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Abstract. Deep learning models based on the Transformers architec-
ture have achieved impressive state-of-the-art results and even surpassed
human-level performance across various natural language processing tasks.
However, these models remain opaque and hard to explain due to their
vast complexity and size. This limits adoption in highly-regulated do-
mains like medicine and finance, and often there is a lack of trust from
non-expert end-users. In this paper, we show that by teaching a model
to generate explanations alongside its predictions on a large annotated
dataset, we can transfer this capability to a low-resource task in another
domain. Our proposed three-step training procedure improves explana-
tion quality by up to 7% and avoids sacrificing classification performance
on the downstream task, while at the same time reducing the need for
human annotations.
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1 Introduction
There is a growing consensus that many practical machine learning (ML) ap-
plications require explainability, especially when these applications are subject
to critical auxiliary criteria that are difficult to formulate mathematically, e.g.,
nondiscrimination, safety, or fairness [11, 30]. Moreover, regulations such as the
General Data Protection Regulation (GDPR) [13] equip people with a “right to
explanation” for algorithmic decisions that significantly affect them. At the same
time, deep neural networks (NNs) have achieved and even surpassed human per-
formance in many tasks in natural language processing (NLP) and computer
vision [15, 43], which has motivated a large body of research over the last few
years focusing on making NN predictions more explainable.

Explainability in ML has traditionally been approached from two perspec-
tives; either by building models that provide inherent transparency and explain-
ability [5, 21, 26], or by creating post-hoc explanations for an opaque model
that has already been trained [29, 37, 39]. This work falls into the former cat-
egory where we teach a model to generate explanations as part of the predic-
tion process, conceptually similar to how humans would be asked to motivate
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their reasoning for a specific decision. The explanations are formed by natu-
ral language, and we cast this as a supervised sequence-to-sequence (seq2seq)
problem where the model learns from ground-truth explanations annotated by
humans [4, 36, 40]. Natural language explanations provide a series of benefits
compared to other common approaches, such as attributions methods and for-
mal language. They are more easily accessible to non-expert end-users owing
to the familiar format [4], and are often simpler to evaluate and annotate by
humans. Narang et al. [32] recently investigated this approach and proposed
a model called WT5 that achieves new state-of-the-art performance on various
NLP explainability benchmarks [10]. However, this requires large amounts of an-
notated explanations during training and for many real-world applications this
becomes a bottleneck.

We propose a three-step training procedure to transfer the ability to gener-
ate extractive explanations from a large easily-available dataset to a low-resource
downstream task with a lack of annotated ground-truth explanations, in a po-
tentially different domain. First, in the pre-training (PT) step, we train an ini-
tial language model using unannotated data. Then, in the explainability pre-
training (EP) step, we teach the model the semantic meaning of an explain-
ability keyword. Finally, we use this keyword during the fine-tuning (FT) step
and at inference time to instruct the model to generate explanations for specific
predictions. To summarize our contributions:
– Narang et al. in [32] provide a brief qualitative discussion regarding explain-

ability transfer for WT5. We extend this work and provide a more thorough
quantitative evaluation, including two popular seq2seq models, T5 [35] and
BART [27]. We find that T5 consistently outperforms BART for extractive
explanation generation across all our experiments.

– Using our proposed three-step training procedure, we show that the ability
to generate extractive explanations can be transferred between tasks in dif-
ferent domains, and that it can result in both improved performance and
explanation quality on a low-resource downstream task with few annotated
explanations.

– We provide evidence that only a small number of samples from the down-
stream tasks need to be annotated with human explanations to achieve a
significant boost in explanation quality.
Through the experiments, we see an increase of 7% and 5% in TF1 score

(explanation quality) for T5-Base and T5-Large, respectively, when EP is per-
formed.3

2 Background
In this section, we provide a brief background to seq2seq modelling in NLP and
define the main idea of generative explanations.

