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Abstract. Reproducibility is a cornerstone of scientific progress, allow-
ing researchers to validate findings and build upon previous work. While
reproducibility has been an important issue in traditional recommender
systems, the rise of Large Language Model (LLM)-based recommenda-
tion systems introduces new challenges, particularly in top-N recommen-
dation tasks. In this study, we investigate the reproducibility of state-
of-the-art LLM-based recommendation systems. We categorize key fac-
tors affecting the reproducibility of recommendation performance into
four groups: code, data, methodological details, and evaluation. Our find-
ings highlight significant performance fluctuations based on these fac-
tors, emphasizing the need for these factors to be clearly documented
and considered during evaluations. To enhance reproducibility, we pro-
pose LLMReClarify, a comprehensive set of guidelines adapted from
the NeurIPS reproducibility checklist, tailored specifically for LLM-based
recommendation systems.

Keywords: Large Language Models · Recommendation Systems · Top-
N Recommendation · Reproducibility

1 Introduction
Reproducibility is a cornerstone of scientific progress [1,23], ensuring that find-
ings can be consistently replicated and validated by other researchers. It allows
researchers to build on previous work, verify findings, and push the boundaries of
knowledge. Without reproducibility, reported findings may be subject to doubt.
To support reproducibility, various guidelines and checklists have been developed
to help researchers follow best practices, outlining common pitfalls and ways
to avoid them. Academic venues like NeurIPS [18] and ACM Transactions on
Recommender Systems (TORS) [22] now require adherence to these checklists,
enforcing stricter standards to ensure that research can be reliably reproduced.

Recently, several research domains have faced an ongoing reproducibility cri-
sis [23], and Recommendation Systems (RecSys) [3,4] are no exception. Studies
addressing this issue in RecSys highlight factors such as the lack of standard-
ized evaluation protocols, the unavailability of code and data, and the variability
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Fig. 1: Architectural Modules of the LLM-based Recommendation Systems

in experimental setups [3,4]. These studies suggest that achieving reproducible
results requires researchers to report more details about their methods.

Apart from that, in recent years, Large Language Models (LLMs) have gained
popularity in RecSys due to their remarkable reasoning capabilities [11,12]. A
typical architecture of an LLM-based RecSys is comprised of a subset of the
following key modules [12] (as depicted in Figure 1):

– User Feature Extractor, to extract features from a user’s past interactions.
– Candidate Item Retriever, to select a limited number of candidate items from

which the final recommendation will be chosen.
– Prompt Formatting, to consolidate the input information and format it ap-

propriately for the next module.
– Recommendation Engine, to recommend items from the candidate list.
– Re-ranker, to re-rank recommendations to prioritize the most relevant ones.

Research has shown that LLMs can be leveraged within any of the architec-
tural modules illustrated in Figure 1 [11,12]. However, while integrating LLMs
offers many advantages, it also introduces new challenges. These challenges in-
clude the complexities of fine-tuning LLMs, hallucinations, and the limitations
of context windows. These factors all affect the performance of the RecSys.
Given the growing prominence of LLM-based RecSys, it is essential to assess
their reproducibility, as has been done for other non-LLM-based RecSys. Fur-
thermore, since LLMs can be integrated into various modules of the LLM-based
RecSys (Figure 1), it is important to consider the reproducibility of each of these
modules. That is because incorporating LLMs into each of these modules can
introduce unique reproducibility challenges that must be investigated.

Scope. In this paper, we aim to investigate the reproducibility of several recently-
proposed LLM-based RecSys, with a particular emphasis on top-N recommen-
dation tasks. In such tasks, the system selects N items as recommendations for a
given user. We focus on assessing the reproducibility of recommendation results
when LLMs are incorporated into any of the modules depicted in Figure 1.

Objective. By examining the various factors that can potentially affect the rec-
ommendation performance, we seek to identify the specific details that should
be reported to enhance reproducibility in designing new LLM-based RecSys. To
achieve this, we introduce a framework called LLMReClarify. This framework
serves as a comprehensive guide, outlining the essential components and prac-
tices necessary to improve reproducibility. Through this work, we aim to fill the
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gap in reproducibility research for LLM-based RecSys by providing guidelines
that promote transparency and reliability in their development.

