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Abstract—In large software-intensive organizations, trouble
reports (TRs) are heavily involved in reporting, analyzing, and
resolving faults. Due to the scale of both modern organizations
and products, faults are often identified independently by multi-
ple people, leading to duplicate TRs. To mitigate the additional
manual effort to identify and resolve these duplicate TRs, prior
work at Ericsson focused on developing a 2-stage BERT-based
retrieval system for identifying similar TRs when provided a new
fault observation. This approach, although powerful, struggled to
generalize to out-of-domain TRs. In this paper, we evaluate sev-
eral fine-tuning strategies to further integrate domain knowledge,
notably telecommunications knowledge, into the BERT-based TR
retrieval models to (i) attain better performance on duplicate TR
retrieval/identification and (ii) improve model generalizability to
out-of-domain TR data. We find that adding domain-specific data
into the fine-tuning models led to improved results on both overall
model performance and model generalizability.

Index Terms—information retrieval, bug reports, trouble re-
ports, neural ranking, catastrophic forgetting, natural language
processing, transfer learning, telecommunications

I. INTRODUCTION

In large software-intensive organizations, the reporting,
analysis, and resolution of hardware and software faults are
crucial to providing stable, high-quality products. Cataloging
and sharing these faults are often done through trouble re-
ports (TRs) [1], [2]. However, since faults are often reported
independently by different actors, duplicate TRs often arise.
Given the high effort required to resolve TRs, identifying
duplicates as early in the resolution process as possible is vital.
Nevertheless, this process is challenging as TRs mainly consist
of natural language text, which may deviate significantly
depending on TRs’ authors.

To effectively process and perform inference on this text,
prior work, BERTicsson [3], leverages two stages of BERT
models [4] to perform efficient and effective retrieval of similar
TRs (Figure 2). Given a newly written TR, the first stage,
which uses a faster but lower accuracy BERT model (Bi-
Encoder), identifies the top K most similar TRs. Then, these
TRs are re-ranked in the second stage, which uses a more
accurate but slower BERT model (Cross-Encoder). The BERT
models in these two stages are initially pre-trained on English
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Fig. 1: Process of handling Trouble Reports at Ericsson

document ranking data, notably, MSMARCO [5], before fine-
tuning on the downstream TR retrieval task.

In the context of the fault reporting process at Ericsson,
outlined in Figure 1, BERTicsson and similar methods can
aid both the analysis and resolution phase. Even in the case
where a duplicate TR is not present in the data, retrieving
TRs with similar faults can still be leveraged to more easily
identify software or hardware components in which the fault
has occurred and the actors responsible for resolving the fault.

A. Problem Statement

Compared to traditional retrieval approaches, such as
BM25 [6], prior work found that BERTicsson [3] performed
significantly better when retrieving duplicate TRs. Despite this,
BERTicsson has two major drawbacks:

1) BERTicsson does not effectively leverage Ericsson’s pre-
trained telecommunications-specific language models.
These models have been trained on vast amounts of gen-
eral telecommunications language data. Prior work, [7],
has shown that fine-tuning these domain-specific models
to other downstream telecommunications-specific tasks
has shown strong results. In the existing BERTics-
son fine-tuning process, the only telecommunications-
specific text provided to the model are the TRs in the
final fine-tuning stage, which represents a very small set
of the total data available.

2) BERTicsson does not sufficiently generalize to TRs
outside the domain of TRs they are trained on, leading
to poor performance on TRs written by other customers.



This may be, in part, due to the lack of domain-specific
data provided throughout model fine-tuning.

To mitigate the outlined challenges, this research inves-
tigates different fine-tuning strategies for training a dupli-
cate TR retrieval model, notably focusing on integrating
telecommunications-specific models in the fine-tuning process.

Fine-Tuning Strategies: Figure 9 outlines the different fine-
tuning strategies we investigate in this paper, further outlined
here:

1) Domain Adaptation [8], in which we fine-tune a doc-
ument ranking model (trained on MS MARCO) to our
duplicate TR retrieval task. This is referred to as domain
adaptation as we adapt from one domain (English) to
another (telecommunications). It is assumed that the task
remains the same.

2) Sequential Learning [8], in which we fine-tune a general
telecommunications language model (e.g., from [7])
to our duplicate TR retrieval task. Another term for
sequential learning is task adaptation. In this case, we
shift from a general language task to a document ranking
task, while the domain (telecommunications) remains
the same.