2.1 Sequence-to-Sequence Models
Consider an NLP model f : X → Y where the input x = (x1, x2, ..., xNin

) ∈ X
and the output y = (y1, y2, ..., yNout

) ∈ Y are both ordered sequences of tokens.
3Code available at https://github.com/Peltarion/explainability_transfer

https://github.com/Peltarion/explainability_transfer
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By x̃ and ỹ, we denote the corresponding raw input and output text. The model f
is trained by maximizing the the conditional probability p(y1, ..., yNout

|x1, ..., xNin
)

=
∏Nout

i p(yi|x1, ..., xNin
, y1, ..., yi−1). At prediction time, an output sequence can

be generated autoregressively by iteratively sampling yi ∼ p(yi|x1, ..., xNin
, y1, ...,

yi−1) either greedily or by methods like beam search.
Raffel et al. [35] introduced the idea of unifying all NLP tasks into a gen-

eral common framework by treating them as seq2seq problems, referred to as
the text-to-text framework. As an example, a binary classification problem with
output classes {True, False} is posed as a generative task where the model
is trained to explicitly generate the sequence of tokens corresponding to the
target output class. This should be seen in contrast to other common BERT-
based architectures [9], where a small model head tailored for a specific task
and its format is attached on top of an encoder block to produce a proba-
bility distribution over the output classes. The raw input is formatted as x̃ =
“〈task_prefix〉: 〈input_text〉”, where the prefix is used to let the model know
what type of task it is, e.g., “sentiment” for sentiment analysis. The target out-
put is given by ỹ = “〈target〉”, which in the case of classification problems
would simply be the class label. This enables an easy way of transferring knowl-
edge from one task to the other, thanks to the unified format. If the model would
output anything other than the expected output classes during evaluation, it is
considered as incorrect.

The Text-to-Text Transfer Transformer (T5) [35] is a model based on the
above approach that was pre-trained on the large Common Crawl dataset [7],
and has been demonstrated to achieve state-of-the-art performance on various
NLP downstream tasks [43]. Apart from T5, many other seq2seq models have
been used for tasks such as machine translation and text summarization. A
recent popular model is BART [27], which is architecturally similar to T5 but
using a different language model pre-training objective and number of hidden
states in the embedding and feed-forward layers.

2.2 Generative Explanations
One way to approach explainability in deep learning is by letting a model produce
explanations similar to how humans would motivate their reasoning. One of
the earlier works by Hendricks et al. [16] considered generating “because of”
sentences for a computer vision classification task. The text-to-text framework
enables a new way to teach NLP models to produce generative explanations in a
supervised fashion. This idea was recently explored in [32], where an extension
of T5, called WT5 (short for “Why T5?”), was proposed. In this case, we simply
prepend 〈task_prefix〉 in x̃ with the optional keyword “explain” and append
the target output ỹ with “explanation: 〈explanation〉”, where we assume that
golden-truth annotated explanations are available for the task. The new input-
output format thus becomes

x̃ = “[explain] 〈task_prefix〉: 〈input_text〉”,
ỹ = “〈target〉 [explanation: 〈explanation1〉] ...

[explanation: 〈explanationM〉]” ,
(1)
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Language Model
Pre-Training

Explainability
Pre-Training

Downstream Task
Fine-Tuning

<X> stopped
screaming <Y>

asleep <Z>

The tired baby finally
<X> and fell <Y>.

explain classification passage:
Once upon a time I had a dog
named Toodles. He was black
and white ... query: Where was
Toodles when the duck bit his

ear? answer: On the bay 

False explanation: He jumped into the
pond and started swimming toward the

ducks, chasing around his new
playmates. explanation: One of the

ducks, braver than the others, poked
Toodles with his beak - and then bit him

right on one of his floppy ears!

classification passage: Once
upon a time I had a dog named

Toodles. He was black and
white ... query: Where was

Toodles when the duck bit his
ear? answer: On the bay 

False

explain classification passage: T cell
activation is predicated on the

interaction between the T cell receptor
and peptide-major histocompatibility
(pMHC) ligands. ... claim: cSMAC
formation enhances weak ligand

signalling.

