
FOGFLEET: Fog-Level Federated Transfer Learning
for Adaptive Transport Mode Detection

Mahdieh Kamalian
University of Oslo

Oslo, Norway
mahdiehk@ifi.uio.no

Amir Taherkordi
University of Oslo

Oslo, Norway
amirhost@ifi.uio.no

Amir H. Payberah
KTH Royal Institute of Technology

Stockholm, Sweden
payberah@kth.se

Paulo Ferreira
University of Oslo

Oslo, Norway
paulofe@ifi.uio.no

Abstract—Transport Mode Detection (TMD) systems play
a pivotal role in facilitating applications in transport, urban
planning, and more. Exploiting the advancements in smartphone
sensing capabilities, TMD systems have evolved for mobile
applications with local classification on smartphones as a common
approach. Yet, local approaches relying on centralized training
raise privacy concerns due to the transmission of sensitive
data (e.g., GPS logs) over the Internet. In this paper, we
propose FOGFLEET, a novel Federated Transfer Learning (FTL)
framework for TMD, addressing both privacy and performance
concerns. Our approach relies on Federated Learning (FL) to
train a global model on various datasets from different cities
while employing transfer learning to adapt the global model
to the specific characteristics of individual smartphones and
cities. FOGFLEET relies on an architecture that integrates edge,
fog, and cloud layers, with dedicated fog nodes for each city
to simplify cross-silo federated learning. Experimental results
demonstrate the effectiveness of the FOGFLEET framework in
higher TMD accuracy by up to 20% than its comparable cen-
tralized approach. Furthermore, it outperforms the FL solutions
reported in the literature with at least an 8% increase in accuracy.
In this work, we also highlight the importance of sufficient
training data for distributed training and discuss the impact of
smartphone sensor qualities on the performance of TMD systems.
Our work contributes to advancing TMD systems by providing an
adaptive and privacy-preserving solution suitable for deployment
in diverse urban environments and across various geographical
locations.

Index Terms—Transport Mode Detection, Federated Learning,
Transfer Learning, Privacy, Accuracy, Fog Computing, Edge
Computing

I. INTRODUCTION

Transport Mode Detection (TMD) refers to systems capable
of distinguishing between different modes of transportation,
such as cars, buses, trains, etc. The knowledge obtained from
TMD is central for many applications such as urban planning,
transport, navigation, carbon emissions, air pollution, health,
and entertainment [24]. The advancement of smartphones
made them a practical platform for TMD [6], [10], [16].
Several researchers explored the smartphone’s sensor data
fitted to different Machine Learning (ML) algorithms for
TMD [5], [19]. Such a TMD system follows a two-stage
process including training and inference stages. In the training
stage, an ML model (i.e., classifier) is trained based on
the ground truth collected from the smartphone’s sensors. In
the inference stage, the trained model is integrated into a
smartphone application for executing prediction requests.

The training stage can be performed using either a cen-
tralized or distributed approach. In a centralized approach, all
the data required for training is gathered and processed by a
central entity, such as a powerful server on the Cloud. The
central entity has access to the entire dataset and performs
training using the complete set of information. On the other
hand, in a distributed approach, the dataset is divided into
smaller subsets, and these subsets are distributed across multi-
ple edge devices, like smartphones. Each device independently
trains the model using only the subset of data it holds. The
distributed training depends on the computational power of
multiple devices, with each device having access to only a
portion of the dataset.

Concerning the main goal for centralized or distributed
training, centralized training tends to provide higher accuracy
than the distributed approach as it can utilize the entire dataset,
allowing the model to capture more comprehensive patterns
and variations present in the data. However, the centralized
approach raises privacy concerns, as it involves the storage and
transmission of sensitive data such as GPS logs to a central
entity. In contrast, distributed training approaches, such as
Federated Learning (FL), prioritize privacy by keeping the data
decentralized on edge devices [15]. While FL offers privacy
advantages, it may suffer from lower accuracy compared to the
centralized approach [7], [9]. Thus, there is a trade-off between
accuracy and privacy when choosing between centralized and
distributed training such as FL for TMD systems.

Many TMD systems based on FL mainly employ smart-
phones as FL clients, a setup commonly referred to as
cross-device FL [8], [9], [12]. However, the non-IID (non-
Independently and Identically Distributed) nature of smart-
phone data, characterized by limited variation across devices,
poses a significant challenge for achieving optimal perfor-
mance [9]. The heterogeneity in smartphones, containing dif-
ferences in sensor quality, communication, and computational
capabilities, further complicates the FL process. This challenge
is worsened when only a few of these devices participate at a
given time, potentially leading to biased training [14].

Beyond that, there are several differences in the public
transport modes and their speed, acceleration pattern, road
conditions, etc., in various locations (i.e., cities). Thus, the
model trained based on data in one location can not generalize
well in another location with various types of transport modes



or road conditions, etc. Many state-of-the-art solutions lack
such generalization [13].

To overcome these challenges we propose a cross-silo Fed-
erated Transfer Learning (FTL) framework called FOGFLEET.
In FOGFLEET, data is partitioned across different data silos,
such as fog nodes deployed in various geographical locations.
The core idea behind FOGFLEET is to create first a global FL
model trained across multiple cities, each exhibiting unique
transportation patterns and road conditions (i.e., the federated
learning phase), then fine-tune the global model with data from
individual smartphones in a new city (i.e., the transfer learning
phase). Regarding the former phase, a fog node is introduced
as the FL client per city, and data from multiple smartphones
in the city is merged, thereby fog nodes help mitigate the non-
IID nature of the data, leading to more robust and generalized
models for TMD. The fine-tuning process adapts the global
model to the specific characteristics of each smartphone’s
dataset, accounting for variations in sensor data quality, etc.
By initializing a base model with pre-trained weights from the
global model and selectively freezing certain layers, knowl-
edge transfers from the global model to personalized models
thus enabling efficient adaptation to the new city and smart-
phone data. Last but not least, FOGFLEET obtains an accuracy
comparable to centralized approaches while leveraging fog
nodes as the FL clients preserve the user’s privacy city- or
municipality-wide.