3) Our Multi-stage approach, in which we initially fine-
tune a telecommunications language model on English
document ranking data before fine-tuning on the dupli-
cate TR retrieval tasks. Unlike the prior two approaches,
in this scenario we integrate data in both the relevant
downstream task and domain prior to fine-tuning on
TRs. Note, however, that here the model is sequentially
pre-trained on telecommunications data and then English
document data. This sequential fine-tuning process can
suffer from catastrophic forgetting [9]–[11]. To account
for this scenario, we add a catastrophic forgetting mitiga-
tion strategy, particularly Elastic Weight Consolidation
(EWC) [12], in the first stage of our multi-stage model.

Domain adaptation acts as our baseline fine-tuning strat-
egy, as it is the fine-tuning approach used when train-
ing BERTicsson [13]. Sequential learning aims to mitigate
the aforementioned challenges, by leveraging a pretrained
telecommunications-language model in the fine-tuning pro-
cess. We hypothesize, however, that by not pretraining on any
task-specific (i.e., document ranking) data, we may struggle
to attain strong performance on the final ranking task. Hence,
our novel multi-stage fine-tuning approach aims to leverage the
strengths of both domain adaptation and sequential learning.

Contributions: This paper compares multiple fine-
tuning strategies for training language models for a
telecommunications-specific task, focusing on how to
effectively integrate general (non-task specific) domain-
specific data into our model fine-tuning. To our knowledge,
we are the first to implement and evaluate a catastrophic
forgetting mitigation strategy for effectively integrating tasks
and domains in a pretraining strategy for language models. In
addition, the insights gained from comparing the approaches
outlined in this paper can benefit practitioners.

B. Structure

The remainder of this paper is structured as follows. In
Section II, we discuss relevant background research. In Section
III, we outline the data, models, and fine-tuning strategies in
further detail. In Section IV, we evaluate the performance of
the different fine-tuning strategies. Finally, in Section V, we
conclude this paper and outline possible future work.

II. BACKGROUND

In this section, we provide an overview of the existing
literature and background research relevant for this paper.
This is divided into three sections: 1) Neural Ranking, which
is relevant to the models leveraged to attain the results in
this paper, 2) Transfer Learning in NLP, and 3) Catastrophic
Forgetting.

A. Neural Ranking

Neural ranking refers to ranking (e.g., ranking documents)
using deep learning approaches [14], [15]. Before BERT-based
methods, this often took the form of representation-based
and interaction-based methods. The BERT equivalents are Bi-
Encoder and Cross-Encoder models, which are the types of
models used in this paper. In Figure 2, we visualize the Bi-
Encoder and Cross-Encoder model structure in the context of
duplicate TR retrieval.

Fig. 2: Multi-stage retrieval process of relevant TRs, including
Representation-based and Interaction-based approaches for
neural ranking.

Representation-based Retrieval & Bi-Encoders: The
Representation-Based Approach generally refers to
approaches where a neural model produces a high-
dimensional embedding of some input text. Metrics, such
as cosine-similarity or dot product, can be used to compare
the generated embeddings between sentences/documents to
identify their similarity. Representation-based approaches can
be quite efficient, as once an embedding has been produced
for a document it does not need to be computed again.

SentenceBERT [16], is a BERT-based Bi-Encoder model
that is very similar to representation-based methods. Sentence-
BERT can be used to compute the similarity between two
documents by 1) generating an embedding using a BERT
model and 2) computing the similarity between the embedding



vectors. The model is trained with examples of similar and dis-
similar document pairs, and is fine-tuned in a Siamese network
training structure [17], where the similarity score between
similar documents is maximized, and the similarity score for
dissimilar documents is minimized. Other Bi- Encoder models
build on or are similar to the sentence-BERT approach, e.g.,
[18]–[20].

Interaction-based Retrieval & Cross-Encoders: The
Interaction-Based Approach refers to approaches where
the neural model receives two documents (or a query and
document) simultaneously and produces a score based on
their similarity/relevance. Interaction-based approaches often
outperform representation-based approaches [14], [21], [22]
as the model will be able to directly focus on the interaction
between different tokens in the input query and corpus
document.

One of the earliest and most significant Cross-Encoder
architectures are the monoBERT and duoBERT models [23].
In the monoBERT model, the query and document tokens
are provided to a BERT model by adding a separator token
between them (i.e., ”[CLS], query tokens, [SEP], document
tokens, [SEP]”). The model is then trained using cross-entropy
loss to classify if a query and document are similar or not.
Other than monoBERT, there are several other Cross-Encoder
architectures, e.g., [24]. This approach can be quite slow,
especially as the number of queries and documents increases.
Therefore, monoBERT is often only used after an initial
retrieval of relevant documents using a faster model. This
process is referred to as re-ranking.