True explanation: This conclusion was
supported by experiments that showed

that enhancing cSMAC formation reduced
stimulatory capacity of the weak peptide.

1. PT 2. EP 3. FT

Fig. 1: The proposed three-step training procedure.

where hard brackets denote optional explanation arguments and we allow for
potentially multiple explanation sentences. An illustrative example of the input-
output format is provided in Table 1. To simplify the annotation and evaluation
process, it is helpful to consider the subset of extractive explanations that only
consist of spans of tokens from the input text. This allows us to compute over-
lap statistics with respect to the ground truth to quantitatively measure the
explanation quality [10].

3 Approach
The main focus of this work is to transfer explainability capabilities to a low-
resource task in another domain with a potentially limited number of annotated
explanations. Based on the procedure outlined in [32], we utilize seq2seq mod-
els to generatively produce natural language explanations alongside the original
prediction task. To this end, we propose a three-step training procedure as illus-
trated in Figure 1:

1. Language model pre-training (PT) is carried out in a self-supervised fashion
on a large text corpus like C4 [35] (the yellow blocks in Figure 1).4

2. Explainability pre-training (EP) is then performed on a large dataset with
annotated explanations (the blue blocks in Figure 1). Following the ideas
in [32], we teach the model the meaning of the “explain” keyword by uni-
formly at random constructing training instances with and without anno-
tated explanations according to the format in equation (1). We hypothesize
that this promotes a task-agnostic extractive explanation capability that can
be extended also for various other tasks.

3. Fine-tuning (FT) on the downstream task is carried out with as many an-
notated explanations as are available (the green blocks in Figure 1). At

4Since all seq2seq models considered in this work have publicly released checkpoints
from language model pre-training, this is used as starting point for step 2 in Figure 1.
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prediction time and during evaluation, the “explain” keyword is prepended
to all instances, thus instructing the model to always generate explanations
alongside its predictions.

Conceptually, there are no specific assumptions on the domain or semantics of
the FT task, thus allowing the framework to be applicable broadly. To facilitate
transferability, we consider FT tasks that can be cast into a similar input-output
format as during the EP step, in this work text-classification problems.

4 Experiments
In this section, we first introduce the datasets, tasks, and evaluation metrics,
and then evaluate our proposed approach for transferring generative explanation
capabilities between tasks in potentially different domains. We do this in two
different settings: (1) with all available annotated explanations, and (2) with
limited annotated explanations during FT.

4.1 Datasets
We use three datasets in our experiments:
1. MultiRC [20]5: a reading comprehension dataset consisting of multiple-choice

questions for short paragraphs of text with annotated supporting evidence
spans. We consider the binary classification of a given question and answer
candidate pair.

2. FEVER [40]5: a large fact verification dataset extracted from Wikipedia that
has been annotated by humans with supporting evidence spans. We consider
claims that are either supported or refuted.

3. SciFact [42]: a small dataset where the task is to find abstracts from a corpus
of research literature, and corresponding evidence sentences, that support or
refute scientific and medical claims. We consider the subtask of text classi-
fication for a given claim-abstract pair and use the corresponding evidence
sentences as ground-truth extractive explanations. Abstracts that do not
contain any evidence for a claim are discarded, making the classification
problem binary.
We use MultiRC and FEVER during the EP step and SciFact as the fi-

nal downstream FT task, thus considering transfer from general English to the
scientific and medical domain. To unify the input-output format and simplify
transferability, all tasks are cast as binary classification problems where the out-
put labels are {True, False}.

