023). For ex-
mple, Rezaee et al. (2018) perform fine-tuning of AlexNet (Krizhevsky
t al., 2017) pre-trained on the ImageNet dataset (Deng et al., 2009)
o classify wetland patches using optical imagery. Mahdianpari et al.
2018) explore multiple Convolutional Neural Network (CNN) archi-
ectures to determine the one producing the most accurate wetland
lassification. However, these approaches cannot detect water hidden
nder vegetation, which is crucial for monitoring water extent in
etlands.

Radar imagery from satellites such as Sentinel-1, which has a SAR
-band sensor that can penetrate vegetation and clouds (Geudtner
t al., 2014), have additionally been used for this purpose. Slagter
t al. (2020) combine Sentinel-1 with optical Sentinel-2 and fieldwork
ata to map wetlands using a random forest classifier. The WetNet
odel (Hosseiny et al., 2021) is an ensemble of three classifiers that
ses multitemporal images to map wetlands: a 2D-CNN trained on
adar imagery, a 3D-CNN trained on multispectral and multitempo-
al imagery, and a Recurrent Neural Network (RNN) trained with
ultivariate temporal information. Jamali et al. (2022) introduce the
DUnetGSFormer model, which uses a Generative Adversarial Network
GAN) (Goodfellow et al., 2020) to generate synthetic data with similar
haracteristics as the ground-truth data and a Swin transformer (Liu
t al., 2021) to classify the wetland images. Similar approaches have
sed optical and radar imagery to map wetlands , such as Jamali et al.
2021a) and Jamali and Mahdianpari (2022).

All these approaches have a common limitation: they require manu-
lly annotated data to train their models. The manually annotated data
sually comes from fieldwork, and is very costly and time-consuming
o acquire due to logistics, equipment maintenance, sampling, etc.
oreover, these approaches assume that the surface water extent is

onstant over time, although the water extent usually varies across
he season and is dependent on weather conditions. For instance, one
etland location could have been labeled as ‘‘open water’’ because

he image was taken in April when the surface water extent of the
etland had increased due to snowmelt. On the other hand, the same

ocation could be dry in July, leading to an inaccurate prediction of
2

ater extent. f
. Background and problem formulation

This paper addresses the problem of detecting water surfaces under
egetation without requiring fieldwork or manually annotated data. To
reate and train a model without fieldwork or manually annotated
ata, we combine remote sensing (Section 3.1) with deep learning
echniques (Sections 3.2, 3.3, and 3.4). Here, we recall some of their
asic concepts.

.1. Detecting surface water using remote sensing

Traditionally, optical sensors based on reflected solar radiation
ave been used to detect water. NDWI is one of the most popular
ptical methods to delineate open waters (McFeeters, 1996), as it helps
ifferentiate open water from soil since: (1) water reflects green light,
2) water has low reflectance of Near-Infrared (NIR) light, and (3)
errestrial vegetation and soil have a high reflectance of NIR light. For
ach pixel in an image, the NDWI is calculated using the normalized
ifference between the green light intensity and the NIR light intensity

the results of the NDWI index range from −1 to +1. Water surfaces
ave positive values, while soil and terrestrial vegetation have zero or
egative values because they typically have a higher reflectance of NIR
han green light. Fig. 1 shows how NDWI is used to delineate open
ater.

Other index-based methods to detect water from optical imagery
nclude the Modified NDWI (MNDWI) (Xu, 2006), High Resolution

ater Index (HRWI) (Yao et al., 2015), Two-step Urban Water Index
TSUWI) (Wu et al., 2018) and Automated Water Extraction Index
AWEI) (Feyisa et al., 2014).

Although NDWI provides reliable information on open water, its
sage is limited to cloud-free days. Moreover, it becomes inaccurate in
reas with low albedo and shadows (Feyisa et al., 2014). An alternative
pproach to optical imagery is SAR, which is unaffected by sunlight and
apable of penetrating clouds and vegetation (Mondini et al., 2021).
nlike optical imagery, SAR can reveal hidden water under vegetation
over. However, interpreting SAR imagery alone poses challenges as
t is hard to distinguish water from some unvegetated or sparsely
egetated surfaces (Tsyganskaya et al., 2018; Hardy et al., 2019).