To summarise, the contributions of this work are as follows:

1) Federated Transfer Learning (FTL) framework: We pro-
pose a novel framework that integrates federated learn-
ing and transfer learning techniques to address the chal-
lenges of TMD across diverse locations. Furthermore,
by combining federated learning with transfer learning,
our framework offers an accurate and privacy-preserving
TMD system for model training and adaptation.

2) Personalized model adaptation: Through the fine-tuning
process using the TL technique, our solution enables
the domain adaptation of a global model to individual
smartphone datasets within a new city. By accounting for
variations in sensor data quality and transport patterns,
our approach produces personalized models customized
to each smartphone, enhancing model performance.

3) Evaluation of the FTL scenario versus a centralized
scenario: We compare our FTL solution with a cen-
tralized approach. In the centralized scenario, we apply
centralized training with the dataset of each smartphone
collected in three different cities. The experimental
results suggest that despite distributed training, the FTL
solution can achieve 1% to 20% higher accuracy than
the centralized approach.

The rest of this article is structured as follows. Section II
presents some related work with a comparison of our solution
with both centralized and distributed state-of-the-art solutions.
Section III details our solution, the underlying architecture
of our solution, and the proposed classifier structure. In
Section IV, we begin by describing the datasets used, the

preprocessing methods applied, and the features selected. We
then present the results of our experimental evaluation. Finally,
Section V presents the conclusion.

II. RELATED WORK

Over the past few decades, TMD systems have evolved
to facilitate different applications in various domains such as
transport, healthcare, economy, energy, and entertainment [24].

The advancements in sensing computation, and storage
capabilities of smartphones have provided a great opportunity
to enhance TMD as mobile systems. Therefore, there has
been a dominant trend toward utilizing smartphones for both
data collection and inference in TMD systems. Within this
context, local TMD approaches have emerged, where inference
is performed directly on smartphones following a training
stage [13].

Most previous local TMD systems employed a centralized
ML or DL classifiers for training their system and then
integrated the generated model for a local classification on
the smartphone [3], [10], [11], [17]. In this setup, a model is
trained on a central entity utilizing data gathered from diverse
smartphone sensors such as accelerometer, and GPS log [13].
Accelerometer and GPS are the most common and informative
sensors for TMD being able to capture the acceleration and
speed patterns in transport vehicles [10], [19]. Accelerometers,
in combination with magnetometers, introduce more accuracy
in detection [3], [5], [23].

The centralized solutions despite their better performance
give rise to notable privacy concerns, as it necessitates the
transmission of sensitive user data, especially GPS over the
Internet and storing it on a centralized entity for training.

For instance, Ferreira et al. [10] propose an ML solution
for TMD named EdgeTrans, which primarily utilizes ML
classifiers like Decision Tree (DT) and Random Forest (RF),
choosing RF due to its superior accuracy. EdgeTrans relies
on accelerometer and GPS data and employs a centralized
cloud server for data storage and model training. However,
the centralized nature of EdgeTrans raises significant privacy
concerns. Moreover, the model achieves an average F1 score
of 90% in detecting only five modes: car, bus, train, walk, and
bicycle. Notably, the classifier struggles with a limited number
of motorized modes and often confuses the car modality with
the bus modality.

In another work, Wang et al. [11] introduce a deep learning
classifier that employs a dual-stage Long Short-Term Mem-
ory (LSTM) network with an ensemble decision module for
post-processing. This system includes a binary classifier for
detecting elevator mode and a detailed classifier for distin-
guishing between bus, subway, High-Speed Railway (HSR),
and non-motorized modes such as stationary and walking. The
classifier achieved overall accuracies of 91.28% and 88.59%
for stationary and walking modalities. However, the need for
an ensemble decision module to smooth results in the time
domain suggests initial inaccuracies or instability in classifi-
cation outputs. Additionally, the system’s complex structure
could pose challenges during inference on smartphones.



In a comprehensive work, Wang et al. [3] provide an
analysis of 15 various solutions using ML and DL classi-
fiers on the Sussex-Huawei Locomotion-Transportation (SHL)
dataset [19]. Their standout solution combines an RF and a
fully connected Deep Neural Network (FC-DNN), achieving
an average F1 score of 96% across 106 features. The study
focuses on detecting transportation modes such as still, walk,
run, bike, bus, car, train, and subway using data from ac-
celerometers, gyroscopes, magnetometers, and GPS. Despite
its success, the model faces significant challenges related to
computational efficiency due to its complexity and extensive
feature set. This could hinder deployment on standard smart-
phones, which typically have limited processing power and
battery life. The research further encounters limitations due to
the exclusive use of one type of Android-based smartphone
(HUAWEI Mate 9), compounded by reported technical issues
like sensor unavailability, irregular sampling rates, and sensor
diversity, which may affect data quality and model robustness.

Due to the drawbacks of centralized training approaches
including privacy, security, and the need for persistent Internet
access between the smartphone and the centralized entity,
some decentralized training, particularly FL approaches re-
cently have been introduced [8], [9].

Mensah et al. [4] introduce an ensemble-based Federated
Deep Neural Network (eFedDNN) utilizing FL. This clas-
sifier combines DL classifiers like LSTM, GRU, and 1D
CNN as base learners and MLP as a meta-learner, enhancing
TMD from GPS data without compromising user privacy.
By employing an ensemble method, which integrates various
local models trained on decentralized devices, the eFedDNN
presents 84.1% overall accuracy in detecting transport modes
of walking, biking, car, and public transit. The complexity of
stacking these models limits the efficiency of execution on
smartphones. Moreover, grouping all public transport modes
into a single category and not presenting performance results
for each mode separately restricts the classifier’s performance
and efficiency. The need for an ensemble decision module to
refine the classification results further indicates that the initial
outputs may not be sufficiently accurate or stable.

Yu et al., [8] present an FL framework with a maximum
of 8 clients using a Convolutional Neural Network (CNN)
model that obtained an overall accuracy of 67.52%. The main
limitation of this work is achieving such a low accuracy
compared to the centralized and local TMD works presented
above. Furthermore, the structure of their model is too deep
for a classification task of TMD, causing low accuracy (i.e.,
67.13%) even when training the model with a centralized
approach.

