
Use All Your Skills, Not Only The Most Popular Ones

Francesco Lorenzo1,2, Sahar Asadi1, Alice Karnsund1, Lele Cao1, Tianze Wang2, Amir H. Payberah2
1King Digital Entertainment, Sweden

2KTH Royal Institute of Technology, Sweden
1{francesco.lorenzo,sahar.asadi,alice.karnsund,lele.cao}@king.com 2{tianzew,payberah}@kth.se

Abstract—Reinforcement Learning (RL) has shown promising
results across various domains. However, applying it to develop
gameplaying agents is challenging due to sparsity of extrinsic
rewards, where agents get rewards from the environments only
at the end of game levels. Previous works have shown that using
intrinsic rewards is an effective way to deal with such cases.
Intrinsic rewards allow to incorporate basic skills in agent policies
to better generalize over various game levels. In a gameplay, it
is common that certain actions (skills) are observed more often
than others, which leads to a biased selection of actions. This
problem boils down to a normalization issue in formulating the
skill-based reward function. In this paper, we propose a novel
solution to this problem by taking into account the frequency
of all skills in the reward function. We show that our method
improves the performance of agents by enabling them to select
effective skills up to 2.5 times more frequently than that of the
state-of-the-art in the context of the match-3 game Candy Crush
Friends Saga.

Index Terms—Reinforcement Learning, Deep Q-Network, In-
trinsic Rewards, Skill-based Rewards, Candy Crush Friends
Saga.

I. INTRODUCTION

Reinforcement Learning (RL) is a promising approach that
enables game developers to overcome many challenges in
testing and releasing new contents. For example, Ariyurek et
al. in [1] use RL agents to discover bugs in different games,
and Borovikov et al. [2], [3] propose a learning and planning
framework to develop agents for testing new games.

However, developing RL agents for match-3 games, such
as Candy Crush Friends Saga (CCFS)1, poses a number
of challenges. Firstly, these games present more stochastic
transitions compared to popular benchmarks like the Arcade
Learning Environment (ALE) [4]. This makes the learning
process slower and less suited for sparse rewards, where
agents get the rewards (either positive or negative) only at
the end of each level. Secondly, unlike most games in the
ALE, match-3 games present multiple levels, each one with
a different topology and objective to complete in order to
win. Therefore, due to lack of generalization, most of the
existing RL solutions, in which agents are trained and tested
on the same environment, fail to replicate the same level of
performance in new environments with different levels and
variations [5].

Karnsund [6] and Fischer [7] tackle the problem of sparsity
by defining dense reward functions that progressively reward

1https://king.com/game/candycrushfriends

agents the more they get closer to achieving the objective of
a level. However, they show that such goal oriented rewards
can lead to a poor performance, where, in order to win, agents
should first prioritize some other sub-goals before focusing on
completing the objective of a level. To address the challenge
of generalization, Shin et al. [8] propose to use the concept
of strategies to teach agents more versatile behaviours that
work across levels. Strategies refer to common salient play-
styles recognized from human play, and in each strategy a
set of skills is utilized to reach the goal. Nevertheless, they
achieve this by manually defining strategies through heuristics,
introducing human bias and limiting the capabilities of agents.

To overcome the two aforementioned problems we propose
a solution that enables agents to learn a set of skills to pursue
different strategies. Although these skills should be effective,
they may be independent of the objective of game levels.
Therefore, instead of defining the skills through heuristics, we
use RL to learn them, relying on intrinsic rewards, where an
agent rewards itself for completing sub-goals (e.g., performing
skills) that can be different from the goal of the environment.

Designing a function that rewards agents for performing
multiple different skills, whilst being simple enough to avoid
skill bias, is problematic. Theoretically, the total reward given
for completing any strategy should be the same to ensure that
agents do not exploit only the ones that are easier to pursue.
This is possible if we know the maximum number of times a
skill can be used in each strategy in advance. For instance, if
the strategy is to destroy all elements of a specific type, then
if we knew how many of those elements are available at most
in a level, we could easily normalize the rewards by dividing
by the total. However, for many skills like creating a specific
element on a game board, this can not be reliably predicted
in advance, hence, we can not distribute the reward uniformly
among the skills.