Contributions. This paper presents several key contributions, including:
– Analyzing the reproducibility challenges specific to LLM-based RecSys, iden-

tifying critical factors such as code availability, data handling, methodological
details, and evaluation protocols.

– Proposing LLMReClarify, a detailed guideline adapted from the NeurIPS
reproducibility checklist [18], tailored specifically for LLM-based RecSys.

– Validating the importance of the identified factors through extensive experi-
ments, revealing significant performance fluctuations based on these factors.

Outline. The structure is as follows: Section 2 reviews related work and identi-
fies research gaps. Section 3 introduces LLMReClarify and key reproducibility
factors in LLM-based RecSys. Sections 4 and 5 present our experimental find-
ings, followed by a discussion in Section 6 and the potential future works and
conclusions in Sections 7 and 8.

2 Related Work
In this section, we first discuss the current efforts on reproducibility in RecSys
in Section 2.1. Next, we review LLM-based RecSys in Section 2.2 and conclude
with research gaps in Section 2.3.

2.1 Reproducibility in Recommendation Systems
Reproducibility issues in RecSys have attracted significant attention, with nu-
merous studies addressing this challenge. This section reviews their findings. In
[3,4], the authors highlight reproducibility concerns in RecSys, especially with
neural network-based methods. After attempting to reproduce results from 26
papers (2015-2018), they found that many neural approaches do not consistently
outperform optimized baselines, with only 12 studies being reproducible with
reasonable effort. Issues include unavailable code, inconsistent data splitting,
and unoptimized baselines, all of which motivated them to advocate for rigorous
research practices, improved baseline optimization, and practical validation.

In [1], the authors emphasize the importance of reproducibility for verify-
ing results in RecSys, identifying key challenges like inconsistent data-splitting
and algorithm implementation. To address these, they propose a comprehensive
framework covering dataset collection, data splitting, algorithm implementation,
candidate filtering, evaluation protocols, and statistical testing.

Reproducibility challenges in transformer-based RecSys have also been stud-
ies. For instance, [21] highlights inconsistencies in BERT4Rec’s [24] reported per-
formance over SASRec [9,24], revealing deviations from original configurations
for reproducibility. They introduce a new implementation using the HuggingFace
Transformers library, successfully replicating results on most datasets, aiming to
improve BERT4Rec’s reproducibility and reliability with new implementations
and thorough documentation.

Building on this, [15] focuses on reproducibility challenges unique to LLM-
based RecSys by introducing LaikaLLM, a framework designed to standardize
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processes such as training, fine-tuning, and evaluation. This framework facil-
itates consistent experimentation and enables researchers to replicate results
effectively. Using LaikaLLM, the authors evaluate the reproducibility of the P5
paradigm [5], addressing issues like inconsistent repository organization, insuffi-
cient documentation, and variability in results. Moreover, they demonstrate how
prompt design and backbone LLM selection significantly influence performance,
emphasizing the need for standardized approaches in LLM-based RecSys.

2.2 LLM-based Recommendation Systems
LLMs have demonstrated strong potential in RecSys, leveraging their reasoning
abilities for personalized and context-aware recommendations. NIR [25] gener-
ates candidate items via user and item filtering, while RecMind [26] uses mem-
ory networks and dynamic prompting to improve recommendation relevance in
multi-turn dialogues. LlamaRec [27] employs a two-stage approach: an external
model selects candidates, followed by a prompt-based re-ranker to refine recom-
mendations, fine-tuned on Amazon Beauty [7,16], Amazon Games [7,16], and
MovieLens [6]. GenRec [8], focused on sequential recommendations, relies on
fine-tuning and is tested on Amazon Toys and MovieLens. LLMRec [14] bench-
marks tasks like rating prediction and review summarization, with gains from
supervised fine-tuning. PALR [2] combines user profiling, item retrieval, and
ranking for personalized recommendations on Amazon Beauty and MovieLens.