B. Transfer Learning in NLP

In traditional machine learning, we generally assume that
the domain and task a model was trained for remains static.
By domain, we refer to the distribution of the data, e.g.,
although there is overlap, we consider general English a
different domain of text compared to telecommunications or
medical text data (different word usage, potentially a shift
in grammatical structure). By task, we refer to the structure
of model output and its optimization criterion throughout
training, e.g., a classification model has very different output
compared to a bi-encoder model. We often expect domain and
task to remain static for the entire usage of a model. However,
in deep learning applications we often see a shift in both the
domain and task on which the model is applied.

Notably, in the BERT training framework [4], a model is
initially trained on a general language task (with the aim to
produce meaningful contextualized token embeddings) before
being further fine-tuned to a downstream task/domain. These
two stages are generally referred to as pretraining and fine-
tuning:

1) Pre-training: Unlabelled model training on the base
tasks.

2) Fine-tuning: Fine-tune all parameters using labelled data
associated with the downstream task/domain.

In this framework, a pre-trained model can be fine-tuned
to different tasks and domains with minimal architectural
changes.

Types of Transfer Learning: [25] and [8] separate transfer
learning into two main groups: (i) inductive transfer learning,
where a model is fine-tuned on a new task (e.g., fine-tuning a
language model trained on masked language modeling to doc-
ument ranking), and (ii) transductive transfer learning, where a
model is trained on a new domain (e.g., fine-tuning a general-
domain language model to telecommunications-domain text).

Within transductive transfer learning, [8] distinguishes be-
tween domain adaptation, where the model adapts from one
domain to another, and cross-lingual learning, where a model
is fine-tuned on another language entirely. In addition, in
inductive transfer learning, a distinction is set between multi-
task learning, where a model is fine-tuned on multiple tasks
simultaneously, and sequential learning, where a model is fine-
tuned on multiple tasks sequentially.

Transfer Learning in this paper: Besides our multi-stage
fine-tuning strategy, this paper focuses mostly on sequential
learning and domain adaptation as transfer learning strategies.
In domain adaptation, we assume that our source task and
our target task are the same but that the domain is different.
To fine-tune a model for this scenario, we can essentially
just continue training the model as no structural changes are
needed [26].

We assume a difference between the source and target tasks
in sequential learning. Thus, in most cases some structural
change needs to be made to the model (e.g., adding a pooling
layer to leverage the BERT token embeddings for the Bi-
Encoder or a predictor layer for the Cross-Encoder).

The multi-stage fine-tuning strategy aims to sequentially
perform both domain and task adaptation prior to fine-tuning
on the final downstream task.

C. Catastrophic Forgetting

When deep learning models are trained on new data, they
tend to forget information related to previously seen data in
favor of learning new information. This phenomenon, referred
to as catastrophic forgetting, represents a major challenge in
sequential and lifelong learning (e.g., learning new tasks and
domains) [9], [12], [27]. In Natural Language Processing,
catastrophic forgetting represents a significant challenge in
effectively fine-tuning large language models [8], [28], [29].
Ideally, a model should not lose knowledge of previous
domains when fine-tuning on a new domain. For example, a
model trained on standard English through masked language
modeling should not lose that knowledge when fine-tuned on
a smaller subset of medical record data.

D. Elastic Weight Consolidation

There are many strategies for mitigating catastrophic forget-
ting in deep learning models [12], [30], [31]. These methods
aim to find a model parameterization that attains low loss on
multiple tasks. We can interpret catastrophic forgetting as the
scenario outlined in Figure 3. In sequential training of a model,



TABLE I: Types of Transfer Learning in NLP according to [8]

Class of Learning Subclass Description
Inductive Transfer Learning Multi-Task Learning Learn tasks simultaneously
Inductive Transfer Learning Sequential Learning Learn tasks in sequence

Transductive Transfer Learning Domain Adaptation Adapt model domain
Transductive Transfer Learning Cross-Lingual Learning Adapt model language

the model shifts from its parameters trained on Task A to new
parameters that provide low error on Task B [12].

Fig. 3: Outline of what often happens during fine-tuning with
and without a catastrophic forgetting mitigation strategy.

In this paper, we leverage Elastic Weight Consolidation
(EWC) [12] as the catastrophic forgetting mitigation strategy.
In EWC, a quadratic regularization penalty is added to the
loss function when training on a new task. This is done to
constrain the parameters important for an initial task (e.g.,
Task A) when learning on a new task (e.g., Task B). In Figure
3, we visualize the shift in model fine-tuning when using a
catastrophic forgetting mitigation strategy.

