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Abstract—Monitoring the global state of an overlay network
is vital for the self-management of peer-to-peer (P2P) systems.
Gossip-based algorithms are a well-known technique that can
provide nodes locally with aggregated knowledge about the state
of the overlay network. In this paper, we present a gossip-
based protocol to estimate the global distribution of attribute
values stored across a set of nodes in the system. Our algorithm
estimates the distribution both efficiently and accurately. The key
contribution of our algorithm is that it has substantially lower
overhead than existing distribution estimation algorithms. We
evaluated our system in simulation, and compared it against the
state-of-the-art solutions. The results show similar accuracy to
its counterparts, but with a communication overhead of an order
of magnitude lower than them.

I. INTRODUCTION

Monitoring the components of distributed systems is nec-

essary if they are to become self-managing. One potential

solution to provide an accurate view of the system state is to

employ a central node that communicates with all individual

nodes and monitors their state. Although this approach can

provide the desired global knowledge, it is not always feasible

or desirable in large-scale dynamic distributed systems, e.g.,

peer-to-peer (P2P) systems, due to excessive overhead on the

central node.

Gossip-based aggregation algorithms [1] are a common

solution to this problem. The general structure of gossip-based

aggregation algorithms is as follows: each node periodically

communicates with a randomly selected partner taken from a

peer sampling service [2], [3] and both nodes subsequently

exchange local information about the global state of the

system. Within a small number of iterations of the algorithm,

each node’s local estimation converges to a good estimation

of the global state.

The first aggregation protocols to appear only provided a

single point estimate of the global attribute value, e.g., the

network size or the global average of the local attribute values

at all nodes [1]. However, practical systems often require an

estimate of the distribution of attributes values. For example,

CLIVE [4] needs an estimate of the upload bandwidth dis-

tribution across all nodes to compute the number of nodes

that can be served in a live video streaming service, and

LIMOSENSE [5] requires the distribution of various attribute

values to detect hardware and software defects or intrusion

attempts. To the best of our knowledge, ADAM2 [6] and

EQUIDEPTH [7] are the only available gossip-based solutions

for the distribution estimation problem.

In this paper, we present a practical gossip-based distri-

bution estimation protocol that has an order of magnitude

less overhead than ADAM2 [6] and EQUIDEPTH [7], while

obtaining a comparable accuracy.

II. RELATED WORK

The estimation of aggregates in large-scale distributed sys-

tems has been well-studied in the past [1], [8], [9], [10]. A

popular technique is the hierarchical approach [8], [9], [11],

[12], where nodes are organized in tree-like structures, and

each node in the tree monitors its children.

Hierarchical approaches provide high accuracy results with

minimum time complexity, but are extremely vulnerable to

churn. An alternative approach is based on gossip proto-

cols [1], [6], [7], [10], [13], [14], where information about

nodes is exchanged between randomly selected partners and

aggregated to produce local estimates.

In the field of gossip-based distribution estimation, Hari-

dasan and van Renesse recently proposed EQUIDEPTH [7]. In

this protocol, each node initially divides the set of potential

values into fixed-size bins, and over the course of the ex-

ecution, bins are merged and split based on the number of

received values in each bin. In EQUIDEPTH, nodes send the

entire current distribution estimate in each message exchange.

Following this research line, Sacha et al. proposed

ADAM2 [6], an algorithm that provides an estimation of the

cumulative distribution function (CDF) of a given attribute

across the population of nodes. The proposed approach allows

nodes to compute their own accuracy and to tune the trade-

off between communication overhead and estimation accuracy.

Similar to EQUIDEPTH, ADAM2 nodes send their whole local

vector in each message exchange.

Alternative gossip-based averaging techniques have been

proposed by Eyal et al. [5] and Jesus et al. [15], to over-

come message loss, network churn and topology changes. In

LIMOSENSE [5], each node maintains a pair of values, e.g., a

weight and an estimation, that is continuously updated during

node communication. Jesus et al. [15] propose a technique

where each node uses its current set of neighbors and main-

tains a dynamic mapping of value flows across to them.