Cavalacante et al., [9], also present an FL framework using
a Neural Network (NN) with an average accuracy of 80.6%
for detecting only three transport modes including car, bus,
and motorcycle. The limited number of modes restricts this
system’s efficiency and categorizes it as a non-fine-grained
TMD system. The assessment outcomes outlined in this study
indicate a decline in the performance of the distributed training
approach relative to the centralized approach. The authors at-

tribute this issue to an anticipated consequence of information
loss during the aggregation of client models.

Huang et al., [2] present a Federated Learning-based Trans-
port Mode Inference model with Privacy-Preserving Data
Fusion (PPDF-FedTMI) that enhances privacy in TMD using
GPS data to detect five modes of walk, bike, bus, car, and
train. The model utilizes a fuzzy fusion algorithm and local
differential privacy to safeguard user data and enhance perfor-
mance on non-IID distributed datasets, achieving up to an 84%
F1 score. However, the incorporation of complex techniques
like fuzzy clustering and local differential privacy increases
computational demands, potentially affecting efficiency with
large-scale deployment. Additionally, the model’s assumptions
for handling non-IID data may not be universally applicable,
limiting effectiveness in varied environments. Moreover, data
collection from only Beijing may restrict the model’s gener-
alization.

Table I highlights the advantages of FOGFLEET by compar-
ing it against both centralized and distributed state-of-the-art
solutions. As demonstrated in the table, our FTL approach
obtains an accuracy comparable to centralized approaches
and surpasses other distributed approaches in performance.
Furthermore, FOGFLEET offers superior privacy benefits over
centralized approaches. This effectively addresses the trade-off
between performance and privacy.

III. ARCHITECTURE AND IMPLEMENTATION

In this section, we provide an overview of our solution,
FOGFLEET, and its architecture. As shown in Algorithm 1,
our solution comprises two phases: FL and TL. For imple-
menting FL and TL phases we rely on an architecture depicted
in Fig. 1. According to this figure, our proposed architecture
consists of three layers of edge, fog, and cloud. As shown in
Fig. 1, the fog nodes are in Oslo, Rome, Stockholm, Tehran,
and London. This setup results in a total of five FL clients
(i.e., fog nodes), with the option to exclude one client from
the FL process for experimentation purposes. The excluded
client (i.e., the city’s dataset) is used for the TL process (see
Section IV).

Fig. 1: FOGFLEET architecture

In the Edge layer, smartphones denoted as S = {s1, ..., sn}
serve as data collection devices through an Android-based
application referred to as TMDetector [5]. In the Fog layer,
each city is equipped with a dedicated fog node, which serves



TABLE I: Comparison of FOGFLEET with the State-of-the-Art (centralized or distributed) TMD Solutions

Study Methodology Privacy Concerns Performance (Overall F1 Score or Accuracy)

Ferreira et al. [10] Centralized ML with RF High 90% (F1 score)
Wang et al. [11] Centralized DL with LSTM High 91% (accuracy)
Wang et al. [3] Centralized ML+DL with RF+DNN High 96% (F1 score)
Mensah et al. [4] FL with LSTM+GRU+CNN+MLP Low 84% (accuracy)
Yu et al. [8] FL with CNN Low 68% (accuracy)
Cavalcante et al. [9] FL with NN Low 81% (accuracy)
Huang et al., [2] FL with LSTM Low 84% (F1 score)
FOGFLEET FTL with MLP Low 92%-97% (F1 score)1

Note: ML=Machine Learning; DL=Deep Learning; FL= Federated Learning; RF=Random Forest; LSTM= Long-Short Term Memory;
DNN=Deep Neural Network; GRU=Gated Recurrent Units; CNN= Convolutional Neural Network; MLP=Multilayer Perceptron;
FTL=Federated Transfer Learning

1 The overall F1 scores range from 92% to 97% across various datasets: 96.75% for Tehran, 94.8% for Rome, and 91.8% for Stockholm.
Detailed evaluations can be found in Section IV.

Algorithm 1: Pseudocode for federated learning and
transfer learning phases (in the cloud server and fog
nodes)

initialize global model()
for round = 1 to num rounds do

selected clients = select clients(F)
foreach client f in selected clients do

local model = received global model(client f )
local model = train local model(client f ,

local model, Df [f ])
update = compute model update(local model)
send update to server(update)

end
global model = aggregate updates()
evaluate model(global model)

end
terminate fl process()
for excluded city c in C do

for each smartphone s in S do
global model = load global model weights()
personalized model =

transfer learning(global model,
smartphone dataset, Ds[s])

end
end
terminate tl process()
phase1 global model = federated learning()
phase2 personalized model =

transfer learning(phase1 global model,
new city dataset, smartphone dataset)

as both a repository for local data storage and a processing
node for FL and TL tasks. Therefore, for the given set of
cities, C = {c1, ..., cn}, each city is assigned a dedicated fog
server F = {f1, ..., fn} serving as FL clients.

Under the framework of cross-silo FL presented in this
work, the fog nodes offer several benefits over relying solely
on smartphones for FL tasks: (i) fog nodes enhance FL
by mitigating the non-IID data challenge by merging data
from multiple smartphones; (ii) fog nodes create diverse and

representative datasets that improve model generalization and
reduce data irregularities; (iii) with fog nodes’ superior compu-
tational capabilities compared to smartphones, fog nodes can
perform advanced data processing, ensuring uniform training
across devices; (iv) this approach minimizes the effects of
smartphone variability. Thus, overall, fog nodes provide more
robust and consistent datasets, increasing the effectiveness
and reliability of the FL process. Furthermore, they enhance
privacy by ensuring that GPS logs are not transmitted over the
Internet to a cloud server for training.

Each client dataset denoted as Df characterizes unique
patterns of public transport, acceleration, deceleration, and
road conditions specific to that city. The global model is
derived through the aggregation of local models from selected
clients. Therefore, the FL phase allows the global model to
capture the variability and distinctions present in transport data
across different cities. To ensure consistency in model training
across all clients, we define a standardized set of class labels
including stationary, walking, running, bicycling, car, train,
tram, subway, bus, and ferry.

In the Cloud layer, the cloud server acts as a central server
for FL to initialize a global model. Each client (i.e., fog
node) receives the current global model from the central server
and trains its local model using the available dataset. Then,
each client sends the model updates (i.e., model parameters)
resulting from local training to the central server. On the
central server, model aggregation techniques1 (e.g., FedAvg)
are applied to update the global model.