EWC uses the Fisher information matrix, F , [12], [32]
to estimate the importance of each parameter in the model.
As we see in the following equation, the constraints of the
parameters are based on the squared difference between the
parameter value on Task A and its current value, multiplied
by the importance of that parameter Fi(θi − θ∗A,i)

2.

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2 (1)

EWC has been applied to deep language models previously,
e.g., [33]–[35]. Although the results of this research does
indicate that catastrophic forgetting is mitigated, it does not
demonstrate the level of improvement seen in other continuous
learning literature.

III. METHODS

In this section, we will provide an overview of the dataset
used and the preprocessing details involved. After this, we
provide an overview of our ranking pipeline, including details
on initial retrieval and re-ranking. Finally, we discuss the fine-
tuning process of our models, outlining the base models we
have available and details regarding our implementation of all
of the fine-tuning strategies.

A. Data

A trouble report (TR) is either a primary TR, i.e., ideally the
first instance of the fault, or a duplicate TR, meaning that there
exists some associated primary TR that described the fault
first. We collected a dataset of 23.5K data points, consisting
of 21K primary trouble reports and 2.5K duplicate trouble
reports. This data was collected from a subset of TRs and
spans three years.

TR Structure: Within a trouble report there are several key
sections that describe the identified fault. As shown in Figure
4, we look into four sections:

• Fault Tag: Outlines in what general region the fault
occurred, e.g., it is found to be a radio software issue.

• Header: Outlines an initial and short description of the
fault

• Observation: A much longer section that describes the
fault in detail. This often includes log output.

• Answer: After the trouble report has been answered, the
answer section will be filled with a description of what
went wrong and the solution or next steps.

Fig. 4: Overview of the structure of a TR. The key elements
are the observation and answer sections. We consider the fault
tag and header to be part of the observation section.

The Fault Tag, Header, and Observation section of a TR
are provided in the initial fault reporting stages. Hence, we
concatenate these sections and simply refer to the combination
as the observation section.

Data Exploration: A key challenge when we observe our
data, however, is that the length of the observation and answer
section may exceed the limit of tokens that our models can take
as input. In Figures 5 and 6, we show the number of words in
each TR’s observation and answer sections, respectively. We
find an average of approximately 700 words in the observation
section and 200 in the answer section. Although we may
expect the answer section to remain within the necessary size
for our models, the observation section will often need to be
truncated. This runs the risk of losing vital information in our
observation section, which may reduce model performance.



Fig. 5: Number of words in the TR observation sections

Fig. 6: Number of words in the TR answer sections

Data Preprocessing: We aim to provide the model with as
unprocessed text as possible, as we found significant prepro-
cessing (e.g., removing numbers and stop words) reduced the
model performance. The preprocessing we did perform was
the following (note that this process is performed separately
for the observation and answer sections):

1) Extract certain relevant sections of text to reduce the
data size. This selection was made based on an existing
TR parser. This was necessary to reduce the size of the
text for the BERT models.

2) Concatenate the strings of relevant sections from the
previous stage.

3) Remove repeating whitespace and newlines.
4) Tokenize the dataset through Spacy 1, a powerful NLP

Python library
5) For each token, identify if it matches a known abbrevi-

ation (e.g., 5G) and replace it with the original terms.
6) Re-concatenate all tokens to create the final strings.

B. Ranking

As outlined in chapter I, previous work [13] outlined a
2-stage ranking system for duplicate TR retrieval, shown
in Figure 2. This ranking approach uses two BERT-based
retrieval models: 1) a Bi-Encoder that efficiently retrieves the
top 20 most relevant documents and 2) a Cross-Encoder that
re-ranks the provided 20 documents. Note that, the top 20 for
Bi-Encoder stage is peaked based on experiment conducted on

1https://spacy.io/

ranking order versus similarity score when the rate of changes
in similarity score versus ranking order almost slows down
similar to [3], it is K = 20.

1) Initial Retrieval with the Bi-Encoder: The initial re-
trieval process with the Bi-Encoder model can be seen in
Figure 7.

The Bi-Encoder model produces an embedding for the
TR observation and all texts (TRs) in the corpus. After the
embeddings have been produced, the nearest neighbor search
is run using cosine similarity as a distance metric to find the
20 closest TRs to the TR observation. We save the IDs of
these TRs for the re-ranker stage.

Fig. 7: Initial Retrieval with the Bi-Encoder

2) Re-Ranking with the Cross-Encoder: The re-ranking
process is outlined in Figure 8.

