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Abstract

Peer-to-Peer (P2P) live video streaming over the Inter-

net is becoming increasingly popular, but it is still plagued

by problems of high playback latency and intermittent play-

back streams. This paper presents GLive, a distributed

market-based solution that builds a mesh overlay for P2P

live streaming. The mesh overlay is constructed such that (i)

nodes with increasing upload bandwidth are located closer

to the media source, and (ii) nodes with similar upload

bandwidth become neighbours. We introduce a market-

based approach that matches nodes willing and able to

share the stream with one another. However, market-based

approaches converge slowly on random overlay networks,

and we improve the rate of convergence by adapting our

market-based algorithm to exploit the clustering of nodes

with similar upload bandwidths in our mesh overlay. We

address the problem of free-riding through nodes preferen-

tially uploading more of the stream to the best uploaders.

We compare GLive with our previous tree-based stream-

ing protocol, Sepidar, and NewCoolstreaming in simulation,

and our results show significantly improved playback conti-

nuity and playback latency.

1 Introduction

Media streaming over Internet is becoming increasingly

popular. Currently, most media is delivered using global

content-delivery networks, providing a scalable and robust

client-server model. For example, Youtube handle more

than one billion hits per day1. However, content delivery

infrastructures have very high cost, and an approach to re-

duce the cost of media delivery is to use peer-to-peer (P2P)

overlay networks, where nodes share responsibility for de-

livering the media to one another.

1http://www.thetechherald.com/article.php/200942/4604/YouTube-s-

daily-hit-rate-more-than-a-billion

Figure 1. The mesh overlay with different lay-
ers of the nodes (for legibility, the links be-
tween nodes are not shown). The nodes in

each layer have similar upload bandwidth.
The darker the node is, the higher upload

bandwidth it has. The media source is lo-
cated at the center of the overlay.

Live media streaming using overlay networks is a chal-

lenging problem. Nodes should receive the stream with

minimal delay over a best-effort network with varying band-

width capacity, while adapting to other nodes joining, leav-

ing and failing. From a system perspective, the overlay

network should continuously optimize its structure to mini-

mize the playback latency and maximize the timely delivery

of the stream, by adapting to system and network dynam-

ics. Furthermore, nodes should be intentivized to contribute

and share their resources, through improved relative perfor-

mance.

In this paper, we present GLive, a P2P streaming overlay

network that uses both the Gradient overlay network and

a distributed market mechanism to adaptively optimize its

topology to minimize playback latency and maximize the

timely delivery of the stream. The Gradient overlay network

constructs a topology where (i) nodes with higher available

upload bandwidth are positioned closer to the media source,

and (ii) nodes with similar upload bandwidth become neigh-

bours, producing logical layers (see Figure 1). As nodes



with relatively higher upload bandwidth can forward more

copies of the stream to more nodes, positioning them closer

to the media source will reduce the average number of hops

from nodes to the media source, reducing both the probabil-

ity of streaming disruptions and playback latency at nodes.

Nodes are also incentivized to provide relatively more up-

load bandwidth, as nodes that contribute more upload band-

width will have relatively higher playback continuity and

lower latency than the nodes in lower layers.

In GLive, we divide the media stream into a sequence of

blocks, and each node pulls the blocks of the stream from

a set of nodes called parents. Nodes use a distributed mar-

ket model, first introduced in [16], to choose parents from

among the nodes in the system. A major problem with

market-based approaches that select parents from random

nodes is that they exhibit slow convergence properties. We

improve the speed of convergence by nodes selecting from

a small number of neighbouring nodes with similar upload

bandwidth, i.e., a node either in its layer or in a layer closer

to the media source (see Figure 1). The gossip-generated

Gradient overlay network [19, 20] is used to enable nodes

to sample neighbours with similar upload bandwidth, and,

thus, it acts as a market-maker for our market model.

We evaluate GLive by comparing its performance with

Sepidar [17] and the state-of-the-art NewCoolstreaming [8].