CROUPIER [16], which is a NAT-aware peer sampling ser-

vice [2], [3], [17], is another system that uses gossip-based

estimation. In this system each node has two views, one for

private nodes behind NATs, and one for public nodes. In order

to generate a random sample from the two partial views, the



protocol estimates the global ratio of public to private nodes

using a gossip-based protocol.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a network consisting of a collection of nodes

that communicate through message exchanges. Each node is

uniquely identified by a logical ID. The network is highly

dynamic and subject to churn, i.e., new nodes may join at any

time, and existing nodes may voluntarily leave or crash. We

use N (t) to denote the population of the network at time t.
Byzantine behavior is not considered in this work.

We assume that each node in the network has a single local

attribute attr that represents a local property, e.g., CPU load

or disk space. Let V be the set of all possible values for attr ,

and let n(v, t) be the number of nodes whose attribute is equal

to v ∈ V at time t. The global frequency, freq(v, t), of value
v at time t is defined as the fraction of nodes with value v at

that time:

freq(v, t) =
n(v, t)∑

w∈V n(w, t)
(1)

Our goal is to provide each node with an estimate of

freq(v, t), for each value v in V , in a completely decentralized

way.

IV. THE ALGORITHM

Our solution, summarized in Algorithm 1, is based on the

gossip paradigm: execution is organized in periodic rounds,

performed at roughly the same rate by all nodes, during which

a push-pull gossip exchange is executed [18], [19]. During a

round, each node p sends a REQUEST message to a partner

node q, and waits for the corresponding REPLY message from

q. Information contained in the exchanged messages are used

to update the local knowledge about the entire system, which

is composed by the following information:

• a partial view of the network, stored in variable view ,

that represents a small subset of the entire population of

nodes;

• a map count that counts the number of times a given

value in V has been received during each of the rounds

executed so far.

The partial views are needed to maintain a connected,

random overlay topology over the population of all nodes

to allow the exchange of information, while count is used

to obtain approximate and up-to-date information about the

attribute distribution,

Partial views management. Partial views are managed

through the CYCLON peer sampling service [2]. We provide

here only a brief overview of the protocol, and refer the reader

to [2] for a full description. Each partial view contains a fixed

number c of node descriptors (q, t), composed by a node ID

q and a timestamp t. During each round, a node p identifies

the node q with the oldest descriptor in its view , based on

the timestamp through selectOldest() in Algorithm 1. The

corresponding descriptor is removed, and a subset containing

g random descriptors, with g < c, is extracted from view

through procedure randomSubset(). This subset is sent to

q through a REQUEST message. The node that receives the

REQUEST responses with a REPLY message, that similarly

contain g descriptors randomly selected from the local view.

Whenever a subset view recvView is received, procedure

updateView() merges its content with the node’s local view

as follows. For each descriptor (q, t) contained in recvView ,

the procedure checks weather q is already included in the local

view and its timestamp t′ is older than t; if so, the current

pair is removed from the local view. Otherwise, if the view

has reached its maximum size c, a single random descriptor

selected by procedure randomSubset() is removed. At this

point, there is new space to add (q, t) to the view.

The net effect of this process is the continuous shuffling of

views, removing old descriptors belonging to crashed nodes

and epidemically disseminating new descriptors generated

by active ones. The resulting overlay network, where the

neighbors of a node are the nodes included in the partial view,

closely resembles a random graph, characterized by extreme

robustness and small diameter [2].

Distribution estimation. The map count is indexed by values

in V and by round number, so that count [v, r] counts the

number of received messages containing v during round r.
We assume that V is static and known in advance, otherwise, a

simple mechanism proposed by Haridasan and van Renesse [7]

can adjust the set of entries for the case where the extreme

values of a variable are unknown.

At the beginning of round r, count [v, r] is initialized to zero
for all values v ∈ V and the local attribute value is inserted

in the REQUEST message. Whenever an attribute value v is

received in round r, count [v, r] is incremented by one.