4.2 Evaluation
Consider the generic target output format for any of the introduced tasks,

ỹ = ylabel explanation: e1 ... explanation: eM , (2)

where ylabel is the target label, either True or False, and E = {e1, ..., eM} is
the ground-truth explanation consisting of M sentences. The predicted out-
put sequence ŷ is assumed to follow the desired format and is split by the

5We use the dataset versions distributed through the ERASER benchmark [10].
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Table 1: Illustrative example of data post-processing and explanation quality evalu-
ation metrics. Overlap spans are highlighted in gray.
Var. Value
x̃ “explain classification passage: I had a dog named Toodles. He was black and white and had

long floppy ears. He also had very short legs. Every Saturday we would go to the park and
play Toodles’ favorite game. query: What describes Toodles’ legs? answer: Long”

ỹ “False explanation: I had a dog named Toodles. explanation: He also had very short legs.”
ŷ “False explanation: I had a dog called Toodles. explanation: He also had very short legs.”
E {“I had a dog named Toodles.”, “He also had very short legs.”}
Ê {“I had a dog called Toodles.”, “He also had very short legs.”}
S “explain classification passage: I had a dog named Toodles. He was black and white and had

long floppy ears. He also had very short legs. Every Saturday we would go to the park and
play Toodles’ favorite game. query: What describes Toodles’ legs? answer: Long”

Ŝ “explain classification passage: I had a dog named Toodles. He was black and white and had
long floppy ears. He also had very short legs. Every Saturday we would go to the park and
play Toodles’ favorite game. query: What describes Toodles’ legs? answer: Long”

P: 100.00% R: 50.00% TF1: 66.67% BLEU: 84.92% ROUGE-L: 93.33%

“explanation:” separator to form the predicted label ŷlabel and explanation
set Ê = {ê1, ..., êM̂}. If the model would output anything other than the desired
format, this would be counted as part of the predicted label and thus resulting
in both poor task performance and explanation quality.

We use four evaluation metrics in our experiments: F1 score for prediction
task performance, as well as token-level F1 score (TF1), BLEU score [33], and
ROUGE-L score [28] to measure extractive explanation quality. Each expla-
nation sentence e ∈ E is tokenized and matched against all possible spans in
the tokenized input text x̃. This forms a corresponding set of overlap tuples
S = {(eistart , eiend

) | e ∈ E} of the start and end indices of the matched spans,
and analogously Ŝ from Ê . If an explanation does not exactly match any span, it
is considered invalid and is discarded. TF1 is computed as the F1 score between
Ŝ and S, averaged over all N samples in the dataset:

TF1 =
1

N

N∑
k=1

Pk · Rk

Pk +Rk
, Pk =

|S(k) ∩ Ŝ(k)|
|Ŝ(k)|

, Rk =
|S(k) ∩ Ŝ(k)|
|S(k)|

. (3)

The TF1 score significantly punishes generated outputs that deviate from the
desired format, or if a generated explanation sentence is not exactly matching a
span in the input text. To make the evaluation more nuanced, we also compute
BLEU score and ROUGE-L score directly between the raw output text ŷ and ỹ.
These metrics measure precision and recall-based overlap statistics, respectively,
between shorter spans of different lengths and are not as binary as TF1. BLEU
score has been previously used for abstractive explanation evaluation [4,32]. An
illustrative example of the data post-processing procedure and the evaluation
metrics are provided in Table 1.

Random Baseline. To put our results into a quantitative context, we construct
a random baseline for each task. This is achieved by randomly sampling a pre-
dicted label according to the class weights in the training dataset. Additionally,
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we empirically estimate the probability mass function of the number of sentences
M that constitute the extractive explanations in the training dataset. To form
Ê , M̂ is sampled independently from this distribution for each instance in the
evaluation dataset, and the corresponding number of explanation sentences are
then selected uniformly at random from the input text.

4.3 Model and Training Details
We consider two seq2seq models based on the Transformers architecture [41],
namely T5 [35] and BART [27]. We analyze both the Base and the Large vari-
ants of T5 and the Large variant of BART. The experimental setup follows the
training procedure outlined in Figure 1, where MultiRC and FEVER are used
during EP and SciFact is the FT task.