We show in simulation that GLive provides better play-

back continuity and lower playback latency than these sys-

tems under churn, flash-crowd, and massive-failure scenar-

ios. We also evaluate the performance of GLive and Sepidar

when a high percentage of nodes are free-riders. Finally,

we evaluate the convergence of our market model when the

node samples are taken from the Gradient overlay compared

to a random overlay.

Our work is an extension of our previous work on

multiple-tree live streaming [17, 16], and the contributions

of this paper include:

• GLive, a distributed market-based solution to create a

mesh overlay for P2P live media streaming,

• how mesh-based streaming outperforms multiple-tree

streaming through comparing GLive and Sepidar [17],

• how the Gradient overlay can improve the convergence

time of a mesh overlay in comparison with a random

network,

• a scoring model to solve the free-rider problem in

mesh overlays.

2 Related work

Many different overlay network topologies have been

used for data delivery in P2P media streaming systems,

but the two most widely used approaches are multiple-tree

[16, 3, 13, 17] and mesh-based overlays [8, 6, 5]. Multiple-

tree overlay networks use push-based content delivery over

multiple tree-shaped overlays with the media source as a

root of all trees. While multiple-tree overlay networks have

the advantage of low latency data delivery, they are vulnera-

ble to the failure of interior nodes. Rajaee et al. have shown

in [10] that mesh overlays have consistently better perfor-

mance than tree-based approaches for scenarios where there

is node churn and packet loss.

Mesh-based approaches use swarming content deliv-

ery over a typically random overlay network. In mesh-

based overlays, unlike tree-based structures that data is

pushed through the tree, nodes pull data from their neigh-

bours in the mesh. The mesh structure is highly resilient

to node failures, but it is subject to unpredictable laten-

cies due to the frequent exchange of notifications and re-

quests [26]. Gossip++ [6], NewCoolStreaming [8], Chain-

saw [14], and PULSE [18] are the systems that use random

overlay meshes for data dissemination. Recently, there has

been work on using gossiping to build non-random mesh

topologies, where the topology stores implicit information

about node characteristics, such as upload bandwidth. In

[5], Fortuna et al. attempt to organize nodes with decreasing

upload bandwidth at increasing distance from the source.

As such, these systems have similarities with how GLive

uses the Gradient overlay to structure nodes. However,

GLive also uses a market model to optimize its partners for

media streaming.

The problem of reducing free-riding in P2P systems has

been solved by many existing incentive mechanisms and

reputation models [13, 21, 11]. Of particular relevance to

GLive are Give-to-Get [12] and Sepidar [17] that use tran-

sitive dependencies to a child’s children in order to audit

children nodes. In contrast, GLive uses a scoring mecha-

nism to identify free-riders.

Our market model is an example of a distributed auc-

tion algorithm with partial information. Our model differs

from existing work, such as [27] amd [15], in that all nodes

are decision makers, the set of tasks and resources are ho-

mogeneous and auctions are restartable. Finally, our block

selection strategy is similar to BiTOS for video-on-demand

[23].

3 Problem description

We assume a network of nodes that communicate

through message passing. New nodes may join the network

at any time to watch the video. Existing nodes may leave

the system either voluntarily or by crashing. The video is

divided into a set of B blocks of equal size without any

coding. Every block bi ∈ B has a sequence number to rep-

resent its playback order in the stream. Nodes can pull any



block independently from any other node that can supply it.

Each node has a partner list, a view of a small sub-

set of nodes in the system. A node can create a bounded

number of download connections to partners and accept a

bounded number of upload connections from partners over

which blocks are downloaded and uploaded, respectively.

We define a node q as the parent of the child node p, if

an upload connection of q is bound to a download connec-

tion of p. Children nodes continuously attempt to improve

their download connections by changing to parents that are

both closer to the media source and able to deliver blocks on

time. Parents, who can accept or reject connection attempts,

prefer children who have forwarded the most blocks within

a recent time window. The result of these preference func-

tions is that nodes who forward more blocks on time have

shorter paths to the media source.