To estimate the global frequency, we consider a small time

window into the past (the history), given by the last δ complete

rounds. δ is a system parameter that is characterized by a

trade-off between the accuracy (the larger δ, the better) and

up-to-dateness (the smaller δ, the better) of our estimation. We

count in variable countδ[v, r] the total number of times that a

node has received value v during such period of time:

countδ[v, r] =

δ∑

j=1

count [v, r − j] (2)

Our estimate of global frequency of v at round r over the

previous δ rounds can thus be computed locally at p as the

ratio between the number of received messages by p with value
v to the total number of messages received by p:

est [v, r] =
countδ[v, r]∑

w∈V countδ[w, r]
(3)

If there is no bias between the average gossip round-time of

all nodes and in the message loss between them, est [v, r] can
be considered a good approximation of freq(v, t(r)), where
t(r) is the approximate time when round r has started:

est [v, r] ≈ freq(v, t(r)) (4)



Algorithm 1: Shuffling and estimation algorithm

procedure executeRound()

⊲ Distribution estimation

round ← round + 1
computeDistribution(round)
foreach v ∈ V do

count [v, round ]← 0

⊲ Partial view shuffling

q ← selectOldest(view)
view .remove(q)
subp ← view .randomSubset(view , g)
subp.add(p, now())
send 〈REQUEST, subp, attr〉 to q

on event receive 〈REQUEST, subp, v〉 from p do
count [v, round ]← count [v, round ] + 1
subq ← view .randomSubset(view , g)
send 〈REPLY, subq, attr〉 to p
view ← updateView(view , subp)

on event receive 〈REPLY, subq, v〉 from q do
count [v, round ]← count [v, round ] + 1
view ← updateView(view , subq)

procedure updateView(view , recvView)
foreach (q, t) ∈ recvView do

if (q, t′) ∈ view and t′ < t then
view .remove(q)

else if view .isFull() then
view .remove(view .randomSubset(1))

view .add(q, t)

procedure computeDistribution(int r)
tot ← 0
foreach v ∈ V do

countδ[v, r]← 0
for j ← 1 to δ do

countδ[v, r]← countδ[v, r] + count [v, r − j]

tot ← tot + countδ[v, r]

foreach v ∈ V do
est [v, r]← countδ[v, r]/tot

Algorithm 1 shows the details of our protocol. The

round code executed periodically is contained in procedure

executeRound(), while the code handling messages is shown

in the on event clauses. Procedure updateView() collects

common code that is used when receiving both REQUEST

and REPLY messages. Note that this pseudo-code has been

designed just to illustrate the main characteristics of the

algorithm, and many important optimizations are missing. For

example, storing the number of messages received more than

δ rounds ago is not necessary, and the current value of countδ
can be obtained by the previous value by adding the counters

of the current round r and removing those of round r − δ.

Improvement. The more values a node receives in a round,

the faster it converges to the correct estimate. In the explained

model (baseline solution), nodes attach only their single local

value to each message exchange. However, as we see in

Algorithm 1, in each message exchange, together with this

value, a small number of node descriptors are sent in sub as

well. In the enhanced solution, a node descriptor is a triple

(q, t, v) composed by a node ID q, a timestamp t and an

attribute value v. In this way, a larger number of values are

disseminated around and can be used to obtain a more accurate

estimate of the distribution in less time. However, we should

notice that this improvement is achieved at the cost of a slight

increase in the traffic overhead.

V. EXPERIMENTS

In this section, we evaluate the accuracy of distribution es-

timation of the baseline and enhanced solutions, and compare

them with the existing gossip-based solutions EQUIDEPTH [7]

and ADAM2 [6].

We adopt the Kolmogorov-Smirnov (KS) distance [20], to

define the upper bound on the approximation error of any node

in the system. The KS distance is given by the maximum

difference between an estimated distribution and the original

distribution. For each node p and for all values v ∈ V , we
measure the maximum error at round r and at node p as

the distance between freq(v, t(r)) and the estimate estp[v, r],
where t(r) is the approximate time when round r has started:

maxErrp(r) = max
v∈V
|freq(v, t(r))− estp[v, r]| (5)

We measure, then, the maximum error at round r as the

maximum error over all nodes:

maxErr(r) = max
p∈N (r)

maxErrp(r) (6)

Since the maximum error is determined by a single point

difference between freq(v, t(r)) and estp[v, r], it is sensitive

to noise, thus, we also measure the average error at each node:

avgErrp(r) =
1

|V|

∑

v∈V

|freq(v, t(r))− estp[v, r]| (7)