To teach the model to explain its predictions, EP instances are sampled with
equal probability from a mixture of training samples with and without annotated
explanations. Every time an explanation is added to the target output, the input
text is prepended with the “explain” keyword as described in Section 2. This
allows the model to learn the semantic meaning of the “explain” keyword, and
the same format can be used during FT to generate explanations. We evaluate
the model every 360 steps on the evaluation dataset and the checkpoint that
achieves the lowest F1 score is used for further fine-tuning on the downstream
task. After fine-tuning, average F1 and TF1 score is used as the final evaluation
metric to select the best model checkpoint. For T5-Base and BART-Large, we
repeat all experiments five times, and for T5-Large three times due to its large
size and needed computational effort.6

Table 2: Validation set performance on SciFact with all annotated explanations.
Model EP F1 TF1 BLEU ROUGE-L

None 84.0 (±2.9) 66.4 (±1.7) 71.9 (±1.3) 77.4 (±0.9)
T5-Large MultiRC 86.7 (±2.1) 69.4 (±1.4) 73.2 (±1.4) 78.3 (±1.5)

FEVER 88.4 (±1.6) 69.0 (±1.0) 74.3 (±2.2) 79.2 (±0.5)
None 78.5 (±0.4) 64.6 (±0.7) 71.3 (±1.3) 75.8 (±0.5)

T5-Base MultiRC 81.9 (±1.4) 68.2 (±1.8) 74.9 (±2.2) 78.4 (±2.1)
FEVER 85.3 (±0.9) 69.2 (±0.5) 74.3 (±0.6) 78.8 (±0.3)
None 61.0 (±4.0) 37.7 (±6.6) 40.7 (±6.3) 57.7 (±7.0)

BART-Large MultiRC 85.8 (±2.2) 46.2 (±1.2) 42.9 (±1.8) 65.8 (±2.5)
FEVER 90.0 (±1.5) 45.0 (±0.6) 40.0 (±5.2) 64.5 (±3.5)

Random baseline None 67.5 (±2.7) 19.1 (±1.8) 25.5 (±2.0) 32.4 (±1.7)

4.4 All Available Annotated Explanations for SciFact
Table 2 shows the results after FT with all available annotated explanations for
SciFact. As a quantitative reference, we include a baseline for each model type
when EP is not performed. These results are not directly comparable with [42],
since we consider the subtask of label prediction and rationalization for the
subset of refuted and supported claims. Overall, the T5-based models achieve

6The hyperparameter settings for the different models and training phases are avail-
able in the public code repository.
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Table 3: Non-cherry picked samples from the SciFact validation set for WT5-Large
after MultiRC EP. Explanations in S ∩ Ŝ are highlighted in green, Ŝ \ S in yellow, and
S \ Ŝ in red (not present). The remaining part of the input text has been shortened.

Claim Prediction
Taxation of sugar-sweetened beverages had no effect on the incidence rate of type
II diabetes in India

False

BACKGROUND Taxing sugar-sweetened beverages (SSBs) has been proposed in high-income coun-
tries to reduce obesity and type 2 diabetes. ... The 20% SSB tax was anticipated to reduce
overweight and obesity prevalence by 3.0% (95% CI 1.6%-5.9%) and type 2 diabetes
incidence by 1.6% (95% CI 1.2%-1.9%) among various Indian subpopulations over the
period 2014-2023, if SSB consumption continued to increase linearly in accordance with
secular trends. However, acceleration in SSB consumption trends consistent with in-
dustry marketing models would be expected to increase the impact efficacy of taxation,
averting 4.2% of prevalent overweight/obesity (95% CI 2.5-10.0%) and 2.5% (95% CI
1.0-2.8%) of incident type 2 diabetes from 2014-2023. ... CONCLUSION Sustained SSB
taxation at a high tax rate could mitigate rising obesity and type 2 diabetes in India
among both urban and rural subpopulations.