2.3 Research Gap
Considerable efforts have been made to address reproducibility in non-LLM-
based RecSys. However, integrating LLMs introduces unique complexities absent
in non-LLM-based RecSys, necessitating a focused examination of reproducibil-
ity in this specific context. Examples of these complexities include:

– Hallucinations: LLMs may recommend non-existent items, such as recom-
mending a movie name that does not exist. Reporting the approach for man-
aging these hallucinations is crucial for having a reproducible system. For
example, one potential approach to address this issue is to provide the LLM
with a predefined list of candidate items from which to choose. However,
this introduces additional considerations, such as the number and ordering
of candidate items, which greatly affect system performance.

– Limited Context Window: Due to limitations in input size, including a
user’s entire interaction history in a prompt is often infeasible. Summarizing
or selecting key interactions is crucial, and clearly reporting this strategy is
essential, as it can heavily affect performance.

These are just a few examples of the unique challenges faced by LLM-based
RecSys, which are not present in non-LLM-based systems. This highlights a
research gap and the need for a reproducibility checklist tailored specifically
to LLM-based RecSys. With LLMReClarify, we aim to address this gap by
providing comprehensive guidelines. Notably, our focus is on LLM-based RecSys
that leverage item features—such as titles, descriptions, or categories—rather
than solely relying on item IDs, as is common in models like BERT4Rec [24].
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3 LLMReClarify
In response to the challenges highlighted in Section 2.3, we introduce LLM-
ReClarify, a framework to enhance reproducibility in LLM-based RecSys,
particularly for top-N recommendation tasks. Built upon the NeurIPS repro-
ducibility checklist for machine learning systems [17,18], LLMReClarify cat-
egorizes the reproducibility metrics into four groups: code-related factors (R1),
data-related factors (R2), methodological details (R3), and evaluation details
(R4), each of which is detailed in the following subsections.

R1: Code-related Factors. Ensuring reproducibility in LLM-based RecSys
requires public access to the following two critical components, with detailed
setup and execution instructions to enable effective replication and validation:
R1.1 Fine-tuning Code: Code for adapting the LLM to different tasks.
R1.2 Evaluation Code: Scripts for evaluating the model performance.

R2: Data-related Factors. The data-related factors can be divided into several
key items, including:
R2.1 Data Availability: The leveraged dataset should be publicly accessible.
R2.2 Data Splitting Strategy: The method for dividing data into training,

validation, and test sets should be clearly defined. Common approaches
include holding out data by time cutoffs, leave-one-out (LOO), which
reserves each user’s latest interaction for testing and the second latest
for validation, and user-based splits that assign earlier users to training,
a middle group to validation, and the latest to testing.

R2.3 Data Preprocessing Approaches: Documenting data preprocessing
steps, including any filtering policies, is crucial. Criteria and rationale
for excluding records should be clearly stated.

R3: Methodological Details. The methodological details can be divided into
several key factors, including:
R3.1 Type of LLM: The leveraged LLM variant (e.g., GPT-3.5 or Llama).
R3.2 Fine-tuning Strategy: The fine-tuning approach used, if applicable.
R3.3 Prompt Formatting: Given its critical role in interpreting user in-

tent, it is essential to document the prompt structure, task instructions,
the format of user-item interaction history, and the number of historical
items provided as input to the recommendation engine.

R3.4 Handling Hallucination: This refers to the mechanisms in place, if any,
to address the generation of irrelevant or non-existent content by LLMs.
For example, one potential approach is to constrain the output space
by integrating external knowledge sources, such as knowledge graphs, to
ensure that recommendations are grounded in valid data.