Note that relying solely on fog nodes (a decentralized FL)
instead of a central cloud server could introduce challenges
in terms of managing and coordinating the distributed training
process effectively. The central cloud server also provides a
starting point for model training by initializing the global
model and distributing it to the participating clients. Therefore,
the global model can capture the variability present in transport

1In federated learning, aggregation refers to the process of combining model
updates from multiple participating devices (e.g., edge devices) to create a
global model. During the training process, each device computes its local
model update using its local data and sends this update to a central server
or aggregator. The aggregator then combines these updates using a specified
aggregation algorithm to generate a new global model [15].



data across different locations, providing a robust basis for
subsequent adaptation.

FOGFLEET leverages the Flower FL framework [22] to
implement FL and provide a client-server communication
infrastructure, enabling coordination between clients and the
central server. The central server aggregates the received
model updates using the FedAvg algorithm that computes the
weighted average of the model updates (i.e., model parame-
ters) from all participating clients to generate a global model.
The updated global model is then sent back to the clients for
the next round of training. This process iterates for multiple
rounds (e.g., 10 rounds) until convergence is met. Throughout
the training process, a convergence metric such as accuracy is
monitored to assess model performance and convergence [14].

Then, the fog nodes generate personalized models for each
smartphone based on the global model generated by the cloud
server. We employ the TL technique to personalize models
tailored to individual smartphones’ characteristics and cities,
enhancing model performance. In the TL phase, we fine-tune
the global model on a new dataset obtained from a smartphone
represented as Ds (cf. Section IV). This fine-tuning process
adapts the global model to the specific characteristics of each
smartphone’s dataset in the new city, taking into account
variations in sensor data quality and transport patterns. Note
that the fine-tuning process does not influence the global model
training since it is performed independently on the new dataset
after the global model has been trained and finalized in the FL
phase.

Note that for any new smartphone sn+1 within a new city
of cn+1, the same TL phase can be applied to personalize the
base model with the new dataset of Dsn+1 .

A. Classifier structure

In this section, we describe the neural network model
structure employed in this study. One of the requirements of
a local TMD system is to perform the inference directly on
smartphones [13]. Therefore, it is essential to adopt a model
that is lightweight enough to perform inference efficiently on
smartphones. To meet this requirement, we opt for a shallow
Multi-Layer Perceptron (MLP) model. The structure of the
MLP model utilized in this study is presented in Table II.
The adopted MLP model includes an input layer, three hidden
layers, two dropout layers, and an output layer. The global
model (i.e., base model) can infer a total of 10 transport modes,
4 non-motorized modes of stationary, walking, running, and
bicycling, and 6 modes of motorized modes including car,
train, tram, subway, bus, and ferry. Thus in the output layer,
the NUM CLASSES corresponds to 10 class labels. We use this
structure for each client during the FL process. To make the
comparison possible when fitting a model for each smartphone
in the centralized scenario, we also use this structure (see
Section IV-D).

For the TL phase, we rely on the structure presented in
Table III. As shown in this table, we freeze all the base model
layers (without the output layer) and add two more hidden
layers on top of them. After the initial training, we fine-tune

TABLE II: MLP Model Summary for FL phase

Layer Parameters

Input Shape: INPUT SHAPE
Dense (Hidden Layer 1) Units: 128, Activation: ReLU1

Dropout (Dropout Layer 1)2 Rate: 0.10
Dense (Hidden Layer 2) Units: 128, Activation: ReLU
Dropout (Dropout Layer 2) Rate: 0.10
Dense (Hidden Layer 3) Units: 128, Activation: ReLU
Output Units: NUM CLASSES, Activation: Softmax3

1 ReLU, short for Rectified Linear Unit, is a simple yet effective activation
function that outputs the input value directly if it is positive, and zero
otherwise [20].

2 The Dropout layer is used for regularization. It randomly drops some nodes
in a Neural Network during training [20].

3 The Softmax function converts the weighted sum values into probabilities to
produce predictions for NUM CLASSES corresponding to each class in the
classification task. Therefore, the Softmax function employs a standardiza-
tion of the outputs to ensure that they collectively sum up to represent one
of the classes [20].

TABLE III: MLP Model Summary for TL phase with Frozen
Layers

Layer Parameters

Input Shape: INPUT SHAPE
Base Model Outputs from global model up to the

output layer
Dense (Hidden Layer 1) Units: 128, Activation: ReLU
Dropout (Dropout Layer 1) Rate: 0.10
Dense (Hidden Layer 2) Units: 128, Activation: ReLU
Dense (Output Layer) Units: NUM CLASSES, Activation: Soft-

max

Frozen Layers

Base Model all layers (up to the output layer)

Fine-Tuning

All Layers Including base model

The base model layers, up to the output layer, are frozen during training.
After the initial training, the model undergoes a fine-tuning process where
all layers, including those from the base model, are trainable. The model
is then recompiled and trained again to adapt further to the specific task.

the model with all layers, including those from the base model.
The model is then recompiled and trained again with a low
learning rate to adapt further to the specific task.

The hyperparameters used in our experiments were carefully
selected by trial and error tests that were inspired by the Grid
Search method. We first predefined a set of values for each
hyperparameter, such as the number of units (e.g., 16, 32, 64,
128, 512, 1024), number of layers (e.g., 2, 3, 4), and various
batch sizes, optimizers and learning rates. We then trained
the MLP model with the combinations of these predefined
hyperparameter values and evaluated each configuration based
on performance metrics, such as validation loss. The best-
performing configuration was selected based on these tests.