Given the top 20 TRs from the initial retrieval, the Cross-
Encoder is used to compute a similarity score between each
TR and the TR observation query. Finally, each TR is then
ranked based on its similarity to the TR observation.

Fig. 8: Re-ranking with the Cross-Encoder

C. Fine-Tuning Strategies

As outlined in Section II, domain adaptation and sequential
learning constitute two common transfer learning strategies in
NLP. We refer to the pre-trained model used in the domain
adaptation experiments as the MSMARCO model. The pre-
trained model used in the sequential learning experiments is
referred to as TeleRoBERTa. Both are described below:

• TeleRoBERTa: A RoBERTa model originally trained
on 160 GB of general-domain English language data
[36], but with continued pretraining on 21 GB of gen-
eral telecommunications data through dynamic masked
language modelling [7]. The telecommunications data
includes TRs and publicly available 3GPP specifications.



• MS MARCO model: A model trained on MS MARCO
document ranking data [5]. We have a Bi-Encoder and
Cross-Encoder version of the MS MARCO model, both
of which are based on the RoBERTa model. The details
for how these models are trained is discussed further in
section IV-A.

With these models, the domain adaptation and sequential
learning fine-tuning approaches can be seen in Figures 9a
and 9b. A challenge with these strategies is that neither takes
advantage of both document ranking and telecommunications
language data before fine-tuning to the final TR duplicate
retrieval task. The third fine-tuning strategy, which we refer to
as the multi-stage fine-tuning approach, is outlined in Figure
9c. In this scenario, a telecommunications-specific language
model is fine-tuned on MS MARCO document ranking data
before fine-tuning on the TR duplicate retrieval task, i.e., fine-
tuning on both domain and task as part of the pretraining
stage.

Multi-Stage Fine-Tuning with Elastic Weight Consolidation:
As outlined in Sections I and II, a multi-stage fine-tuning
approach can suffer from catastrophic forgetting. To mitigate
this, we apply EWC [12] to the initial fine-tuning stage
outlined in Figure 9c.

We compute the Fisher information matrix in EWC by
collecting the mean squared first order gradients [32] of TeleR-
oBERTa when we run and evaluate on 7000 randomly selected
lines of 3GPP specifications. The gradients are collected when
performing the dynamic masked language modeling task.

(a) Domain Adaptation

(b) Sequential Learning

(c) Our multi-stage fine-tuning approach

Fig. 9: The three possible fine-tuning approaches.

In total, we train a Bi-Encoder and a Cross-Encoder model
for each of the four scenarios:

• Domain Adaptation (DA): Fine-tuning an MS MARCO
model on the TR data.

• Sequential Learning (SL): Fine-tuning TeleRoBERTa
on the TR data.

• Multi-Stage Fine-Tuning (MS): Fine-tuning TeleR-
oBERTa on MS MARCO, then on the TR data.

• Multi-Stage Fine-Tuning with EWC (MS w/ EWC):
Fine-tuning TeleRoBERTa on MS MARCO with EWC,
then on the TR data.

TR Fine-Tuning Process: In accordance with previous work
[3], [13], and to fully leverage the vast quantity of primary TRs

present in our dataset, we fine-tune the models to produce
high similarity scores given a primary observation and a
corresponding answer. In other words, provided an observation
and an answer corresponding to the same TR, the model is
fine-tuned to return a high similarity score. To apply our task
to the TR duplicate retrieval task, a new duplicate observation
is compared to all primary TR answers or observations,
depending on the evaluation scenario.

IV. EVALUATION

As outlined in prior sections, we aim to evaluate four
different fine-tuning strategies for fine-tuning language models
for identifying duplicate TRs. In this section, we outline the
experimental setup, evaluation scenarios, and the model results
on both initial retrieval and the full re-ranking process (as
outlined in Figure 2.

A. Experimental Setup

Dataset Split: All primary TRs with no duplicates present
in the dataset are used during training. The remaining primary
TRs are split equally to construct the validation corpus and the
test corpus. The duplicate TRs associated with the primary
TRs are used as queries. i.e., for each primary TR in the
validation corpus, we construct a set of queries based on the
duplicate TRs that represent a fault already reported in the
validation corpus. We refer to these as our validation queries.
The same process is done for the test queries. In Table II, we
outline the dataset split metrics.