Macrolides have no protective effect against myocardial infarction True
CONTEXT Increasing evidence supports the hypothesis of a causal association between certain
bacterial infections and increased risk of developing acute myocardial infarction. ... No effect was
found for previous use of macrolides (primarily erythromycin), sulfonamides, peni-
cillins, or cephalosporins. ...

Stroke patients with prior use of direct oral anticoagulants have a lower risk of
in-hospitality mortality than stroke patients with prior use of warfarin

False

Importance Although non-vitamin K antagonist oral anticoagulants (NOACs) are increasingly used
to prevent thromboembolic disease, there are limited data on NOAC-related intracerebral hemor-
rhage (ICH). ... The unadjusted in-hospital mortality rates were 32.6% for warfarin,
26.5% for NOACs, and 22.5% for no OACs. Compared with patients without prior use
of OACs, the risk of in-hospital mortality was higher among patients with prior use
of warfarin (adjusted risk difference [ARD], 9.0% [97.5% CI, 7.9% to 10.1%]; adjusted
odds ratio [AOR], 1.62 [97.5% CI, 1.53 to 1.71]) and higher among patients with prior
use of NOACs (ARD, 3.3% [97.5% CI, 1.7% to 4.8%]; AOR, 1.21 [97.5% CI, 1.11-1.32]).
Compared with patients with prior use of warfarin, patients with prior use of NOACs
had a lower risk of in-hospital mortality (ARD, -5.7% [97.5% CI, -7.3% to -4.2%];
AOR, 0.75 [97.5% CI, 0.69 to 0.81]). ... Prior use of NOACs, compared with prior use
of warfarin, was associated with lower risk of in-hospital mortality.

significantly higher explanation quality compared to BART-Large, and we see
consistent performance gains across all metrics when MultiRC or FEVER are
used for EP. T5-Large achieves the highest TF1 score with a relative gain of 5%,
closely followed by T5-Base that sees a relative gain of 7%. EP using FEVER
has the highest positive impact on the prediction task performance (F1 score).

To provide a qualitative understanding of the generated explanations, three
non-cherry picked examples for T5-Large with MultiRC during EP are shown in
Table 3. The first claim is correctly refuted and the model generates all three
sentences of the golden annotated explanation. The second claim is also correctly
classified and in this case only one sentence constitutes both the predicted and
golden explanation, which illustrates the flexibility in the generative approach.
The last example is classified incorrectly, even though the model is extracting a
majority of the actual golden explanation. This suggests two possible reasons;
that the model is able to find the relevant part of the input but cannot infer the
correct label from this, or that it generates a plausible explanation even though
this is actually not used in the label-prediction process. Since the training loss
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Fig. 2: Explainability transfer from MultiRC to SciFact. Evaluation metrics (a)–(d)
with 95% confidence intervals as a function of number of annotated explanations during
FT. Dashed lines correspond to the same values as EP None in Table 2.
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Fig. 3: Explainability transfer from FEVER to SciFact.

function encourages the same extractive explanations regardless of the label,
there are no theoretical guarantees for explanation faithfulness. Wiegreffe et
al. [45] investigate this phenomenon and provides some empirical evidence that
there is indeed a robustness between the generated explanations and labels, but
that further work in this area is needed.

4.5 Downstream Task with Limited Annotated Explanations
For most practical applications, annotated explanations on the target down-
stream task are scarce and costly to obtain. To evaluate the effectiveness of
explainability transfer to alleviate these problems, we simulate scenarios with
different number of available annotated explanations on SciFact. In all cases,
EP is performed using all available explanations. Figure 2 depicts transfer from
MultiRC to SciFact using nexp ∈ {0, 10, 100, 200, 300, 400, 500} out of 546 anno-
tated training samples for SciFact.