.2. Semantic segmentation of images

Semantic segmentation is a computer vision technique to identify
nd classify objects within an image at the pixel level. Instead of just
dentifying objects as a whole, semantic segmentation identifies the
xact boundaries of each object and assigns a specific label or class to
ach pixel within the object’s boundary. This allows for a more precise
nd detailed analysis of the image, making it useful for applications
uch as self-driving cars, medical imaging, and, in our case, water
elineation.

CNNs are one of the most efficient deep learning approaches for
mage processing (LeCun et al., 2015). They work by reading an image
hrough a series of layers that extract features such as edges and
hapes and then using those features to recognize patterns in the image.
hey extract a varying level of abstraction from the data in different

ayers with the added benefit of not requiring prior feature extraction
nd having more generalization capability. CNNs use convolutional
ayers to extract features, pooling layers to downsample the output,
nd activation functions to introduce non-linearity. CNNs have proven
ffective in image recognition tasks because they can learn to recognize
atterns and features in images without being explicitly programmed.
NNs have high prediction accuracy because they (1) can retain the
eometrical properties from two-dimensional images, (2) can be trained
ith large amounts of data and perform consistently across varied data,
nd (3) do not require expert input of features; the CNNs can learn the

eatures.
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Fig. 1. Water delineation using NDWI. The left image comprises red, green, and blue bands (RGB). The middle image is generated using the NDWI index. The right image shows
an NDWI image where pixels with positive values are cyan, and the rest are black, thus completing the water delineation process. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
We use a particular CNN architecture called U-Net (Ronneberger
et al., 2015) for producing semantic segmentations. U-Net is designed
in a way that it has a contracting path followed by an expanding one.
The contracting path consists of a series of convolutional layers, reduc-
ing the spatial dimensions of the image while increasing the number
of channels. This helps to extract high-level features from the input
image. The expanding path then consists of a series of up-convolutional
layers, which upsample the feature maps to restore the original spatial
dimensions of the image, generating a segmentation map with the
same dimensions as the input image. Other architectures for semantic
segmentation include Resnet (He et al., 2016), MSResNet (Dang and Li,
2021), and MSCENet (Kang et al., 2021).

Here, we use the concept of knowledge distillation to train a U-Net
without requiring manually annotated data.

3.3. Knowledge distillation

Knowledge distillation (Hinton et al., 2015; Xu et al., 2020), which
is also known as the teacher–student model, is a process of teaching
a smaller and simpler model — the student model — to mimic the
behavior of a larger and more complex model — the teacher model
— and achieve similar performance. During the distillation process,
the teacher model generates predictions for training data, which are
then used to train the student model. However, instead of training the
student model to directly predict the correct output, the student model
is trained to learn from the teacher model’s predictions.

By doing so, the student model can learn from the teacher model,
including the relationships between different input features and the
patterns in the data, which is difficult to learn from the training data
alone. The result is a smaller and faster model that performs similarly to
the larger and more complex teacher model. Additionally, the student
model may generalize better than the teacher model under specific
conditions (Deng et al., 2022; Beyer et al., 2022), as it has learned
to capture the most important aspects of the teacher’s behavior while
ignoring the noise.

In this paper, we tweak the knowledge distillation process: instead
of having a small model learn from a large model, we make a radar-
based model (a CNN model as a student) learn from an optical-based
model (a NDWI model as a teacher). We exploit the fact that it is easier
to identify water from optical images rather than from SAR images. This
process is called cross-modal knowledge distillation (Hu et al., 2020).
Finally, we create a model that is able to generate its own training data
and learn from it.

3.4. Learning without annotated data

One of the biggest bottlenecks in deep learning models, including
CNNs, is requirying large amounts of annotated data to make accurate
3

predictions. Particularly in semantic segmentation of images, manually
annotating each image is costly and time-consuming, aggravated by
the fact that deep learning models require thousands of images to
produce accurate predictions. Techniques like transfer learning (Garcia-
Garcia et al., 2018) and data augmentation (Shorten and Khoshgof-
taar, 2019) have alleviated the need for large amounts of annotated
data. Nevertheless, they still require a minimum amount of data. Self-
supervised learning is a machine learning method that allows algo-
rithms to learn without needing human-annotated samples (Shurrab
and Duwairi, 2022).