TABLE II: Dataset split sizes

Dataset Number of Number of Total
Duplicate TRs Primary TRs

Train 0 18.5K 18.5K
Validation 1.2K 1.2K 2.4K

Test 1.2K 1.2K 2.4K

Evaluation Scenarios: We evaluate the TR duplicate re-
trieval models under the two following scenarios:

• Scenario 1: To evaluate our model’s performance at
identifying a duplicate TR, we construct the following
evaluation scenario: Given a duplicate TR observation,
how well can our model retrieve the primary TR answer?.

– i.e., the queries consist of duplicate observations and
the corpus consists of the answer section of primary
TRs

– Note that duplicate TRs will inherit the answer
from their associated primary TR, hence retrieving
primary answers using duplicate answers is not pos-
sible.

• Scenario 2: We hypothesize that duplicate and primary
observations share more information than a duplicate
observation and primary answer would. Hence, we also
evaluate the models at retrieving the correct TR by using
duplicate observations to retrieve primary observations.

– i.e., the queries consist of duplicate observations and
the corpus consists of the observation section of
primary TRs



– Note that in this case the models are still trained on
producing a similarity score between an observation
and an answer section of a TR, we only change how
the models are applied.

In both scenarios we use mean reciprocal rank (MRR@K)
[37] and recall (Recall@K) [38] to evaluate the models.
Recall@K and MRR@K are defined

• Recall@K: Count(Relevant Documents in Top K Retrievals)
Count(Relevant Documents) .

A high recall is a sign that the model is retrieving the
necessary documents effectively, but it does not take the
rank of documents into account.

• MRR@K: The reciprocal rank (RR) is the inverse of
the rank of the highest ranked relevant document (e.g.,
if the highest ranked relevant document occurs as the
4th ranked element, the reciprocal rank is 1

4 = 0.25).
Mean Reciprocal Rank (MRR) refers to the mean of the
reciprocal rank over a set of queries.

Bi-Encoder Training Details: The MS MARCO Bi-Encoder
model is fine-tuned for four epochs on 45k randomly selected
query, document pairs from the MS MARCO dataset. The
training is done through MultipleNegativeRanking loss func-
tion 2, where it is assumed that for all input pairs [(q0. d0),
(q1. d1), ..., (qi. di), ..., (qN . dN )], (qi, di) represents a query
and document which are similar (i.e., positive) and all other
pairs (qi, dj) are dissimilar (i.e., negative). The learning rate
used is 10−5.

When fine-tuning the Bi-Encoder (TeleRoBERTa or MS
MARCO) on the TR data, the model is trained for 10 epochs
with a learning rate of 10−5. MultipleNegativeRanking loss is
used as well.

Cross-Encoder Training Details: The MS MARCO Cross-
Encoder model is fine-tuned for four epochs with a learning
rate of 2 ∗ 10−5 on a subset of the MS MARCO dataset.
For 20K queries in MS MARCO, we provide the model one
positive document example (i.e., the associated document) and
three randomly selected negative documents. This results in
80k positive, negative document pairs. The model is trained
through Binary Cross Entropy loss 3. The same training
process is undertaken when fine-tuning the Cross-Encoder to
the TR data.

When fine-tuning the Cross-Encoder on the TR data, we
again train for four epochs with a learning rate of 2 ∗ 10−5.
Again, we employ a 1:3 ratio for positive and negative
samples.

EWC Hyperparameters: The standard MS w/ EWC model
is fine-tuned with λ = 106 as we found the best and most
stable results under this hyperparameter value.

B. Retrieval Results

Initial Retrieval: The performance of just the initial Bi-
Encoder retrieval is outlined in Tables III and IV under the
two different evaluation scenarios. We find relatively minimal

2https://www.sbert.net/docs/package reference/losses.html
3https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

differences in the performance between models, although it
is clear that scenario 2 evaluation leads to much higher
performance. This is most likely due to higher overlap in
content between the observation sections of TRs, compared
to the overlap between an observation and answer section of
TRs.

TABLE III: How do the different fine-tuning strategies perform
on TR duplicate retrieval (Scenario 1)?

Metrics DA SL MS MS w/ EWC
Recall@1 10.28% 10.85% 11.45% 11.01%
Recall@3 20.77% 19.84% 21.05% 20.28%
Recall@5 26.25% 25.85% 26.09% 25.12%
Recall@10 35.32% 34.27% 34.76% 35.73%
Recall@15 42.18% 41.53% 41.57% 40.97%
Recall@20 46.41% 45.85% 46.01% 45.24%
MRR@5 16.04% 15.96% 16.73% 16.10%
MRR@15 17.78% 17.62% 18.40% 17.93%

TABLE IV: How do the different fine-tuning strategies per-
form on TR duplicate retrieval (Scenario 2)?