Nodes store a list of blocks that are available for down-

load in a buffer map. Nodes periodically send their buffer

map to their children (via their upload connections) to ad-

vertise their available blocks. Children can then pull any

blocks they require from the node. As such, advertisements

are not random, but rather are directed away from the source

and down the gradient.

For each block, we now represent the problem of finding

the best mapping of upload connections to download con-

nections as an assignment problem [22]. We define the set

of all download and upload connections asD andU , respec-

tively. In order to receive the block, a node requires one of

its download connection needs to be assigned to an upload

connection over which the block will be copied. We define

an assignment or a mapping mijk, from a node i to a node

j for block bk, as a triplet containing one upload connection

at i and one download connection at j for block bk:

mijk = (ui, dj , bk) : u ∈ U, d ∈ D, b ∈ B, i, j ∈ N, i 6= j

(1)

where N is the set of all nodes, bk is block k from the

set of all blocks B, and the connection from i to j is be-

tween two different nodes. A cost function is defined for a

mapping mijk as the minimum distance from node i to the

media source in terms of numbers of hops, that is,

c(mijk) : mijk → number of hops from i to source.

(2)

We define a complete assignment A for a block b as a

set of mappings, where, there exists at least one download

connection at every node that is assigned to an upload con-

nection over which b is downloaded. That is, for a block

b, each node has a download connection over which it can

pull the block before the block expires. The total cost of a

complete assignment is calculated as follows:

c(A) =
∑

m∈A

c (m) (3)

The goal of our system is to minimize the cost function in

equation 3 for every block b ∈ B, such that a shortest path

tree is constructed over the set of available connections for

every block.

If the set of nodes, connections, and the upload band-

width of all nodes is static for all blocks B, then we can

solve the same assignment problem | B | times. However,

P2P systems, typically have churn (nodes join and fail) and

available bandwidth at nodes changes over time, so we have

to solve a slightly different assignment problem every time

a node join, exits or a node’s bandwidth changes.

Centralized solutions, such as the auction algorithm [2],

are possible in principle, where nodes bid to connect their

download connections to better upload connections using

the amount of blocks they forward as currency. How-

ever, nodes that offer upload connections may not deliver

a block over a connection in time. As such, the problem

can be viewed as a restartable auction, where the auction is

restarted because a bidder did not have sufficient funds to

complete the transaction. But, in general, it is not feasible

to use centralized solutions in large and dynamic networks

with real-time constraints. An alternative naive decentral-

ized implementation of the auction algorithm that commu-

nicates will all nodes through flooding would not scale ei-

ther. Approximate decentralized solutions, based on ran-

dom walks or sampling from a random overlay, have slow

convergence time, as we show in our evaluation.

In the next section, we introduce our market model that

finds approximate solutions to the assignment problem us-

ing partial views sampled from the Gradient overlay (to im-

prove convergence time compared to a random overlay).

Nodes are not assumed to be cooperative; nodes may exe-

cute protocols that attempt to download the stream without

forwarding it to other nodes. We do not, however, address

the problem of nodes colluding to receive the video stream.

4 GLive system

We now present our distributed market-model, a modi-

fied version of the distributed auction algorithm with par-

tial information introduced for tree-based live streaming in

[17]. The following properties are used by the model and

calculated locally at each node:

1. Money: the total number of blocks uploaded to chil-

dren during the last 10 seconds. A node uses its money

to bid for a binding to a partner’s upload connection.

2. Price: the minimum amount of money that should

be bid when binding to an upload connection. The



price of a node that has an unbound upload connection

is zero, otherwise the node’s price equals the lowest

amount of money at its existing children. For exam-

ple, if node p has three upload connections and three

children with monies 2, 3 and 4, the price of p is 2.