The following section shows how we achieve automatic labeling
of training data inspired by the knowledge distillation architecture.
We automatically generate ground truth data using NDWI and train a
SAR-based CNN to detect water. Our approach has the advantage of
requiring ‘‘zero’’ manually annotated data.

4. DeepAqua model

Semantic segmentation projects typically involve a human annota-
tor delineating images to indicate which parts correspond to a particu-
lar object or feature, such as water surfaces in SAR images. This process
can be time-consuming and expensive, often making data annotation
the bottleneck of deep learning projects. Fig. 2(a) shows this traditional
architecture with a human annotator delineating the water in radar im-
ages and a CNN trained based on these annotated images to recognize
water in previously unseen images.

In this study, as seen in Fig. 2(b), instead of relying on human-
annotated water masks, our teacher–student architecture uses the NDWI
model as the teacher and the CNN as the student, where the teacher
extracts knowledge about the location of the water surface from optical
imagery and produces segmented images that the student will try to
mimic. Unlike most knowledge distillation approaches, our teacher
and student models rely on different data types; particularly, the
teacher uses optical imagery to produce water segmentations, while
the student uses radar imagery. For each batch of images, we calculate
the Dice loss (Soomro et al., 2018) between the student predictions
and the ground truth masks provided by the teacher and minimize
this loss function to improve the performance of the student model.
We then backpropagate the loss to update the weights of the CNN. By
eliminating the need for manual annotation, we aim to streamline the
model training process and reduce overall project costs.

4.1. DeepAqua framework and workflow

Fig. 3 shows the DeepAqua’s overall framework and workflow. Our
method consists of two models: teacher and student models. The
teacher model is a thresholding model that generates water masks by
applying the NDWI index to optical images, and the student model
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Fig. 2. The training of a CNN model to recognize water boundaries from SAR imagery using NDWI water masks as ground truth.
which is a U-Net (Ronneberger et al., 2015) that takes SAR images
as input and produces segmentation masks as output. The teacher and
student models are trained jointly by minimizing the Dice loss between
their outputs. The workflow of our method is as follows:

• Step 1: We create a training set by selecting images that fulfill
the following conditions: First, Sentinel-1 (SAR) and Sentinel-2
(multispectral) image availability on the same date for the region
of interest. Second, a maximum of 1% of cloud cover on the
Sentinel-2 image, and (3) no missing values on the Sentinel-1 and
Sentinel-2 images.

• Step 2: Given a pair of optical and SAR images that are co-
registered and cover the same geographic area, we feed the
optical image to the teacher model and obtain an NDWI mask
as its output.

• Step 3: We feed the SAR image to the student model and obtain
a segmentation mask as its output.

• Step 4: We compute the Dice loss between the teacher and student
output to measure their similarity.

• Step 5: We update the student weights using backpropagation
based on the Dice loss.

• Step 6: We repeat steps 2–5 for all pairs of optical and SAR images
in the training set until convergence.

4.2. The teacher model

The teacher model generates water masks from optical images using
the NDWI index. Selecting the optimal threshold for NDWI values is
challenging, as highlighted by Ji et al. (2009) and Reis et al. (2021).
4

Following the recommendation of McFeeters (1996), we adopted a
threshold value of 0.0 to delineate open water. The teacher model
outputs a binary water mask matching the input optical image size,
where 0 indicates ground and 1 denotes water. This mask then guides
the student model.

4.3. The student model

The student model is a U-Net (Ronneberger et al., 2015) model that
takes SAR images as input and produces segmentation masks as output.
We use U-Net as the student model for two reasons. First, U-Net is a
simple and effective model for semantic segmentation that can achieve
good results with limited data and computational resources. Second, U-
Net is compatible with the teacher model regarding input and output
sizes, facilitating the cross-modal learning process.