R3.5 Item Retriever: This component generates a pool of candidate items
from which recommendations will be made. Key elements in this compo-
nent which may impact the model performance include: (1) the retrieval
strategy (e.g., random selection, the most or least similar items to ground
truth), (2) the number of retrieved candidates, and (3) the position of
the ground truth in the candidate list.
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R4: Evaluation Details. Accurate and transparent reporting of evaluation de-
tails is crucial for reproducibility and reliability in LLM-based RecSys. Specific
assumptions or record exclusions before evaluation must be clearly documented,
as they can significantly impact results. Applying consistent assumptions and
criteria across baselines is essential for fair comparisons, ensuring accurate per-
formance assessments and preventing misleading conclusions.

4 Experimental Evaluation
In this section, we describe our experimental setup and methodology. We first
provide an overview of the dataset used in our experiments in Section 4.1, fol-
lowed by a detailed description of the baselines for our study in Section 4.3.

4.1 Datasets
We conducted our experiments using the MovieLens dataset [6] across all base-
lines. This dataset provides versions of various sizes, including 100K, 1M, and
20M ratings, with users rating movies on a scale of 1 to 5. To ensure consistency,
we used the specific version referenced in each original baseline paper.

4.2 Metrics
To assess performance, we use Hit Rate (HR) and Normalized Discounted Cu-
mulative Gain (NDCG). HR@k checks if the correct item appears in the top-k
items of the recommendation list, calculated as the ratio of cases where the cor-
rect item is included within the top-k to the total cases. NDCG@k evaluates
ranking quality by considering the position of relevant items in the top-k rec-
ommendations. It is calculated by normalizing the Discounted Cumulative Gain
(DCG) against the ideal DCG, where DCG gives higher scores to relevant items
ranked near the top.

4.3 Baseline
As mentioned in Section 2.2, numerous LLM-based top-N RecSys exist in the
literature. In Table 1, we summarize the reproducibility level of each system,
where each row corresponds to a specific system and each column represents
a reproducibility factor listed in Section 3. Among these systems, we excluded
those listed in rows 1 to 4 of Table 1 due to the lack of public code, which is a
fundamental requirement for reproducibility. Of the remaining ones, we initially
attempted to reproduce LLMRec [13,14]. However, despite using their publicly
available code and preparing the data as outlined in their paper, we were unable
to replicate the expected behavior of their model due to the high frequency
of hallucinations, which made further experiments impractical. Therefore, we
focused on LlamaRec [27], GenRec [8], and NIR [25] as our baselines.

This section is divided into subsections, each dedicated to a specific bench-
mark and offering a detailed description of that benchmark.
LlamaRec. LlamaRec [27] introduces a two-stage Llama-based sequential Rec-
Sys, depicted in Figure 2a. The first stage, or retrieval stage, uses an external, off-
the-shelf RecSys–options include SASRec [9], BERT4Rec [24], and LRURec [28]—to
initially retrieve a set of 20 candidate items. Following this, in the second stage,
or re-ranker stage, an input prompt is created which comprises of three parts:
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Table 1: Reproducibility Level of the Baselines
R1: Code R2: Data R3: Methodological Details R4: Evaluation Details
R1.1 R1.2 R2.1 R2.2 R2.3 R3.1 R3.2 R3.3 R3.4 R3.5

GPT4Rec [10] -
PALR [2]

RecMind [26] -
InstructRec [29] -
LLMRec [13,14] -
LlamaRec [27]

GenRec [8] -
NIR [25] - -
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Fig. 2: The Architectural Components of the Baselines