To resolve this challenge, Justesen et al. [9] propose to
weigh skills inversely proportional to their frequency of occur-
rence. Therefore, the skills that are used less frequently will get
an equal amount of rewards. However, in environments where
skills are used in very different frequencies, this approach can
generate rewards on a scale of multiple orders of magnitude,
making training unstable and difficult to scale across different
levels [10].

In this work, we propose a method that, unlike [9], takes into
account the proportion of occurrence of each skill with respect
to all the others to constrain the weight given to each of them
in the reward function. This makes the rewards less affected

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

by the order of magnitude of the frequencies. We conduct a
set of experiments on CCFS that presents unbalanced skill
frequencies, and show that our method enables agents to use
effective skills up to 2.5 times more frequently than the one
presented in [9]. Moreover, we show that our agents, which
are only trained using intrinsic rewards without being aware
of the objective of a level, achieve a win rate comparable to
that of agents trained on achieving the goal of a level.

II. PRELIMINARIES

CCFS is a match-3 game characterized by a 9×9 board filled
with colored candies. The basic action in the game, called
match, consists of swapping the place of two candies such
that three or more of the same color are aligned horizontally
or vertically after the swap. These are then eliminated from
the board, and replaced by other candies generated randomly.
If more than three candies of the same color are matched, a
special candy is created according to the number of involved
candies in the match. There are six types of special candies2

with different effects.
Overall there are five different objectives3 in the game, and

each level is associated with one of them. Players win a level
if they reach its objective within the level specific move limits.
In this paper, we consider spread the jam as the objective of
the game that requires players to cover the entire board with
jam. The jam is initially present in only a few tiles, and is
spread by making matches involving tiles that already have
it. Special candies allow spreading the jam more easily, since
they affect multiple candies at the same time.

The environment in our study is episodic, where each
episode corresponds to a full gameplay on a level. The state
space of the environment consists of a three-dimensional
representation of the board (i.e., 9× 9× 32), where the third
dimension is a one-hot encoding of any of the 32 different
elements available in the levels we use here, each associated
to a binary layer [11]. Inspired by [11], we define an action
as a swapping between any two cells on the game board. If
we uniquely index the edges between the tiles as the labels of
the actions, then for a 9× 9 board, the action space consists
of 144 actions.

As the baseline reward, we consider progressive jam [6],
which is an extrinsic reward, i.e., it is given by the environment
to agents. The reward R for taking an action at in a state st
at episode t is defined as:

R(st, at) =
{

J
B , ∆j > 0

0, ∆j = 0
(1)

where B is the size of the board (i.e., 9× 9), while J and ∆j
denote the total number of tiles, and the number of new tiles
covered by jam after the action at, respectively.

III. METHODOLOGY

Creating special candies is one of the most effective strate-
gies to win a level, independently of the objective of the level.

2https://candycrushfriends.fandom.com/wiki/Special Candy
3https://candycrushfriends.fandom.com/wiki/Levels

In this work, we identify the action of creating special candies
as a skill, and define a set of six skills X = {x1, x2, · · · , x6},
each representing the creation of one of the six special candies.
Our goal is to train an RL agent to use these skills more
frequently. Some special candies are easier to create than the
others. For instance, a special candy like a fish, which is
created by matching four candies in a squared shape, is easier
to create than a coloring candy, which requires at least six
candies involved. This unbalance prevents us from rewarding
agents with the number of special candies they create, because
agents, then, would focus on creating the simpler ones, which
in turn have weaker effects.