We train U-Net from scratch on SAR images without requiring
annotated data. We use SAR images from Sentinel-1, a satellite mission
that provides C-band SAR images with a resolution of 10m ×10m per
pixel. For enhanced contrast in these images, we exclude pixel values
below the 1st percentile and above the 99th percentile. Subsequently,
we normalize the images. The output of the U-Net is a segmentation
mask that has the same size as the input SAR image. Within this mask,
values span from 0 to 1, with higher values suggesting increased water
presence. This segmentation mask serves as the desired output for
model optimization.

4.4. The cross-modal learning process

The cross-modal learning process is the core of our method that
transfers knowledge from the teacher to the student model. The teacher
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Fig. 3. The process of training a CNN model to recognize water boundaries from SAR imagery by learning from a NDWI model.
model produces a hard NDWI water mask from an optical image, and
the student model produces a segmentation mask from a SAR image.
The hard NDWI mask and the segmentation mask are aligned in terms
of spatial resolution and geographic area, as they are generated from
co-registered optical and SAR images that cover the same scene. The
cross-modal learning process aims to minimize the Dice loss between
the NDWI mask and the segmentation mask, which measures their
similarity.

The Dice loss (Dice, 1945) is a loss function frequently employed
for semantic segmentation tasks. It is particularly suited for imbalanced
data, where one class (e.g., water pixels) might be significantly under-
represented compared to another (e.g., land pixels). The Dice loss is
defined as:

𝐷𝑖𝑐𝑒 = 1 −
2 × |𝑌𝑇 ∗ 𝑌𝑆 | + 𝜖
|𝑌𝑇 | + |𝑌𝑆 | + 𝜖

(1)

where 𝑌𝑇 and 𝑌𝑆 are the teacher output and the student output,
respectively, | ⋅ | denotes the sum of all elements in a matrix, ∗ denotes
element-wise multiplication, and 𝜖 is a small constant to avoid division
by zero. The Dice loss ranges from 0 to 1, where lower values indicate
higher similarity.

By minimizing the Dice loss, the student model learns to mimic
the teacher model’s output and thus segment SAR images without
requiring annotated data. The Dice loss provides a soft and smooth
supervision signal for the student model, as it considers true positives in
the numerator and true positives, false positives, and false negatives in
the denominator. This Dice loss formula helps solve the issue of imbal-
anced training data and does not require defining weighting parameters
between different classes (in our case, the ground and water). Besides,
the function works well for binary segmentation tasks (Soomro et al.,
2018).

4.5. The backpropagation algorithm

The backpropagation algorithm is the algorithm that updates the
student weights based on the Dice loss. The backpropagation algo-
rithm consists of two steps: forward and backward propagation. In
the forward propagation, we compute the teacher output, the student
output, and the Dice loss for a given pair of optical and SAR images. In
the backward propagation, we calculate the gradient of the Dice loss
5

with respect to the student weights and update the weights using an
optimizer.

The steps of the backpropagation algorithm are as follows:

• Step 1: Given a pair of optical image 𝑋𝑂, and SAR image 𝑋𝑆 ,
we feed 𝑋𝑂 to the teacher model and 𝑋𝑆 to the student model.
We then obtain 𝑌𝑇 and 𝑌𝑆 as the teacher’s and student’s outputs,
respectively.

• Step 2: Compute 𝐷𝑖𝑐𝑒 using 𝑌𝑇 and 𝑌𝑆 as inputs (as in Eq. (1)).
• Step 3: Compute 𝜕𝐷𝑖𝑐𝑒∕𝜕𝑊𝑆 using the chain rule, where 𝑊𝑆 are

the student weights.
• Step 4: Update 𝑊𝑆 using an optimizer (e.g., Adam Kingma and

Ba, 2015).
• Step 5: Repeat steps 1–4 for all pairs of optical and SAR images

in the training set until convergence.

5. Evaluation

We evaluated the performance of DeepAqua using SAR-Vertical-
Horizontal (VH) imagery downloaded from Google Earth Engine (Gore-
lick et al., 2017).