3. Cost: the cost of a node is the distance from that node

to the media source via its shortest path. The shorter

the path length (i.e., the lower its cost), the more desir-

able a parent it is.

Our market-model is based on minimizing costs (the path

length of nodes to the media source) through nodes itera-

tively bidding for upload connections. Each node periodi-

cally sends its money, cost and price to all its partners. The

partners of a node include all the nodes in its similar-view

and finger-list in the Gradient overlay, see subsection 4.2.

For each of its download connections, a child node p sends

a bid request to nodes that: (i) have lower cost than one

of the existing parents assigned to download connections in

p, and (ii) the price of a connection is less than p’s money.

Nodes bid with their entire money (although the money is

not used up, it can be reused for other bids for other con-

nections).

A parent node who receives a bid request accepts it, if: (i)

it has a free upload connection (its cost is zero), or (ii) it has

assigned an upload connection to another node with a lower

amount of money. If the parent re-assigns a connection to a

node with more money, it abandons the old child who must

then bid for a new upload connection. When a child node re-

ceives the acceptance message from another node, it assigns

one of its download connections to the upload connection

of the parent. Since a node may send more connection re-

quests than its has download connections, it might receive

more acceptance messages than it needs. In this case, if

all its download connections are already assigned, it checks

the cost of all its assigned parents and finds the one with the

highest cost. If the cost of that parent is higher than the new

received acceptance message, it releases the connection to

that parent and accepts the new one, otherwise it ignores the

received message.

Although there is no guarantee that the parent will for-

ward all blocks over its connection to a child, parents

who forward a relatively lower number of blocks will be

removed as children of their parents. Nodes that claim

that they have forwarded more blocks than they actually

have forwarded are removed as children, and, an auction

is restarted for the removed child’s connection. Nodes are

incentivized to increase the upper bound on the number of

their upload connections, as it will help increase their up-

load rate and, hence, their attractiveness as children for par-

ents closer to the root.

4.1 Auction restarting - free-rider detection and

punishment

Whenever a node assigns a download connection to the

upload connection of another node, it sends the address of

its current children to its parent. It subsequently informs

its parents of any changes in its children. Thus, a parent

node knows about its childrens’ children, or grandchildren

for short.

Free-riders are nodes that forward a much lower num-

ber of blocks than they claimed they forward when con-

necting to a parent. We implment a scoring mechanism

to detect free-riders, and thus motivate nodes to forward

blocks. Each child assigns a score to each of its parents,

which is initially set to zero, for a time window covering

the last 10 seconds. When a child requests and receives a

non-duplicate block from a parent within the last 10 sec-

onds, it increments the score of that parent. Thus, the more

blocks a parent node sends to its children, the higher score

it has among its children. We chose 10 seconds as it is the

same as the choking period in BitTorrent [4] and does not

unneccessarily punish nodes because of variance in the rate

of block forwarding.

Each node periodically sends a score request to its grand-

children, and the grandchildren nodes send back a score re-

sponse containing the scores of the original node’s children.

The node sums up the received scores for each child. Free-

rider nodes forward a lower number of blocks, and hence

they have lower scores compared to others.

When a node with no free upload connection receives a

connection request, it sorts its children based on their latest

scores. If an existing child has a score less than a threshold

s, then the child is identified as a free-rider. The parent node

abandons the free-rider nodes and accepts the new node as

its child. If there is more than one child whose score is less

than s, then the lowest score is selected. If all children have

a score higher than s, then the parent accepts the connection

if the connecting node has offers more money than the low-

est money of its existing children. When the parent accepts

such a connection, it then abandons (removes the connec-

tion to) the child with the lowest money. The abandonned

child then has to search for and bid for a new connection to

a new parent.

A crucial difference between our market-model and the

classical auction algorithm is that our solution is decentral-

ized; nodes have only a partial (changing) view of a small

number of nodes in the system with whom they can bid for

upload connections. We use the Gradient overlay to pro-

vide nodes with a constantly changing partial view of other

nodes that have a similar number of upload connections.