For instance, the learning rate for the global model is set to
0.01, while for the fine-tuned model, a slightly lower learning
rate of 0.009 is chosen. We employed custom optimizers for
each model, with Adam optimizer 2 for the global model

2The Adam optimizer presented by Kingma [18] is a commonly used
optimization algorithm in DL, especially for training NNs.



and Nadam optimizer 3 for the fine-tuned model. To prevent
overfitting and ensure efficient training, we incorporated early
stopping with a patience of 5 epochs and a learning rate
scheduler that reduces the learning rate by a factor of 0.5 if
the validation loss does not improve for 2 consecutive epochs
during the initial training phase. For the fine-tuning phase,
a more conservative learning rate scheduler was applied,
reducing the learning rate by a factor of 0.05 under similar
conditions. Given that the optimal number of epochs varies
across experiments, we utilize early stopping to automatically
determine when the model has completed training instead
of relying on manual adjustment. The patience parameter,
indicating the number of epochs, represents a complete pass of
the training data through the algorithm without improvement.
Once this threshold is reached, training is terminated [20].
Each model is trained for a maximum of 30 epochs with a
batch size of 64.

IV. EXPERIMENTAL EVALUATION

In this section, we begin by detailing the datasets uti-
lized for evaluation, describing the preprocessing techniques
employed, and identifying the features selected for analysis.
Subsequently, we discuss the performance outcomes of the
experiments, which are elaborated upon in Section IV-D.

A. Datasets

As mentioned before, we used an Android-based application
called TMDetector mobile application to gather data [5].
TMDetector reads data from accelerometer and magnetometer
sensors at a sampling rate of 1Hz, while data from GPS is
captured every 10 seconds. This adjustment in GPS sampling
rate is due to its higher battery usage compared to the other
sensors. Preliminary experiments indicated that this sampling
rate suffices for maintaining system accuracy. Data collection
is conducted across four distinct cities: Oslo, Rome, Stock-
holm, and Tehran utilizing the same application to capture a
wide range of transport modes, road conditions, and related
patterns across the urban areas of these cities.

Data collection within each city involved 10 various par-
ticipants using different smartphone models, including Sony
Xperia XZ2 Compact, Sony Xperia XZS, Samsung Galaxy
S21, Motorola Nexus 6, Xiaomi Poco F3, Xiaomi Mi Mix
3, Google Pixel 5a, Xiaomi Mi 10 5G, Samsung Galaxy
S10, and Motorola Moto G20. The smartphones used vary
in age from 1 to 9 years and run on Android versions ranging
from 7 to 13. This diversity covers a broad range of both
Android versions and device ages. During data collection,
users carried their smartphones in diverse positions such as
bags, backpacks, front or back pockets, etc., with instructions
to refrain from shaking the devices to prevent data noise.
The distribution of datasets within each city varied depending
on participants’ involvement. We made our collected datasets
publicly available on GitHub for TMD research purposes [1].

3The Nadam optimizer is an extension of Adam, introduced by Dozat [21].
It combines Adam with Nesterov momentum.

Furthermore, we utilized the SHL dataset, a publicly avail-
able dataset [3], [19], collected in London. We refer to the SHL
dataset as the London dataset in this work. It is worth noting
that each city’s dataset is hosted on a fog node dedicated to that
specific location. London dataset comprises data from three
users, each carrying four HUAWEI Mate 9 smartphones. The
smartphones for collecting the dataset were affixed to different
parts of the users’ bodies, including the torso, hip, bag, and
hand. We selected accelerometer, magnetometer, and GPS data
from this dataset same as other cities.

B. Preprocessing

We perform data cleaning and noise filtering to rectify
sensing and user errors. When gathering the ground truth data
using TMDetector, users specify the start and end of a trip.
Additionally, they assign a class label, denoting the transport
mode. According to our experience, users may inadvertently
forget to terminate their trips, resulting in invalid samples, or
assign an incorrect modality to a trip. For example, the trip
speed indicates movement but the user has annotated the trip
as stationary. To address these issues, we employ data filtering
to eliminate invalid trips or those labeled with an erroneous
modality. Furthermore, data lacking logs from the GPS sensor
at the desired sampling rate are filtered out and excluded. Such
occurrences typically arise when the smartphone is heavily
shielded or when the user is situated in a covered area like a
tunnel.

Following filtering and preprocessing, the duration of the
Oslo dataset comprises nearly 32 hours, while the Rome
dataset contains 56 hours of data. Similarly, the Tehran dataset
comprises 58 hours of data, and the Stockholm dataset en-
compasses 69 hours. As for the London dataset, sensor data
was initially sampled at 100Hz. We downsampled it to 1Hz,
aligning with our desired sampling rate. Therefore, the London
dataset, after our filtering and reformatting processes, spans
nearly 14 hours.

C. Feature selection

An MLP can learn the most informative and suitable
representation of the raw data during the learning process.
Therefore, we introduce our feature set presented in Table IV
from the raw sensor data.

Smartphones are equipped with tri-axial accelerometers and
magnetometers, resulting in measurements being relative to the
device itself rather than to the earth. Although it is feasible
to determine earth-relative orientation when the smartphone
is stationary, accuracy diminishes when the device is in
motion [17]. To address the impact of changes in smartphone
orientation during motion, in addition to the tri-axial values,
we calculate the magnitude values for both acceleration and
magnetic field according to the formula presented in (1).

Amagnitude =
√

A2
x +A2

y +A2
z (1)

We apply min-max normalization to our data to mitigate
the issues associated with uneven scales of input features,



TABLE IV: List of Features

Feature Name Description

accX X-coordinate of the acceleration
accY Y-coordinate of the acceleration
accZ Z-coordinate of the acceleration
lat Latitude from GPS
lon Longitude from GPS
acc Accuracy from GPS
magX X-coordinate of the magnetic field
magY Y-coordinate of the magnetic field
magZ Z-coordinate of the magnetic field
accMagnitude Acceleration Magnitude calculated based on (1)
magMagnitude Magnetometer Magnitude calculated based on (1)
distance Distance calculated based on two consecutive GPS

data points
speed Speed calculated based on two consecutive GPS data

points

such as slow convergence or getting stuck in local min-
ima. Min-max normalization scales the features to a fixed
range (usually between 0 and 1), ensuring that each feature
contributes proportionately to the learning process. The cost
of having this bounded range is that we will end up with
smaller standard deviations, which can suppress the effect of
outliers [20]. Our initial tests with min-max, Robust4, and Z-
score normalization5. suggest that min-max scaling performs
the best for our solution. In (2) we present the formula to
normalize our datasets. The normalization process is done
before the datasets are used to train and test the MLP model.

xnormalized =
x− xmin

xmax − xmin
(2)

D. Performance results

This section presents the performance results obtained from
three sets of experiments across two scenarios. We utilize the
datasets mentioned in Section IV-A for these experiments. In
each experiment, one city dataset out of the five is excluded
from the FL process. Subsequently, the excluded city dataset is
partitioned into subsets based on the smartphones used for data
collection within that city known as that specific smartphone
dataset. Thereafter, we fine-tune the global model using each
smartphone dataset. We selected smartphone datasets collected
in three cities of Rome, Tehran, and Stockholm (which have a
larger dataset compared to Oslo and London) to evaluate the
fine-tuning phase.