5.1. Training, validation, and testing datasets

To train DeepAqua, we used Sentinel-1 (SAR) and Sentinel-2 (multi-
spectral) images of the entire county of Örebro in Sweden. Örebro has
an area of ( ∼ 8550 km2). We used Sentinel-2 multispectral images and
then applied NDWI to generate water masks. To this end, we first split
the entire Örebro region into tiles of 64 × 64 pixels. Each pixel had a
resolution of 10 m. Then, we repeated the same procedure to generate a
SAR dataset using Sentinel-1 images from the same region. This resulted
in a total of 45 500 multispectral-SAR pairs. Fig. 4 illustrates how we
generated the data to train our model. Once we generated all the data,
we randomly selected 80% of the tiles to create a training set, and we
took the remaining 20% to create a validation set.

Our testing set is composed of imagery from Svartådalen, Hjäl-
staviken and Hornborgasjön, three wetlands that belong to the Ramsar
convention, as shown in Fig. 5. The three wetlands are located in flat
areas of Southern and Western Sweden. These are shallow wetlands
that are not connected to any important river stream and are rather
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Fig. 4. The process of automatically generating the training set. We create multispectral-SAR (𝑋𝑂 , 𝑋𝑆 ) pairs by splitting the satellite images into smaller tiles.
Fig. 5. Map of Sweden containing the location of the three wetlands with manually annotated data that compose the testing set.
fed by small streams with low flow rates. The wetlands are covered by
emerging grassy vegetation consisting of mires and open water bodies.
The grassy vegetation is often flooded during the rainy season and
during spring when the wetlands receive snowmelt from upstream.
Some borders of the wetlands also have tree canopies that do not allow
the penetration of C-band signals.

Svartådalen is a mixed wetland complex of 1 977 ha comprised
of mires, bogs, and fens. Hjälstaviken is a limnic complex of 808
ha. Hornborgasjön is a human-made mire complex of 6 197 ha, one
of the largest single nature conservation projects ever carried out in
Sweden (Gunnarsson and Löfroth, 2014; Matthews et al., 1993). We
manually delineated the water in radar imagery from the study sites.
Each site contains 40 images between 2018 and 2022. We excluded the
months of January, February, March, and December to avoid images
that contained snow and ice.

5.2. Evaluation metrics

To quantitatively evaluate the performance of our semantic seg-
mentation model on radar imagery of wetlands, we employed a set of
evaluation metrics as detailed in Everingham et al. (2015). These met-
rics, derived from TP, TN, FP, and FN counts, measure both pixel-level
accuracy and the overall quality of the segmented regions.

1. Pixel Accuracy (PA): This metric computes the proportion of
correctly classified pixels in the entire image. It provides an
overall sense of how well the model is performing but may
not capture errors distributed across different classes effectively:

TP+TN
TP+TN+FP+FN .

2. Intersection Over Union (IOU): Also known as the Jaccard in-
dex, Intersection Over Union (IOU) offers a measure of the over-
lap between the predicted and true areas, with values ranging
from 0 (no overlap) to 1 (perfect overlap): TP
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TP+FP+FN
3. Precision: This quantifies the proportion of positive identifi-
cations (i.e., water pixels) that were actually correct. A high
precision indicates that the model has fewer false positives:

TP
TP+FP

4. Recall: Also known as sensitivity, recall measures the proportion
of actual positives (water pixels in ground truth) that are iden-
tified correctly. A high recall means the model has fewer false
negatives: TP

TP+FN
5. F1-Score: The harmonic mean of precision and recall, the F1-

score gives a balanced measure of the model’s performance,
especially when the class distribution is imbalanced: 2 ×
Precision×Recall
Precision+Recall

By employing these metrics, we aim to comprehensively evaluate
our model’s capabilities, considering both the fine and broad contexts
of water segmentation in radar imagery.

5.3. Baseline methods

We compared the performance of DeepAqua against Otsu’s method
(Otsu, 1979) and the model by Carvalho Júnior et al. (2011). We
selected these methods because they are unsupervised, aligning with
our study’s central theme of working with non-manually annotated
data, making it distinct from the other methods discussed in Section 2.

We decided to concentrate on unsupervised methods because Deep-
Aqua’s core advantage is its capacity to train without manual anno-
tations. Introducing supervised methods into our comparison would
present complications related to the quality of training data, which
might shift attention away from our primary goal: demonstrating the
effectiveness of a strong unsupervised solution.

Otsu’s method is a technique for automatically determining the
optimal threshold value for image segmentation or binarization. This
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Table 1
Semantic segmentation performance over various wetland areas in Sweden. The best performance is highlighted in bold.