Thus, rather than have nodes explore the whole system for

better parent nodes, the Gradient enables us to limit explo-

ration to the set of nodes with a similar number of upload



connections.

4.2 Gradient overlay construction

Nodes search for parents by sampling partners from

the Gradient overlay. The Gradient overlay is a gossip-

generated overlay, where nodes are arranged according to

their local utility function, such that the highest utility nodes

are located topologically in the centre of the overlay, while

lower utility nodes are located at increasing distance from

the centre [19, 20].

Each node in the Gradient overlay maintains two sets of

neighbours: similar-view and random-view. Similar-view is

a partial list of the nodes in the system whose utility values

are close to, but slightly higher than the utility value of the

node. However, the nodes in the random-view are sampled

from a random overlay network. We use Cyclon [24] to cre-

ate and update the random-view. Nodes periodically gossip

with each other and exchange their views. Upon receiving

the views from a neighbour, a node merges it with its own

similar-view and retains those entries that have closer (but

higher) utility to its own utility value. The connections to

the random nodes in random-view allow nodes to explore

the network in order to discover other potentially similar

neighbours.

In GLive, the utility value of a node is calculated us-

ing two factors: (i) a node’s upload bandwidth, and (ii) a

disjoint set of discrete utility values that we call market-

levels. A market-level is defined as a range of network up-

load bandwidths. For example, in figure 2, we define 5

example market-levels: mobile broadband (64-127 Kbps)

with utility value 1, slow DSL (128-511 Kbps) with utility

value 2, DSL (512-1023 Kbps) with utility value 3, fiber

(>1024 Kbps) with utility value 4, and the media source

with utility value 5. A node measures its available upload

bandwidth (e.g., using a server or trusted neighbour) and

calculates its utility value as the market-level that its upload

bandwidth falls into. For instance, a node with 256 Kbps

upload bandwidth falls into slow DSL market-level, so its

utility value is 2. Nodes may also choose to contribute less

upload bandwidth than they have available, causing them to

join a lower market level.

A node prefers to fill its similar-view with nodes from

the same market-level or one level higher. As a result,

the nodes with similar utility value (almost the same up-

load bandwidth) become the neghibours of each other. In

addition to similar-view and random-view, nodes maintain

finger-list that contains at most one node from higher mar-

ket levels (if one is available). Finger list reduces the proba-

bility of the overlay partitioning due to excessive clustering.

Moreover, low bandwidth nodes often do not have enough

upload bandwidth to simultaneously deliver all the stream.

Therefore, in order to enable low bandwidth nodes to utilize

Figure 2. Different market-levels of a system,

and the similar-view and fingers of p.

the spare connections of higher bandwidth nodes, nodes can

use the connections in finger-list (figure 2).

To update the similar-view, each node p periodically

chooses one random node q from its similar-view, and sends

it a random subset of the nodes from its similar-view. Upon

receiving the list of nodes, q sends back a random subset

of the nodes from its similar-view. When node p receives

the q’s view, first merges the received view with its existing

similar-view by iterating through the received list of nodes,

and preferentially selecting those nodes in the same market-

level or at most one level higher. If its similar-view is not

full, it adds the node, otherwise, it replaces one of the nodes

it had sent to q with the selected node. Moreover, to allow

nodes to find other potentially similar neighbours, p repeat

the same procedure by merging its similar-view with its own

local random-view.

The fingers to higher market-levels are also updated pe-

riodically. Node p goes through its random-view, and for

each higher market-level, picks a node from that market-

level if there exists such a node in the random-view. If there

is not, p keeps the old finger. For more details, you are

kindly referred to our work in [16].

4.3 Data dissemination

Each parent node periodically sends its buffer map and

its load to all its assigned children. The buffer map shows

the blocks that a node has in its buffer, and the load shows

the ratio of the number of blocks that a node has forwarded

to the number of its upload connections.