To tackle this issue, we propose a solution inspired by the
Rarity of Events (RoE) method [9]. RoE consists of a reward
function where skills, referred to as events, are weighted based
on the inverse of their frequency of occurrence. Thus, the skills
that are used less frequently are rewarded more. In formulas:

R(st, at) =
∑
x∈X

c
(x)
t ×

 1

max
(
τ, µ

(x)
t

)
 , (2)

x is the skill (i.e., creating one type of special candy), µ(x)
t is

the mean episodic frequency of skill x at episode t, which is
the average of using x over the last k episodes, where k is a
hyperparameter, c(x)

t is the number of special candies of type
x created by at, and τ is a hyperparameter that represents
the initial value of the frequency of each skill, used when
no previous data is available (cold start problem), and also
identifies the scale of the weights by setting a higher bound.

The idea of Equation 2 is to reward agents for exploring new
parts of the environments, giving smaller rewards to skills that
have already been observed. Even though RoE is designed to
have an expected cumulative reward for each skill of one, if
the mean episodic frequency of a skill is smaller than one, its
weight, and thus immediate reward, will be higher than one.
In fact, if the environment presents some skills that are seldom
used in the last k episodes, their mean episodic frequency will
be smaller than one, which leads to rewards with potentially
different orders of magnitude, making gradient updates highly
unstable.

We propose to normalize the reward function by taking into
account the proportion of occurrence of a skill with respect
to all the others, such that the weights will always be smaller
than one. Using the same notation of Equation 2, we define
the reward function as:

R(st, at) =
∑
x∈X

c
(x)
t ×

(
1− µ

(x)
t∑

x′∈X µ
(x′)
t

)
. (3)

As in RoE, our method, called Balanced Rarity of Events (B-
RoE), does not reward agents for winning a level or spreading
jam, but it does so for using novel skills. However, unlike
RoE, B-RoE does not suffer from the cold start problem, as
all weights are initially set to one. Moreover, it does not require
an hyperparameter like τ , as the upper bound for the weights
is one. Finally, B-RoE is robust in environments with very
unbalanced skills, as the frequency is taken in relative terms.

IV. EXPERIMENTS

We compare the performance of B-RoE to two benchmarks:
an agent trained (i) using the extrinsic reward (i.e., progressive
jam), and (ii) using standard RoE. In the experiments, we
use three levels in the training set, called A, B and C 4, and
three levels in the test set, called X, Y and Z. For each agent
and training level pair, we run three training trials for 80K
episodes each, and test them for 10K episodes on the test
levels. Then, we average the results of the trials to account for
the variance in the game. Each trial uses a different random
seed value in the libraries adopted. Due to the lack of space,
we only show the graphs of the training performances for level
A, but we report the results of each agent for all the test levels,
aggregated over the three training levels and the three trials.

We define three metrics to evaluate the models: (i) Win rate:
the total number of wins over the number of test episodes 5,
(ii) Match-3 probability: the probability that an action does not
create any special candies to summarize the overall progress in
learning the skills, and (iii) Creation probability: the probabil-
ity that an action creates a specific special candy. To measure
it, we track the frequency of using each skill as the number
of times it is used in an episode normalized by the number of
steps in that episode. We report the aggregated value for all
special candies together.

Without loss of generality, in our implementation we use
vanilla Deep Q-Network (DQN) [10] as the learning algorithm
for all the agents. However, our method can be easily applied
to any other RL algorithms. We adopt the DQN hyperparam-
eters from [10]. The discount factor, the exploration rate, and
the number of update steps for the prediction network are taken
from [6] that performs the hyperparameter search using CCFS
as the environment. In our experiments, the mean episodic
frequency µ

(x)
t is estimated using a running mean over the

last 500 episodes, i.e., k = 500.
In the rest of this section, we first show the skill proficiency,

by illustrating the proficiency of models in using the intrinsic
skills (i.e., creating special candies), and then present the
gameplay performance, to show the performance of models
on the overall game objective (i.e., spreading the jam).