Metrics DA SL MS MS w/ EWC
Recall@1 21.05% 20.69% 21.33% 20.60%
Recall@3 32.66% 31.09% 32.90% 31.61%
Recall@5 38.99% 37.14% 38.06% 38.19%
Recall@10 48.02% 46.77% 47.74% 48.47%
Recall@15 53.75% 53.15% 53.71% 53.63%
Recall@20 58.23% 58.55% 58.99% 57.94%
MRR@5 27.59% 26.64% 27.58% 26.99%
MRR@15 29.21% 28.43% 29.34% 28.78%

The lack of performance increase of the MS w/ EWC fine-
tuning strategy over the MS fine-tuning strategy indicates that
catastrophic forgetting may not be a concern for initial re-
trieval. Despite catastrophic forgetting not severely impacting
the performance of multi-stage fine-tuning model, in Table
V we do observe catastrophic forgetting take place as we
fine-tune TeleRoBERTa on the MS MARCO data. This is
mitigated, although not perfectly, by using EWC.

TABLE V: Average loss per batch (over 871 batches) of a
model on a subset of the original TeleRoBERTa training data.
We show the loss before and after fine-tuning TeleRoBERTa
on MS MARCO, with and without EWC.

Before Fine-Tuning No EWC With EWC
Average Loss per Batch 0.649 1.990 1.004

Re-Ranking: As can be observed in Tables VI and VII,
the SL and MS w/ EWC cross encoders attained the highest
performance. The improvement of MS w/ EWC over the MS
fine-tuning strategy also indicated the benefit of leveraging
a catastrophic forgetting mitigating strategy when fine-tuning
the language models.

Although the improvement over SL is small, when evalu-
ating the models under scenario 2, we find the MS w/ EWC
cross encoder to perform the best across the board, indicating
that there may be a benefit to fine-tuning on both task and
domain before fine-tuning on the final downstream task.



TABLE VI: Re-ranker results with MRR@5 using different Bi-
Encoders and Cross-Encoders. Evaluation is done under Sce-
nario 1 (i.e., queries consisting of duplicate TR observations
and the corpus consisting of primary TR answers). Note that
BE stands for Bi-Encoder and CE stands for Cross-Encoder.

Models CE DA CE SL CE MS CE MS w/ EWC
BE DA 21.28% 22.98% 21.19% 22.78%
BE SL 21.60% 23.80% 21.54% 23.09%
BE MS 21.87% 23.65% 21.80% 23.72%

BE MS w/ EWC 21.49% 23.73% 21.77% 23.34%

TABLE VII: Re-ranker results with MRR@5 using different
Bi-Encoders and Cross-Encoders. Evaluation is done under
Scenario 2 (i.e., queries consisting of duplicate TR observa-
tions and the corpus consisting of primary TR observations).
Note that BE stands for Bi-Encoder and CE stands for Cross-
Encoder.

Models CE DA CE SL CE MS CE MS w/ EWC
BE DA 35.67% 38.81% 37.99% 39.48%
BE SL 35.43% 38.22% 37.47% 38.62%
BE MS 36.06% 38.98% 38.06% 39.21%

BE MS w/ EWC 36.04% 39.31% 38.50% 39.45%

These results indicate that adding prior telecommunications-
specific information into the model pre-training process does
aid overall performance. The fine-tuning strategy leveraged
in prior work [13] attained lower performance than all other
strategies.

Generalizability to Out-of-Domain TRs: Thus far, we have
evaluated our model on a single dataset in which the trouble
reports (train, validation, and test) were sourced from a single
domain/group of trouble reports. As outlined previously, how-
ever, it is important that the models remain generalizable to
other types of TRs. Hence, we aim to identify the performance
drop, if any, when evaluating the pretrained models on an out-
of-domain TR dataset, notably where we are focusing on TRs
created by a different set of operators. We evaluate over 3.4K
TRs, of which 1.2K are primary TRs and 2.2K are duplicate
TRs.

In Tables VIII and IX, the full re-ranking results are shown
for evaluation scenarios 1 and 2, respectively. Although we
do observe a decrease in performance compared to prior
re-ranking results, this drop is within acceptable bounds.
Especially for scenario 2, we only observe a 3.5% drop
in MRR@5 performance. Interestingly, in this scenario we
observe that the multi-stage re-ranking process (i.e., using
both a bi-encoder and cross-encoder fine-tuned in our multi-
stage fine-tuning process) achieves equivalent and even slightly
better performance than the sequential learning and MS w/
EWC re-ranking approaches under evaluation scenario 2. This
could be due to SL and MS w/ EWC overfitting slightly on
telecommunications concepts relevant to the TR data it was
trained on.