Model Svartådalen Hjälstaviken Hornborgasjön

PA IOU Prec Recall F1 PA IOU Prec Recall F1 PA IOU Prec Recall F1

Dynamic World 0.92 0.59 0.92 0.63 0.75 0.90 0.35 0.57 0.47 0.51 0.88 0.57 0.91 0.60 0.73
Otsu 0.90 0.64 0.69 0.89 0.78 0.81 0.34 0.36 0.85 0.51 0.79 0.49 0.65 0.66 0.66
Otsu + Gaussian filter 0.93 0.73 0.75 0.96 0.84 0.83 0.38 0.40 0.89 0.55 0.83 0.56 0.73 0.70 0.72
Carvalho Júnior 0.96 0.82 0.90 0.91 0.90 0.89 0.47 0.53 0.82 0.64 0.96 0.85 0.89 0.95 0.92

DeepAqua-NDWI 0.97 0.88 0.98 0.90 0.93 0.96 0.68 0.81 0.81 0.81 0.98 0.94 0.98 0.96 0.97
DeepAqua-MNDWI 0.97 0.85 0.95 0.89 0.92 0.95 0.68 0.78 0.84 0.81 0.98 0.93 0.96 0.97 0.96
DeepAqua-AWEI 0.97 0.84 0.98 0.85 0.91 0.96 0.68 0.86 0.77 0.81 0.98 0.94 0.98 0.95 0.97
DeepAqua-HRWI 0.97 0.86 0.97 0.88 0.92 0.96 0.69 0.82 0.81 0.81 0.98 0.94 0.97 0.96 0.97
method and other thresholding approaches, such as the one described
in Carvalho Júnior et al. (2011), seek to find a threshold value that
augments the distinction between an image’s foreground (water, in our
context) and background (soil). Otsu’s method computes the variance
between these two classes of pixels for every conceivable threshold
value. The threshold that mitigates the variance within each class
while amplifying the variance between the classes is adopted as the
prime choice. We executed our experiments using OpenCV’s Python
implementation of the Otsu method. We also implemented the model
from Carvalho Júnior et al. (2011), which finds the threshold value
that maximizes the Dice score (Dice, 1945) from a SAR image and its
corresponding NDWI mask.

SAR images are naturally noisy, so filtering techniques are often
used to improve the segmentation process (Tan et al., 2023; Zhou
et al., 2020; Li et al., 2020). We incorporated a Gaussian filter vari-
ation of the Otsu method in response to these recognized challenges.
This variation assists in diminishing the noise impact, ensuring more
accurate segmentation without drastically diverging from the raw data.
Likewise, we used the Gaussian filter in conjunction with the method
from Carvalho Júnior et al. (2011). It is noteworthy that while the
Gaussian filter aids in reducing noise, our core objective remains to
accentuate the potential of our proposed CNN model to train effectively
without manual annotations. This commitment to reducing dependency
on manually annotated data is in line with our strategy for minimal
preprocessing.

We benchmarked DeepAqua using the Dynamic World dataset (Brown
t al., 2022), which classifies land cover based on Sentinel-2 optical
magery. We identified water and flooded vegetation as positive classes,

with others as negative. We favored Dynamic World for its five-day
update frequency, in contrast to the yearly updates of datasets like
Esri (Karra et al., 2021) and the European Space Agency (Zanaga et al.,
2022). However, its reliance on optical imagery could limit vegetated
water detection compared to radar-based methods.

5.4. Implementation details

We implemented our methods using PyTorch (Paszke et al., 2019)
with an Adam (Kingma and Ba, 2015) optimizer with a learning rate of
5×10−5. We minimized the Dice loss function (Dice, 1945) as described
in Section 4.4. We trained our method for 20 epochs with a batch size
of 32 on a MacBook Pro with an M1 processor and 16 GB of RAM. The
total training time was 277 min.