For instance, when we opt to exclude the Rome dataset from
the FL phase, we divide the Rome dataset into five subsets
based on the smartphones used for data collection: specifically,
Sony Xperia XZ2 Compact, Sony Xperia XZS, Samsung
Galaxy S21, Motorola Nexus 6, and Xiaomi Mi 10. These

4Robust scaling, scales data in a way that is less sensitive to outliers. This
is achieved by using robust statistics, such as the median and interquartile
range [25].

5Z-score scaling, is a technique used to transform data so that it has a mean
of zero and a standard deviation of one. This is achieved by subtracting the
mean of the feature from each data point and then dividing by the standard
deviation of the feature. The resulting data distribution has a mean of zero and
a standard deviation of one, allowing for easier comparison between different
features with different scales [25].

subsets are then referred to as smartphone datasets. Thereafter,
we fine-tune the global model with each smartphone dataset.

As mentioned before, we perform two scenarios for each
experiment. In the first scenario, known as the centralized
scenario we evaluate the performance result of the MLP
model defined in Table II by training this model centrally
with each smartphone dataset. In the second scenario, called
the FTL scenario, we first use the MLP structure presented
in Table II for training the global model (i.e., FL phase).
Then we fine-tune the global model with each smartphone
dataset (TL phase) according to the structure presented in
Table III. Through these two scenarios, we intend to show that
our solution performance outperforms the centralized training
approach while preserving privacy.

1) Experiment 1: Personalized models for Rome smart-
phones: As previously mentioned, from the Rome dataset, we
selected a subset dedicated to specific smartphones. Thereafter,
we conducted tests under both centralized and FTL scenarios.
Table V presents the performance results obtained for various
smartphones in both centralized and FTL scenarios. Each
scenario comprised four trials, with different numbers of
samples ranging from approximately 1 hour (3600 samples)
to 4 hours (14400 samples). We conducted these experiments
with four different trials to accommodate the varying sizes
of each smartphone dataset, ensuring that each trial included
smartphones with at least 4 hours of data collection.

TABLE V: F1 score values for centralized and FTL Scenarios
(Rome dataset)

Smartphone F1 Score

1 hour 2 hours 3 hours 4 hours

Centralized Scenario

Samsung Galaxy S21 0.72 0.75 0.78 0.79
Sony Xperia XZ2 Compact 0.79 0.90 0.92 0.92
Sony Xperia XZS 0.75 0.87 0.91 0.92
Motorola Nexus 6 0.85 0.92 0.95 0.95
Xiaomi Mi 10 0.84 0.90 0.92 0.92

FTL Scenario

Samsung Galaxy S21 0.85 0.87 0.88 0.90
Sony Xperia XZ2 Compact 0.93 0.93 0.96 0.96
Sony Xperia XZS 0.89 0.89 0.94 0.96
Motorola Nexus 6 0.93 0.93 0.96 0.96
Xiaomi Mi 10 0.94 0.94 0.95 0.96

As shown in Table V, F1 scores tend to be higher in
the FTL scenario compared to the centralized scenario for
most smartphones and time durations. This indicates that the
FTL solution outperforms the traditional centralized approach.
The improvement in F1 scores suggests that leveraging local
data and fine-tuning models for personalizing the models
contributes positively to the overall classification performance.
In this table, the Samsung Galaxy S21 tends to have lower
F1 scores compared to other smartphones in both scenarios,
especially in the centralized scenario. This variability could
be attributed to differences in sensor precision, or data quality
among smartphones.



2) Experiment 2: Personalized models for Tehran smart-
phones: Same as experiment 1, we conduct four trials for
centralized and FTL scenarios for the Tehran dataset. Ta-
ble VI presents the performance results obtained for various
smartphones in centralized and FTL scenarios. Similar to
the previous experiment, the F1 scores in the FTL scenario
tend to be higher compared to the centralized scenario for
most smartphones and time durations. This suggests that
exploiting the FTL framework leads to improved classification
performance compared to the centralized approach, consistent
with findings from the previous experiment.

TABLE VI: F1 score values for centralized and FTL Scenarios
(Tehran dataset)

Smartphone F1 Score

1 hour 2 hours 3 hours 4 hours

Centralized Scenario

Samsung Galaxy S21 0.72 0.80 0.84 0.88
Sony Xperia XZ2 Compact 0.86 0.86 0.88 0.90
Sony Xperia XZS 0.88 0.86 0.90 0.95
Motorola Nexus 6 0.86 0.91 0.94 0.95

FTL Scenario

Samsung Galaxy S21 0.92 0.92 0.93 0.95
Sony Xperia XZ2 Compact 0.94 0.95 0.96 0.96
Sony Xperia XZS 0.95 0.97 0.98 0.98
Motorola Nexus 6 0.92 0.92 0.96 0.98

3) Experiment 3: Personalized models for Stockholm smart-
phones: Table VII represents the F1 score values for the
Stockholm dataset repeating the four trials performed in the
previous experiments. Similar to experiments 1 and 2, the
FTL scenario outperforms the centralized scenario consider-
ing the F1 score values. Samsung Galaxy S10 consistently
exhibits the highest F1 scores among all smartphones in both
scenarios, indicating its superior performance in classifying
transport modes. In contrast, F1 score values for the Samsung
Galaxy S21 compared to other smartphones are lower in both
scenarios. Furthermore, Sony Xperia XZS shows a noticeable
improvement in F1 score in the FTL scenario compared
to the centralized scenario. These variabilities highlight the
influence of smartphone characteristics, and sensor quality on
classification performance.