C. Discussion

For initial retrieval, we found no major difference between
the performance of the Bi-Encoder models. These findings are

TABLE VIII: Results on the out-of-domain TR dataset with
Scenario 1 evaluation. Note that the models used are bi-
encoder/cross-encoder pairs (e.g., DA uses both the domain
adaptation bi-encoder and cross-encoder)

Metrics DA SL MS MS w/ EWC
Recall@1 10.96% 13.63% 12.53% 13.50%
Recall@3 18.70% 21.83% 22.02% 22.43%
Recall@5 23.26% 25.98% 26.02% 26.44%
Recall@10 30.17% 32.70% 31.37% 33.86%
Recall@15 35.15% 36.71% 36.11% 37.36%
Recall@20 37.54% 39.29% 40.40% 40.17%
MRR@5 15.40% 18.16% 17.64% 18.31%
MRR@15 16.69% 19.37% 18.73% 19.59%

TABLE IX: Results on the out-of-domain TR dataset with
Scenario 2 evaluation. Note that the models used are bi-
encoder/cross-encoder pairs (e.g., DA uses both the domain
adaptation bi-encoder and cross-encoder)

Metrics DA SL MS MS w/ EWC
Recall@1 23.35% 28.42% 28.01% 28.14%
Recall@3 37.95% 42.38% 42.84% 42.47%
Recall@5 43.85% 47.86% 48.83% 48.96%
Recall@10 50.90% 53.11% 54.31% 54.12%
Recall@15 54.72% 56.20% 57.99% 57.35%
Recall@20 56.89% 58.27% 60.29% 59.19%
MRR@5 31.18% 35.83% 36.00% 35.95%
MRR@15 32.45% 36.81% 37.03% 36.92%

in stark contrast to the full re-ranking performance, where
a substantial difference between the models could be seen.
Notably, the SL and MS w/ EWC Cross-Encoders consistently
outperformed the DA and MS Cross-Encoders, both when
evaluating under scenario 1 and scenario 2, as can be seen in
Tables VI and VII, respectively. This indicates that integrating
telecommunications-specific data in the fine-tuning process did
provide a substantial benefit in overall model performance.

The re-ranking results in scenario 2, in Table VII, show
that the MS w/ EWC cross encoder marginally attained the
strongest results. Although the margins are too small to con-
clude that the multi-stage fine-tuning strategy improved over a
sequential learning fine-tuning strategy, the results do indicate
that a multi-stage fine-tuning, in which we sequentially learn
relevant elements of the final downstream data (in this case
task and domain), can perform well.

We also find that the lowest performing fine-tuning strategy
on an out-of-domain dataset is domain adaptation, which is
the strategy originally used in prior work [13]. Sequential
learning and both multi-stage fine-tuning models maintained
more acceptable performance.

Finally, across all models we found that scenario 2 evalu-
ation, in which we produced a similarity score between the
observation sections of primary and duplicate TRs, performed
the best. This indicates strong generalizability in the models,
as the structure of the data provided during inference would
deviate from the structure that the model was trained on (most
notably for cross-encoders).



V. CONCLUSION

The trouble reporting process at Ericsson is used to identify,
report, analyze, and eventually resolve software and hardware
faults. Due to the scale of the organization, however, we often
find duplicate trouble reports that, if not identified, represent a
significant amount of unnecessary additional effort to resolve.
In this paper, we investigate and evaluated how four fine-
tuning strategies impacted the performance of RoBERTa-based
models for retrieving duplicate trouble reports.

We find that integrating existing telecommunications knowl-
edge through the form of a pretrained telecommunications-
specific language model into our fine-tuning strategies allows
us to outperform a domain adaptation fine-tuning strategy,
achieving state-of-the-art performance on trouble report re-
trieval. We also attain sufficiently strong generalizability to
out-of-domain TR data with all strategies other than domain
adaptation.

Although the multi-stage fine-tuning strategy with EWC did
not outperform sequential learning by a significant margin,
it did demonstrate that catastrophic forgetting mitigation was
an effective approach to mix both task and domain in the
modelling process.

A. Future Work

There are several future directions for this research. Notably,
the work done in this paper is limited to telecommunications-
specific language data. Extending this, by investigating the
generalizability of the conclusions and methods in this paper,
would further contribute to our understanding of deep lan-
guage models. In addition to this, multi-task learning methods
and other lifelong learning strategies could be interesting to
explore, to see if similar conclusions hold.
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