(1) an instruction, (2) a list of interaction history–as many items as possible
up to the context window limit, and (3) the 20 candidates. The re-ranking pro-
cess then begins, utilizing Llama2 to sort the candidate items. Unlike typical
use, this stage does not generate tokens autoregressively. Instead, it employs a
verbalizer that converts output scores from the LLM’s head into ranking scores
for the candidate items, effectively addressing the common hallucination issues.
The output from this stage, a re-ranked list of items, constitutes the final rec-
ommendations provided by LlamaRec. Both the external recommender used in
the retrieval stage and the Llama model employed in the re-ranker stage require
fine-tuning. The effectiveness of LlamaRec’s approach has been evaluated us-
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ing three real-world datasets: Amazon Beauty [7,16], Amazon Games [7,16], and
MovieLens [6], using LOO splitting strategy.
GenRec. GenRec [8] is an LLM-based sequential RecSys, as shown in Figure 2b.
The system uses Llama2, which has been fine-tuned to enhance its understanding
of user preferences and interaction patterns. Its main functionality is to predict
the next item in a sequence based on a structured input prompt comprising (1)
an instruction and (2) a list of the user’s interaction history. However, the number
of interaction items included in the prompt is not specified in the original paper.
Unlike many systems, GenRec lacks a retriever or re-ranker module, relying
solely on the fine-tuned capabilities of Llama2 to generate recommendations.
Additionally, GenRec does not address the issue of hallucination, which could
impact its overall performance. In the original paper, the effectiveness of GenRec
was evaluated using Amazon Toys [7,16] and MovieLens [6].
NIR. NIR [25] introduces a zero-shot approach to RecSys using LLMs, enabling
models like GPT-3 to generate recommendations without training on specific
datasets. As illustrated in Figure 2c, NIR follows a three-step prompting strat-
egy: (1) summarizing the user’s preferences based on their interaction history, (2)
selecting and ranking representative items from the user’s history, and (3) rec-
ommending items from a pre-constructed candidate set, which is generated using
user or item filtering techniques. User filtering selects items liked by similar users,
while item filtering finds items similar to those in the user’s history. The ground
truth item (the correct next item) may or may not be present in this candidate
list. These filtering techniques help reduce the recommendation space, enhancing
the system’s efficiency. The iterative process of preference summarization, item
selection, and recommendation forms an effective dialogue between the RecSys
and the LLM. The effectiveness of this approach is evaluated on MovieLens [6].

5 Reproducibility Issues and Results
This section is divided into subsections, each dedicated to a specific benchmark.
For each, we first discuss its reproducibility issues, followed by the experiments
conducted and their results, considering the identified reproducibility issues. The
code for all the experiments is available on a public GitHub4 repository.

5.1 LlamaRec
The architectural details of LlamaRec are presented in Section 4.3. Here, we first
address the reproducibility issues and then outline the experiments carried out
to further investigate these issues.
Reproducibility Issues. LlamaRec’s reproducibility is affected by certain as-
sumptions, notably the ground truth’s position within the candidate items. This
factor, which significantly affects the results, was not considered in their evalu-
ations, violating R3.5. To assess the impact of this factor on the final perfor-
mance, we conducted experiments injecting the ground truth at different posi-
tions (from 1st to 20th) in the candidate list. However, since running the exper-
iments for each position of the ground truth can be computationally expensive,
4 https://github.com/ShirinTahmasebi/LLMReClarify

https://github.com/ShirinTahmasebi/LLMReClarify
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we also conducted an additional experiment where the ground truth position is
randomly selected. In this approach, the position is determined according to a
uniform random distribution. Thus, in this second approach, instead of running
the experiments 20 times for all users, we only run them once per user. While
this method is less computationally intensive, it comes at the cost of potentially
losing some accuracy.

Additionally, the original paper includes an evaluation scenario where only
cases where the ground truth is among the top 20 candidate items are considered.
While this assumption is clearly documented, it is not a standard approach across
other systems, such as PALR, GPT4Rec, RecMind, BERT, and SASRec. This
difference can lead to potential inconsistencies when comparing results.

Experiments and Results. To examine whether the ground truth’s position
among the top 20 candidates affects the reproducibility of results, we conducted a
series of experiments. Given that this factor significantly influences performance,
we sought to understand its impact on result consistency. For each experiment,
we selected the top 19 candidate items (excluding the ground truth) and placed
the ground truth at positions from 1st to 20th. To ensure reliability, each exper-
iment was run five times, and average results were reported.

Figure 3 presents the results of these experiments in a line chart, with four
lines representing NDCG@10, HR@10, NDCG@5, and HR@5 metrics. The X-
axis shows the position of the ground truth within the candidate items, with
each line composed of 20 points corresponding to the metric value when the
ground truth is placed at each position. A horizontal dashed line indicates the
metric reported in the original paper.