We trained the CNN using the raw data to show the true power
of our approach in handling complex and noisy images. We did not
apply any filters or preprocessing techniques to clean the original SAR
images, except for removing outlier pixel values by discarding values
lower than percentile 1 and higher than percentile 99. We also applied
min–max scaling to bring the pixel values to the range [0, 1]. We
could increase prediction performance using techniques such as image
denoising, data augmentation, image contrasting, transfer learning, and
model ensembling; however, in this paper, we focused only on the
potential of the NDWI water masks to train SAR-based CNNs.

We selected and tuned the hyperparameters of our method using
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a grid search based on the performance of the validation set. For
the learning rate, we tried the values [1 × 10−6, 5 × 10−61 × 10−5, 5 ×
10−5, 5 × 10−4, 1 × 10−3, 5 × 10−3], and for the batch size, we tried the
values [1, 2, 4, 8, 16, 32, 64, 128, 256]. We stopped at 20 epochs because
the model converged at this time. We also experimented with other
water indexes such as MNDWI (Xu, 2006), AWEI (Feyisa et al., 2014)
and HRWI (Yao et al., 2015). We applied the Otsu and Carvalho Júnior
et al. (2011) methods with a Gaussian filter using a 5 × 5 kernel size.

One of our challenges was that the models trained on 2018 data only
showed good performance for 2018 and 2019 but poor performance in
2020, 2021, and 2022. For this reason, we had to train two models
based on data from different years. The first model was trained on
satellite images taken on July 4th, 2018, and worked well for all 2018–
2019 images. The second model was trained on satellite images taken
on June 23rd, 2020, working well for all 2020–2022 images. However,
after inspecting the images, we realized that the SAR images from
2018–2019 had more speckle and noise than those from 2020–2022,
possibly due to an adjustment on the Sentinel-1 sensors. Therefore, we
provide a pre-trained version of our model for both 2018 and 2020.

The code, testing dataset, and pre-trained models are available at
https://github.com/melqkiades/deep-wetlands.

5.5. Quantitative results

As Table 1 shows, DeepAqua outperforms the Otsu and
Carvalho Júnior et al. (2011) models on accuracy, IOU, recall, and F1-
score by a significant margin on all three study areas, demonstrating
the effectiveness of our approach in leveraging cross-modal learning
without requiring annotated data.

Using data from The metrics presented in Table 1, are derived
from a weighted aggregation of DeepAqua’s performance in the three
wetlands, factoring in the varying sizes of each site. The DeepAqua-
NDWI model, which is the best overall performer, shows an accuracy
of 98%, reflecting its consistent efficacy across different terrains. An
IOU of 92% highlights its precision in mapping the overlap between
predicted and actual water extents. With a precision of 97%, the model
robustly pinpoints true water pixels in its positive predictions, and a
recall of 94% indicates its capacity to identify most water pixels within
the dataset. This balance between precision and recall results in an F1-
score of 96%. While the performance of the various DeepAqua models is
similar, we can see that DeepAqua-NDWI has a slight edge. This could be
due to the NDWI index it uses, which has a 10-m resolution, compared
to the 20-m resolution of MNDWI and AWEI. DeepAqua surpasses the
baseline models in almost every single metric across the three study
areas.

We can also see that the model from Carvalho Júnior et al. (2011)
outperforms the Otsu models with a Gaussian filter on pixel accuracy,
IOU, precision, and F1-score. However, the Otsu method exhibits a high
recall, indicating its proficiency in recognizing water bodies, albeit with
some propensity to misclassify non-water areas. While the Dynamic
World model struggles to detect vegetated water, its precision surpasses
the Otsu and Carvalho Júnior et al. (2011) models across all three study
areas, indicating that its water pixel predictions are often accurate.

DeepAqua demonstrates effective water surface detection and conse-

quent water surface extent estimation, with errors being a small portion

https://github.com/melqkiades/deep-wetlands
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Fig. 6. Comparative confusion matrices for DeepAqua’s performance. Fig. 6(a) displays normalization against the total pixel count, while Fig. 6(b) emphasizes performance metrics
specific to each class.
Fig. 7. Dots indicate the water extension of three Swedish wetlands over 2018–2022. Only the months of April through November are considered.
of its results, as evident from the confusion matrices in Fig. 6. The
0.7% FP rate indicates an overestimation of water surfaces. On the
other hand, the 1.4% FN rate suggests the incapability of detecting all
water surfaces. Yet, these figures highlight the model’s ability to dis-
tinguish soil from water, especially when considering the challenges of
detecting both open and vegetated water surfaces in dynamic wetland
environments.