Assessing all the tables presenting the F1 score values for
Rome, Tehran, and Stockholm presented in Tables V, Table VI
and Table VII, suggests that with higher number of samples
on each smartphone, the performance results can improve.
The aforementioned findings underscore the significance of
having a sufficient volume of training data and suggest that the
current F1 score values are heavily dependent on the quantity
of training samples. Furthermore, consistently lower F1 score
values for Samsung Galaxy S21 and higher F1 score values
for Motorola Nexus 6 among the other smartphones in all
the experiments for Rome, Tehran, and Stockholm datasets,
imply the necessity for defining a personalized model for
each smartphone according to the variations in their sensor
precision.

TABLE VII: F1 score values for centralized and FTL Scenar-
ios (Stockholm dataset)

Smartphone F1 Score

1 hour 2 hours 3 hours 4 hours

Centralized Scenario

Samsung Galaxy S21 0.71 0.74 0.75 0.75
Sony Xperia XZ2 Compact 0.81 0.87 0.89 0.89
Sony Xperia XZS 0.74 0.80 0.80 0.84
Motorola Nexus 6 0.85 0.90 0.92 0.92
Samsung Galaxy S10 0.94 0.95 0.96 0.96

FTL Scenario

Samsung Galaxy S21 0.76 0.81 0.81 0.82
Sony Xperia XZ2 Compact 0.87 0.91 0.92 0.93
Sony Xperia XZS 0.88 0.91 0.91 0.91
Motorola Nexus 6 0.86 0.93 0.94 0.96
Samsung Galaxy S10 0.95 0.97 0.97 0.97

To delve deeper into understanding the impact of smart-
phone characteristics and sensor quality on classification per-
formance, we focus our analysis on two specific smartphones
from Experiment 3: Samsung Galaxy S10 and Sony Xperia
XZS. These smartphones are chosen due to their interest-
ing behavior across both centralized and FTL scenarios. In
this analysis, we utilize precision-recall and ROC (Receiver
Operating Characteristic) curves 6. These curves allow us to
evaluate the performance improvements from the centralized
scenario to the FTL scenario for each smartphone, specifically
examining each class individually.

Fig. 2 depicts precision-recall and ROC curves for four
available modes (i.e., walk, train, subway, and bus) in the Sam-
sung Galaxy S10 dataset with 4 hours duration. Unavailable
modes in this dataset are shown with a steady line. As shown
in the figure, there are noticeable improvements in Average
Precision (AP) observed in part (b) compared to part (a) and
in part (d) compared to part (c). Additionally, AUROC values
in part (d) are closer to 1 for most transport modes compared
to part (c), exhibiting enhanced discriminative power in the
FTL scenario.

Fig. 3 depicts precision-recall and ROC curves for five
available modes (i.e., walk, train, tram, subway, and bus) in
the dataset of Sony Xperia XZS with 4 hours duration. The
unavailable mode of the car modality is shown with a steady
line in this figure. A comparison between parts (a) and (b)
in this figure, reveals a notable increase in AP for the train
modality by 6%. Additionally, there is a 5% increase in AP
values across the walk, subway, and bus modalities from the
centralized scenario to the FTL scenario. Furthermore, the

6Precision-recall curves demonstrate a model’s ability to maintain high
precision and recall, especially useful in datasets with imbalanced classes.
The Receiver Operating Characteristic (ROC) curves highlight the balance
between true positive and false positive rates, providing key performance
insights. The Area Under the Precision-Recall Curve (AUPR) and the Area
Under the Receiver Operating Characteristic (AUROC) quantitatively assess
these aspects, respectively. A high AUPR (close to 1) indicates effective
identification of positive instances with minimal false positives, while a high
AUROC (close to 1) suggests strong differentiation between positive and
negative instances. .



(a) Precision-recall curves for centralized scenario (b) Precision-recall curves for FTL scenario

(c) ROC curves for centralized scenario (d) ROC curves for FLT scenario

Fig. 2: Experiment 3, Trial 4 hours: Precision-recall and ROC curves of centralized and FTL scenarios for Samsung Galaxy
S10

comparison between part (a) and part (b) demonstrates higher
AUPR values across all transport modes. Similarly, in part (d),
AUROC values are closer to 1 compared to part (c), indicating
the superiority of the FTL scenario to the centralized scenario
in distinguishing between different transport modes.

The performance improvements are particularly noticeable
when the dataset duration is restricted to 1 hour, as shown in
Fig. 4. This figure depicts precision-recall and ROC curves for
five available modes (i.e., walk, train, tram, subway, and bus)
in the dataset of Sony Xperia XZS with a 1-hour duration. In
this figure, we specifically observe a 13% increase in AP for
the tram and subway modalities when comparing part (a) to
part (b). This highlights the effectiveness of the FTL solution,

which can quickly personalize models for new smartphones
across diverse locations, even with a small amount of training
data, given the precision of smartphone sensors.

V. CONCLUSION

In this work, we presented FOGFLEET relying on a novel
FTL solution that efficiently adapts an MLP model to new
cities for TMD while leveraging the diverse data available
from multiple smartphones. We deployed our FTL solution
with a fog-based architecture, exploiting the fog nodes as the
federated learning clients. In this way, we not only preserve the
user’s privacy (city-wide) but also achieve better performance
results than a centralized scenario. By fine-tuning a global



(a) Precision-recall curves for centralized scenario (b) Precision-recall curves for FTL scenario

(c) ROC curves for centralized scenario (d) ROC curves for FLT scenario

Fig. 3: Experiment 3, Trial 4 hours: Precision-recall and ROC curves of centralized and FTL scenarios for Sony Xperia XZS

model with data from individual smartphones in a new city, we
demonstrated significant improvements in model performance,
even with limited training data (e.g., 1 hour). Depending on the
smartphone sensor precision, data quality, and time duration
our solution obtained a minimum of 1% and a maximum of
20% higher F1 score values when comparing it to a centralized
scenario. Our solution not only accommodates the varying
characteristics of transport modes across different cities but
also highlights the effectiveness of personalized models in
achieving high accuracy. This emphasizes the potential of our
FTL solution for rapidly deploying accurate TMD systems in
new locations, eventually contributing to more adaptive and
privacy-preserving TMD systems.