As shown in Figure 3, the position of the ground truth significantly impacts
performance, confirming our claim that considering this factor is crucial for re-
producibility. The reported performance in the paper is reproducible only under
specific circumstances when the ground truth is in a particular position in the
candidate list. However, by changing the position, the performance can change
significantly, which highlights the effects of the ground truth position on perfor-
mance. Considering this factor enables more thorough analysis, leading to better
insights and more reliable comparisons across different systems.

As outlined at the beginning of this section, we proposed an alternative ap-
proach to evaluate the impact of ground truth position by randomly selecting
it from a uniform distribution for each user, rather than testing all possible po-
sitions. This method requires only a single iteration over the user list, reducing
computational costs and enhancing scalability for larger candidate sets, though
with some accuracy trade-offs. Figure 4 illustrates these results: the random
bars show the scenario with randomly determined ground truth positions, while
the average bars reflect the averaged results from Figure 3. These findings sug-
gest that random selection provides a reasonable approximation for HR@5 and
NDCG@5 but is less accurate for HR@10 and NDCG@10.
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5.2 GenRec
Following the architectural overview of GenRec in Section 4.3, this section begins
with exploring its reproducibility issues, followed by a thorough analysis of the
experiments designed to evaluate these issues.
Reproducibility Issues. Several issues cast doubt on its reproducibility:
– Dataset Splitting Strategy: The dataset splitting strategy is neither men-

tioned in the paper nor included in the GitHub repository, violating R2.3.
– Prompt Format: The number of interaction history items included in the

prompt is not clearly specified, neither in the paper nor in the GitHub code,
violating R3.3. However, we hypothesize that this factor may significantly
impact performance.

– Hallucination Handling: Although the model has been fine-tuned to re-
duce hallucination, this issue is not completely resolved, violating R3.4. The
output remains susceptible to repetition and hallucination, with no specific
strategy for handling it.

Experiments and Results. To evaluate GenRec’s reproducibility, we designed
a series of experiments to assess how changing the number of interaction history
items affects performance. Due to missing details in the original paper, we as-
sumed that the dataset splitting strategy is LOO. Additionally, we removed all
hallucinated and repeated items from the results without attempting to fix them.
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We tested various configurations by adjusting the number of interaction items
in the prompt, using 10, 15, 20, 25, 30, 35, 40, 45, and 50 items. Context window
limitations prevented us from including more. Each experiment was repeated
five times, and average performance was reported to ensure reliability.

The results of these experiments are depicted in Figures 5a and 5b. Each
figure represents the results of experiments conducted using a specific temper-
ature parameter5. Figure 5a shows results with the highest temperature of 1,
indicating maximum creativity and randomness in the output, while Figure 5b
shows results with a lower temperature of 0.6, producing more stable outputs.
In both figures, the X-axis represents the maximum number of interaction items
included in the history, while the Y-axis represents the performance values.

As shown in these figures, the number of items in the interaction history
significantly impacts the model’s performance. In both high and low tempera-
tures, we observe that increasing the number of items in interaction history up
to a specific point improves performance. However, beyond that point, further
increasing the number of items has a negative and random effect on performance.
It is worth mentioning that this point, where the randomness starts, differs be-
tween the two temperatures. With a higher temperature, the randomness starts
earlier, indicating that at higher temperatures, the performance is more volatile.

5.3 NIR
Given the NIR’s architecture in Section 4.3, this section first addresses its repro-
ducibility issues, followed by experiments conducted to explore them further.