For all models, there is an increase in prediction performance (F1 score)
of performing EP, and it stays more or less constant regardless of nexp. For
the T5 models, we also see improved explanation quality across all metrics. This
suggests that the EP procedure allows the model to be fine-tuned more effectively
so that the WT5 explanation framework does not sacrifice task performance. As
the number of annotated explanations approach zero, the explanation quality
drops drastically, which indicates that zero-shot explainability transfer is indeed
challenging. However, with just 200 annotated samples corresponding to roughly
35% of the training dataset, T5-Large achieves strong explanation quality almost
matching the baseline with all available annotated explanations. Generally, T5-
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Base achieves nearly identical explanation quality metrics as T5-Large, however
with slightly worse prediction task performance. This is surprising since T5-Large
achieved higher explanation quality during EP on both MultiRC and FEVER.
We believe that the small size of SciFact might benefit the smaller base model
to more effectively transfer the explanation capability to the new task.

The explanation quality for BART is considerably lower than the T5 coun-
terparts, meanwhile the prediction task performance is still competitive. BART
is not as good at conforming to the strict extractive explanation format, which
hurts the TF1 and BLEU score. ROUGE-L is also inferior but the gap to the T5
models is not as significant. We provide corresponding results for explainabil-
ity transfer from FEVER to SciFact in Figure 3, which follow the same general
trends.

5 Related Work
Explainable ML has received a lot of research interest over the last few years and
a comprehensive review of the field in general is provided in [14] and specifically
in [8] related to applications for NLP. This work belongs to a class of methods
that provide explainability by design and more specifically self-explaining sys-
tems, where the model itself produces an explanation as part of the prediction
process. Attention-based models have mainly been considered for this purpose
in NLP [6, 23, 44], much owing to the recent success of the Transformers ar-
chitecture and the hope that this offers some inherent explainability “for free”.
However, the usefulness and validity of attention weights as explanations have
been questioned [3, 19,38].

Generative natural language explanations were studied in [4], who proposed
an extended version of the SNLI dataset [2] with annotated abstractive expla-
nations, and considered different seq2seq models for learning to generate such
explanations. This work is based on [32], which approached the same problem
by casting it into the T5 text-to-text framework [35]. Other previous works have
also studied generative explanations for non-NLP tasks [12,16,22].

Another line of work for explainable NLP is based on rationalization pipelines
that aim to produce extractive explanations by splitting the prediction process
into two subsequent modules; a rationale extractor and a predictor [1,10,25,34].
The benefit of this approach is that it provides some faithfulness guarantees
by construction since the predictor can only rely on the extracted rationales,
however, potentially at the expense of prediction performance. The dilemma
of faithful and plausible explanations was raised in [17] and was further stud-
ied in [45] for generative explanations. Both argue that self-explaining systems,
although not guaranteedly faithful, can still be very useful in practice.

In the medical domain specifically, 1-dimensional CNNs with label-conditional
attention have been explored for explainable ICD code prediction from dis-
charge summaries [31]. The interpretability of Transformer attention weights
in a medical context was analyzed and questioned in [18]. Recently, rationaliza-
tion pipelines have been applied to medical and scientific text, for instance [42]
and [24] utilize BERT-to-BERT models for SciFact and for classifying random
clinical trials, respectively.
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6 Conclusions

In this work, we have demonstrated that generating extractive explanations can
be transferred from general English to tasks in the scientific and medical domain.
Our proposed three-step training procedure with explainability pre-training im-
proves explanation quality as well as prediction task performance on the down-
stream task. Furthermore, we see a large increase in explanation quality for only
a small number of annotated explanations during fine-tuning, making it an at-
tractive option for real-world use cases where annotations are limited and costly
to obtain. An interesting direction for future work is to analyze the impact of spe-
cific weights of the classification and explanation objectives in the common loss
function. We plan to shed further light on the faithfulness-plausibility dilemma
by applying attribution methods (e.g., SHAP [29]) on top of the generated ex-
planations. The practical usability of the generated explanations will also be
further assessed by human evaluation studies. As an extension to cross-domain
explainability transfer, the same approach can also be considered for explain-
ability transfer across languages. We believe recent multilingual seq2seq models
like mT5 [46] to be a promising candidate for this purpose.
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