VI. ACKNOWLEDGEMENT

This work was partly supported by the Norwegian Research
Council under Grants 262854/F20 (DILUTE project) and
322473 (AirQMan project).

REFERENCES

[1] M. Kamalian, and P. Ferreira, and A. Taherkordi TMDetector
Sample Datasets from Oslo, Rome, Tehran, Stockholm, Github
https://github.com/mahdieh-ka/TMDetector-sample-data

[2] Huang, Qihan and Zhang, Jing and Zeng, Zuanyang and He, Ding and
Ye, Xiucai and Chen, Yi PPDF-FedTMI: A Federated Learning-based
Transport Mode Inference Model with Privacy-Preserving Data Fusion,
Simulation Modelling Practice and Theory, vol. 129, p. 102845, 2023,
Elsevier.



(a) Precision-recall curves for centralized scenario (b) Precision-recall curves for FTL scenario

(c) ROC curves for centralized scenario (d) ROC curves for FLT scenario

Fig. 4: Experiment 3, Trial 1 hour: Precision-recall and ROC curves of centralized and FTL scenarios for Sony Xperia XZS

[3] Wang, Lin and Gjoreski, Hristijan and Ciliberto, Mathias and Lago,
Paula and Murao, Kazuya and Okita, Tsuyoshi and Roggen, Daniel,
Summary of SHL challenge 2023: Recognizing locomotion and trans-
portation mode from GPS and motion sensors, Adjunct Proceedings
of the 2023 ACM International Joint Conference on Pervasive and
Ubiquitous Computing & the 2023 ACM International Symposium on
Wearable Computing, 575–585, 2023.

[4] eFedDNN: Ensemble based federated deep neural networks for trajec-
tory mode inference, Mensah, Daniel Opoku and Badu-Marfo, Godwin
and Al Mallah, Ranwa and Farooq, Bilal, 2022 IEEE International
Smart Cities Conference (ISC2), pp. 1–7, 2022, IEEE

[5] M. Kamalian and P. Ferreira, “FogTMDetector-Fog Based Transport
Mode Detection using Smartphones,” in 2022 IEEE 6th International
Conference on Fog and Edge Computing (ICFEC), pp. 9–16, 2022,
IEEE.

[6] M. Oplenskedal, A. Taherkordi, and P. Herrmann DeepMatch: deep
matching for in-vehicle presence detection in transportation, Proceed-
ings of the 14th ACM International Conference on Distributed and
Event-Based Systems (DEBS 2020), Montreal, Quebec, Canada, 2020.

[7] M. A. Fauzi, B. Yang, and B. Blobel, “Comparative analysis between
individual, centralized, and federated learning for smartwatch based
stress detection,” Journal of Personalized Medicine, vol. 12, no. 10, pp.
1584, 2022, MDPI.

[8] F. Yu, Z. Xu, Z. Qin, and X. Chen, “Privacy-preserving federated
learning for transportation mode prediction based on personal mobility
data,” High-Confidence Computing, vol. 2, no. 4, pp. 100082, 2022,
Elsevier.

[9] I. C. Cavalcante, R. I. Meneguette, R. H. Torres, L. Y. Mano, V. P.
Gonçalves, J. Ueyama, G. Pessin, G. D. Amvame Nze, and G. P. Rocha
Filho, “Federated system for transport mode detection,” Energies, vol.
15, no. 23, pp. 9256, 2022, MDPI.

[10] P. Ferreira, C. Zavgorodnii, and L. Veiga, “edgeTrans-Edge transport
mode detection,” Pervasive and Mobile Computing, vol. 69, p. 101268,
2020, Elsevier.

[11] Wang, Sixian and Yao, Shengshi and Niu, Kai and Dong, Chao and Qin,
Cheng and Zhuang, Hongcheng, Intelligent Scene Recognition Based on
Deep Learning, vol. 9, pp. 24984–24993, IEEE Access, 2021, IEEE.

[12] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated



learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.
[13] Mahdieh Kamalian, Paulo Ferreira, Eric Jul, A survey on local transport

mode detection on the edge of the network, Applied Intelligence, vol.
52, no. 14, pp. 16021-16050, 2022, Springer.

[14] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, and F. Piccialli, “Model
aggregation techniques in federated learning: A comprehensive survey,”
Future Generation Computer Systems, 2023, Elsevier.

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, pp. 1273–1282, PMLR,
2017.

[16] Alessio D Marra, Henrik Becker, Kay W Axhausen, Francesco Corman,
Developing a passive GPS tracking system to study long-term travel
behavior, Transportation Research Part C: Emerging Technologies, vol.
104, pp. 348-368, 2019, Elsevier.

[17] Bryan D. Martin, Vittorio Addona, Julian Wolfson, Gediminas Ado-
mavicius, Yingling Fan, Methods for Real-Time Prediction of the
Mode of Travel Using Smartphone-Based GPS and Accelerometer
Data, Sensors, vol. 17, no. 9, article number: 2058, 2017, URL:
http://www.mdpi.com/1424-8220/17/9/2058, ISSN: 1424-8220, DOI:
10.3390/s17092058.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] L. Wang, H. Gjoreski, M. Ciliberto, S. Mekki, S. Valentin, and D.
Roggen, “Enabling reproducible research in sensor-based transportation
mode recognition with the Sussex-Huawei dataset,” IEEE Access, vol.
7, pp. 10870–10891, 2019, IEEE, doi: 10.1109/ACCESS.2019.2890793.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016, http://www.deeplearningbook.org.

[21] T. Dozat, “Incorporating Nesterov momentum into Adam,” Dozat,
Timothy, 2016.

[22] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão, et
al., “Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

[23] K.-Y. Chen, R. C. Shah, J. Huang, and L. Nachman, “Mago: Mode of
transport inference using the hall-effect magnetic sensor and accelerom-
eter,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 2, pp. 1–23, 2017, ACM New York,
NY, USA.

[24] Kashif Naseer Qureshi, Abdul Hanan Abdullah, A survey on intelligent
transportation systems, Middle-East Journal of Scientific Research, vol.
15, no. 5, pp. 629-642, 2013.

[25] M. Kuhn and K. Johnson, Applied Predictive Modeling, vol. 26,
Springer, 2013.