Reproducibility Issues. As shown in Table 1, NIR meets all the criteria in
LLMReClarify. Specifically, the repository and datasets are publicly available,
and all data-related factors are clearly reported, satisfying R1 and R2. Also,
methodologically, the paper describes all relevant aspects, including the LLM
type and prompt formatting. To address hallucination, the authors provide a
list of candidates to the LLM to select recommended items. They explained
the construction of the list and evaluated the impact of varying the number of
candidate items on recommendation performance. In summary, all factors (R1 to

5 Temperature parameter in LLMs controls output randomness: higher values increase
creativity, while lower values yield more deterministic responses.
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R4) are thoroughly documented, making NIR a strong example of how following
the guidelines in LLMReClarify can facilitate reproducibility.

Experiments and Results. To evaluate the reproducibility of NIR, we repli-
cated the experiments from the original paper, where the size of the candidate
list varied between 15 and 22, and HR@10 was calculated for each case. A key
challenge was the deprecation of GPT-3.5 Davinci 3 [20], originally used in NIR,
which we addressed by substituting GPT-3.5 Turbo and GPT-3.5 Instruct [19].

Figure 6 presents the results for the substituted models, and the original
paper’s results. We included horizontal dashed lines to represent the average for
each model variant. The deviation between the average results in the original
paper and those from our experiments ranges between 0.01 and 0.02. This de-
viation is minimal, especially considering that we had to use different GPT-3.5
variants due to the deprecation of the original model used in the paper. This sug-
gests that, by reporting the details outlined in LLMReClarify, the system’s
results are reproducible.

6 Discussion
As mentioned in Section 4.3, we focused on LlamaRec, GenRec, and NIR. For
each system, we first identified reproducibility issues based on the factors out-
lined in Section 3, then conducted extensive experiments to investigate further.

Our experiments with LlamaRec highlighted that the ground truth position
within the candidate list significantly impacts performance. The metrics reported
in the original paper are reproducible only under specific circumstances. By vary-
ing the ground truth position, we observed substantial fluctuations, emphasizing
the need to consider this factor in evaluations for fair and thorough assessments.

For GenRec, we found that both the number of items in the interaction his-
tory and the output randomness (temperature) heavily affect performance. Up
to a certain point, adding interaction items improved results, but beyond that,
additional items led to random and negative effects. This threshold varies by tem-
perature setting, with higher temperatures causing earlier volatility. This demon-
strates the importance of documenting these factors to ensure reproducibility
and enable accurate system comparisons.
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In NIR, we observed minor variations from the original paper’s results. How-
ever, this difference was negligible, especially given our use of alternative GPT-
3.5 variants due to deprecation of the version used in the paper. This highlights
that by documenting key details outlined in LLMReClarify, reproducibility
can be maintained even with slight changes in the environment or model versions.
Takeaways. According to our experiments, our main takeaway is that different
factors mentioned in Section 3 should be clearly documented to ensure repro-
ducibility and fair comparisons. Specifically, providing detailed explanation the
code factors (R1), data-related factors (R2), methodological details (R3), and
evaluation assumptions (R4) are essential for enhancing the reproducibility of
LLM-based RecSys for top-N recommendation task.

7 Future Work
This work primarily focuses on top-N recommendation tasks, which are cru-
cial for many real-world applications. However, other recommendation tasks,
such as rating prediction, explanation generation, and session-based recommen-
dations, also present unique reproducibility challenges. For example, explana-
tion generation involves subjective evaluations, while rating prediction demands
finer-grained metric standardization. Future research could address these gaps
by extending the analysis to other recommendation tasks and their specific re-
producibility challenges.

Additionally, LLMReClarify examines a select set of LLM-based RecSys,
which reflect the current state of the art. However, architectures relying on item
embeddings, such as BERT4Rec [24], or systems using hybrid filtering tech-
niques, remain unexplored. Expanding the scope to include such systems could
enhance the generalizability of our findings and refine the checklist.

8 Conclusion
Our investigation into the reproducibility of LLM-based RecSys reveals critical
factors affecting performance, such as evaluation assumptions, dataset splitting
strategies, and prompt formatting details. The LLMReClarify framework of-
fers a structured approach to enhance reproducibility through comprehensive
reporting of these factors. Following these guidelines enables fair comparisons
and reliable results in developing and evaluating LLM-based RecSys.
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