Our total average error is then calculated as the average of

these local average errors:

avgErr(r) =
1

|N (r)|

∑

p∈N (r)

avgErrp(r) (8)

In our experiments, 10,000 nodes participate in the distribu-

tion estimation. The nodes join the system following a Poisson

distribution with an inter-arrival time of one millisecond. In

the experimental setup, for all four protocols, i.e., the baseline

model, the enhanced model, EQUIDEPTH and ADAM2, the

size of partial view is c = 10, and the size of the subset

views sent in each view exchange is g = 5. The gossiping

round period for view exchange is set to one second. Unless

stated otherwise, we set the history size δ equal to 100 in both

the basic and enhanced model. Latencies between nodes are
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(c) Pareto distribution.

Fig. 1. Maximum estimation error with different distributions.
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Fig. 2. Average estimation error with different distributions.

modeled on Internet latencies, using a latency map based on

the King data-set [21].

We consider three value distributions in the experiments: the

uniform distribution, the exponential distribution (λ = 1.5),
and the Pareto distribution (k = 5, xm = 1). We assume that

the size of V is equal to 100.

We implemented the set of four protocols in KOMPICS [22],

[23], a framework for building P2P protocols that provides a

discrete event simulator and several models for bandwidth,

latency and churn.

Error. We compare the error and the convergence time of the

four solutions in the three test distributions in Figures 1 and

2. As we see ADAM2 converges faster than the other solutions

with smaller average error. However, Figure 1 shows that max-

imum error of the enhanced model and ADAM2 are very close

and better than EQUIDEPTH and the baseline. Additionally,

we see in Figure 2 that the accuracy of the baseline model

increases over time and after a number of rounds its estimation

converges to the estimation of EQUIDEPTH.

The local history size. The local history size δ has an

important effect on the accuracy of the estimated distribution

of the values. If δ equals the system life time, the estimated

distribution is approximately equivalent to the real distribution.

However, in reality nodes need to bound the size of their

history.

Figure 3 shows the average error of the baseline model

for different values of δ. In this experiment, the values are

distributed uniformly among the nodes. As we see, the bigger

δ is, the more accurate the results are.

The traffic overhead. Figure 4 shows the overhead traffic

of the four protocols. In this figure the Y-axis shows the

cumulative traffic of 10,000 nodes in logarithmic scale. Given

that in the baseline model nodes only send their own value,

the generated traffic is much smaller than the enhanced model

and the two other solutions.

In the enhanced model, the nodes add their values to their

descriptors. Therefore, the overhead increases proportionally

to the exchanged view size. However, as we see in Figure 4,

the enhanced model traffic overhead is much smaller than

EQUIDEPTH and ADAM2, which send the whole vector of

values.

Churn. Finally, we compare the average error of the four

systems in different churn scenarios. In this experiment, we

assume three churn rates, such that approximately 0.1%, 1%

and 10% of nodes leave the system per second and rejoin

immediately as newly initialized nodes [24]. Figure 5 shows

that by increasing the churn rate the average error also

increases. The figure shows that the enhanced model and

ADAM2 compare to EQUIDEPTH have lower average error in

0.1% and 1% churn rates, however, EQUIDEPTH shows a better

performance in high churn scenarios.
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VI. CONCLUSIONS

This paper presents an efficient solution to estimate the dis-

tribution of an attribute value, e.g., CPU power or disk space,

across all the nodes of a P2P system with high accuracy and

low overhead. Our approach is based on the gossip paradigm,

where nodes periodically exchange their local information

and update it to converge towards a global aggregate value.

We thoroughly simulated our proposed algorithm, both for

the baseline model and the enhanced one. We compared our

protocols with state-of-the-art solutions, like ADAM2 [6] and

EQUIDEPTH [7]. We show that maximum error of the enhanced

model and ADAM2 are almost the same, and both are smaller

than EQUIDEPTH and the baseline model. Moreover, we show

that the average error of the enhanced model is also less

than EQUIDEPTH, and finally we show that the total network

overhead of the baseline model and enhanced model are 1%
and 10% those of the EQUIDEPTH and ADAM2, respectively.
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