A. Skill Proficiency

We first measure the overall proficiency of each model in
creating special candies. Figure 1 shows the training perfor-
mances of each model on level A for the match-3 action
(Figure 1a), and every type of special candy (Figures 1b-1g).
The special candies in Figure 1 are ordered according to the
difficulty of the creation from left (the easiest) to the right
(the most difficult). The agent trained with progressive jam
(portrayed in orange) does not show any learning progress, and
presents flat curves for all the special candies. In particular,
it has the highest match-3 probability at 85% (Figure 1a),
meaning that overall it is the model that uses the skills less
frequently. The agent trained with RoE (portrayed in red)

4The level names are masked for legal reasons.
5For legal reasons, the reported win rate is a function of the true one.

Level
Reward

type
Win Rate

Match-3
prob. (%)

Creation
prob. (%)

Avg StDev Avg StDev Avg StDev

X
Extrinsic 9.43 0.99 79.89 0.84 2.15 0.2

RoE 5.19 1.05 80.96 2.70 3.52 0.61
B-RoE 10.64 2.22 57.27 6.01 7.73 0.83

Y
Extrinsic 0.38 0.18 84.99 1 1.79 0.2

RoE 0.08 0.03 85.33 1.53 2.73 0.3
B-RoE 0.4 0.19 69.62 4.9 5.74 0.77

Z
Extrinsic 0.01 0.001 83.79 0.42 1.79 0.01

RoE 0 0 83.33 1.15 2.58 0.14
B-RoE 0.02 0.001 61.44 16.17 6.71 2.46

TABLE I: Win rate, aggregated match-3 probability and creation
probability on the test set for all models.

shows a slow learning curve for all special candies, and a
match-3 probability settling around 73%. The agent trained
with B-RoE (portrayed in blue) has a clear edge in creating all
special candies, only having comparable performances to RoE
on the coloring and wrapped candies, which are the hardest to
create. Most importantly, at the end of the training, it presents
a match-3 probability of 53%, meaning that the agent creates
a special candy on average every other action.

The results on the test levels are reported in Table I.
Similarly to the training levels, B-RoE performs better than
the two other models. On all levels, the creation probability
of B-RoE is respectively twice as high as RoE, and three times
as high as the extrinsic reward agent. This result is even more
clear by looking at the match-3 probability that confirms B-
RoE is more suited for this kind of environment, independently
of the level where the models are trained and the one where
they are tested.

B. Gameplay Performance

Here, we evaluate the performance of the models on the
overall win rates. Figure 2a shows the training performance
of each model on level A. The agent trained with the extrinsic
reward (orange) converges within 10K episodes, and presents
the highest win rate. The agent trained with RoE (red) has a
slower learning process, converging after 50K episodes, and
shows a much lower win rate than the extrinsic one. The agent
trained with B-RoE (blue) presents a learning curve that is not
converged after the training process, and reaches the same win
rate of the extrinsic agent, despite having a very different play-
style. In fact, B-RoE never rewards the agent for spreading the
jam on the board, but the result of creating and using more
special candies is that the final amount of jam spread is the
same, as depicted in Figure 2b. This shows that there is a
high correlation between special candies and game objectives,
which is also confirmed by the level designers at King.

The results on the test levels are reported in Table I. On
level X, which is the easiest among the three, the difference
in performance is similar to the one seen on level A, with
B-RoE performing slightly better than the extrinsic agent this
time, and RoE clearly being far off. On the harder test levels,
like Y and Z, standard RoE struggles much more, while B-
RoE and the extrinsic agent show comparable performances,
with the former still better than the latter.

Fig. 1: Skill proficiency for extrinsic reward (orange), RoE (red), and B-RoE (blue), order by difficulty of creation.

(a) Average win rate. (b) Jam spread ratio.

Fig. 2: Gameplay performance comparison: (a) the win rate averaged
over a window of 100 game episodes, and (b) the game objective –
jam spread ratio.