5.6. Qualitative results

We applied DeepAqua to assess the surface water extent in three
study areas from 2018 to 2022. Fig. 7 shows total water extent in the
wetlands as measured by our model. Typically, the wetlands experience
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increased water levels during spring due to snowmelt, effect that fades
as summer arrives. As autumn approaches, the wetland surface water
extent increases once again.

To underscore the accuracy of DeepAqua, Fig. 8 offers predictions
for the three study areas across different months. The leftmost column
displays the input SAR image, while the rightmost presents the manu-
ally annotated ground truth. Intermediate columns feature predictions
from all models.

The top row captures the Svårtadalen wetland during summer on
July 4th, 2018. It is evident that the Otsu model and the method
from Carvalho Júnior et al. (2011) have difficulty with speckle noise;
however, filtering mitigates part of it. The DeepAqua model appears
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Fig. 8. Illustration of the performance of our model for different areas and times of the year: Svårtadalen, July 4th, 2018 (A); Hjälstaviken, October 4th, 2020; and Hornborgasjön
April 19th, 2021 (C). From left to right: original SAR images, segmentation using Otsu’s method with a Gaussian filter, segmentation using the model from Carvalho Júnior
et al. (2011), segmentation using DeepAqua, and manually annotated data. Green pixels denote TP, cyan pixels denote FP, red pixels denote FN and black pixels denote TN. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
resilient to this noise and aligns closely with the ground truth. The mid-
dle row captures the Hjälstaviken wetland during autumn on October
4th, 2020. This image is more noisy than the previous one, causing
challenges particularilly for the Otsu method. Instead of reducing the
noise, the Gaussian filter amplifies it. The model from Carvalho Júnior
et al. (2011) is less affected by the noise than the Otsu. Overall,
DeepAqua offers clear predictions of the water surface and no noise. Yet,
as indicated by the red pixels, it could not detect water surfaces in some
areas at the top of the image. The bottom row shows the Hornborgasjön
wetland in spring on April 19th, 2021. Both Otsu and the method
from Carvalho Júnior et al. (2011) show a low prediction potential due
to noise (cyan areas), which is not present in the prediction of DeepAqua.

Notably, DeepAqua accurately predicts surface water extent and is
capable of identifying the ‘‘land islands’’ within the wetlands. While it
is not flawless, with some FP and FN errors evident, its noise reduction
capability is commendable and achieved without resorting to additional
filtering or preprocessing. As the red and cyan pixels in Fig. 8 show,
errors often appear around wetland shores or where water levels are
low. In these regions, differentiating between water and soil in SAR
images can be challenging due to the mixed signals from the water–
soil interface. We emphasize that DeepAqua does not use filtering or
pre-processing techniques on the SAR images.

To summarize, DeepAqua excels in recognizing water surfaces from
SAR images. While the method effectively tracks water extent changes
in time, it does not inherently distinguish between open and vegetated
waters due to the inherent limitations of doing such from SAR imagery
. Although not the primary focus, coupling our approach with water
index methods like NDWI can easilly help differentiate these two tyoes
of surfaces. It can also be updated with more extended wavelengths
than the C-band to even detect waters below thicker canopies such as
mangroves.

6. Conclusion

We present DeepAqua, a novel method that uses cross-modal learning
to train a CNN for semantic segmentation of water in SAR imagery
without requiring annotated data. Our method consists of two models:
a teacher model that creates NDWI water masks from optical images
and a student model that learns to segment water in SAR images. We
used U-Net to implement the student model. The teacher and student
models are trained jointly by minimizing the Dice loss between their
outputs. Our experiments confirmed that our model can accurately
segment images and confidently detect water. The model here is trained
and tested in three wetland environments and overall can be applied
to wetlands with emerging vegetation. Future studies may adapt the
approach for radar sensors with longer wavelengths to expand the
applicability in wetlands with thicker vegetation, such as Mangroves.
This model can help applications where water detection is crucial, such
as flooding detection, river and lake mapping, and water availability
assessments in time and space.
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