V. DISCUSSION AND PERSPECTIVES

The main idea presented in this paper is that, in order for
RL agents to generalize over a variety of levels with different
objectives and game features, they should first master basic
skills that can be used in different higher level tasks. To this
end, we propose B-RoE, as a solution to normalize intrinsic
reward functions by taking into account the frequency of all
the skills of interest. We examined this on a match-3 game
CCFS, and empirically show that B-RoE learns the defined
skills better than agents trained with either RoE, or extrinsic
rewards. Moreover, our results indicate a higher win rate when
agents are trained using B-RoE.

The research presented in this paper is a work in progress
and it has some limitations. Starting from the experimental
setup, although we observed a consistent trend in our re-
sults, our model clearly requires more than 80K episodes
to converge. Here, we averaged the results of each model
over only three trials. We will extend this to more trials to
better account for the high variance in the training process and
game dynamics. Moreover, in our early analysis, we used a
training set of only three levels, in which we trained the models
separately. As a next step we will train the models on data
from more levels, following the approaches presented in [5].
In addition, currently, CCFS consists of more than 3K levels,
including several different game elements and objectives, and
our results do not generalize to all of them.

In this work, we mainly focused on only one objective (i.e.,
spreading the jam), but the correlation between special candies
and the win rate may vary when using levels with the other
objectives available in the game. Moreover, we presented our
early results for only a subset of basic skills, related to creating

special candies. However, we need to conduct experiments
with other relevant skills, such as killing blockers, which are
another important game feature in CCFS. We will also need
to explore hybrid RL architectures that allow agents to choose
the best skill given the gameplay state, similar to human play.

We also need to investigate the impact of different hyper-
parameters on the performance of the models. The discount
factor is especially important, as B-RoE is trying to learn
relations between the moves and the candies created, so lower
values might turn out to be better in this case. The number
of episodes considered for calculating the mean episodic
frequency is also important, and we need to study its impact
when we calculate it over all the episodes from the start
to one where we use a finite number of newer episodes.
Moreover, the models may show different performances with
different learning algorithms. For example, the original RoE
approach [9] uses A2C instead of DQN, so both policy-based
methods and on-policy ones are interesting paths to explore.

REFERENCES

[1] S. Ariyurek et al., “Automated video game testing using synthetic and
human-like agents,” IEEE Transactions on Games, 2019.

[2] I. Borovikov at al., “Towards interactive training of non-player characters
in video games,” arXiv preprint arXiv:1906.00535, 2019.

[3] I. Borovikov et al., “Winning isn’t everything: Training agents to playtest
modern games,” in AAAI Workshop on Reinforcement Learning in
Games, 2019.

[4] M. Bellemare et al., “The arcade learning environment: An evaluation
platform for general agents,” Journal of Artificial Intelligence Research,
vol. 47, pp. 253–279, 2013.

[5] K. Cobbe et al., “Quantifying generalization in reinforcement learning,”
in International Conference on Machine Learning (ICML), 2019, pp.
1282–1289.

[6] A. Karnsund, “DQN tackling the game of candy crush friends saga: A
reinforcement learning approach,” Master’s thesis, KTH Royal Institute
of Technology, 2019.

[7] M. Fischer, “Using reinforcement learning for games with nondeter-
ministic state transitions,” Master’s thesis, KTH Royal Institute of
Technology, 2019.

[8] Y. Shin et al., “Playtesting in match 3 game using strategic plays via
reinforcement learning,” IEEE Access, vol. 8, pp. 51 593–51 600, 2020.

[9] N. Justesen et al., “Automated curriculum learning by rewarding tem-
porally rare events,” in Conference on Computational Intelligence and
Games (CIG). IEEE, 2018, pp. 1–8.

[10] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[11] S. Gudmundsson et al., “Human-like playtesting with deep learning,” in
Conference on Computational Intelligence and Games (CIG). IEEE,
2018, pp. 1–8.