A child node, uses the information received from its par-

ents to schedule and pull the required blocks in different

iteration. We define a sliding window that shows the num-

ber of blocks that a child node can request in each iteration.

If the playback point of a node is t, and the sliding window

size is n, the node can request the blocks from t to t+ n in

each iteration.

One important question in pulling blocks is the order of

requests. The main constraint in data dissemination in live



media streaming is that the blocks should be received be-

fore their playback time. Therefore, a node should pull the

missing block with the closest playback time first, that is,

blocks should be pulled in-order. Another potential strat-

egy, as used by BitTorrent, is to pull the rarest blocks in

the system, as this is known to increase aggregrate network

throughput [23].

We have designed a download policy that attempts to

marry the benefits for playback latency of in-order down-

loading with the improved network throughput of rarest-

block policy. We divide the sliding window into two sets:

an in-order set and a rare set. The firstm blocks in the slid-

ing window are the blocks in the in-order set and the rest

of the blocks of the sliding window are the rare set blocks.

As the names of these sets imply, blocks from the in-order

set are requested in order and the least popular block (from

among the node’s partners) is chosen from the rare set. A

node selects a block from the in-order set with probability

h% and from the rare set with (100 − h)%, where h is a

system parameter. If multiple parents can provide a block,

the child node chooses the parent that has the lowest load.

5 Experiments and evaluation

In this section, we compare the performance of GLive

with P2P live-streaming systems Sepidar [17] and New-

Coolstreaming [8] under simulation. Sepidar has a

multiple-tree architecture and NewCoolstreaming has a ran-

dom mesh-based architecture.

5.1 Experiment setup

We have used Kompics [1] to implement GLive, Sepidar

and NewCoolstreaming. Kompics is a framework for build-

ing P2P protocols and it provides a discrete event simula-

tor for simulating them using different bandwidth, latency

and churn models. We have implemented Sepidar and New-

Coolstreaming based on the system descriptions from [17]

and [25].

In our experimental setup, we set the streaming rate to

512Kbps, which is divided into blocks of 16Kb. Nodes

start playing the media after buffering it for 15 seconds,

which compares favourably to the 60 seconds of buffering

used by state-of-the-art (proprietary) SopCast [9]. The size

of similar-view in GLive and Sepidar and the partner list in

NewCoolstreaming is 15 nodes. We assume all the nodes

have the same number of download connections, which is

set to 8. To model upload bandwidth, we assume that

each upload connection has available bandwidth of 64Kbps

and that the number of upload connections for nodes is

set to 2i, where i is picked randomly from the range 1 to

10. This means that nodes have upload bandwidth between

128Kbps and 1.25Mbps. As the average upload bandwidth

of 704Kbps is not much higher than the streaming rate of

512Kbps, nodes have to find good matches as parents in

order for good streaming performance. The media source

is a single node with 40 upload connections, providing five

times the upload bandwidth of the stream rate. This set-

ting is based on SopCast’s requirement that the source has

at least five times the upload capacity of the stream rate [9].

In our simulations we assume 11 market-levels, such that

the nodes with the the same number of upload connections

are located at the same market-level. For example, nodes

with two upload connection (128Kbps) are the members of

the first market-level, nodes with four upload connections

(256Kbps) are located in the second market-level, and the

media source with 40 upload connections (2.5Mbps) is the

only member of the 11th market-level. Latencies between

nodes are modeled using a latency map based on the King

data-set [7].

We assume the size of sliding window for downloading

is 32 blocks, such that the first 16 blocks are considered

as the in-order set and the next 16 blocks are the blocks in

the rare set. A block is chosen for download from the in-

order set with 90% probability, and from the rare set with

10% probability. In the failure detector settings, we set the

threshold of the score, s, to zero. The window used for our

scoring mechanism is set to 10 seconds.

In the experiments, we measure the following metrics:

1. Playback continuity: the percentage of blocks that a

node received before their playback time. We con-

sider two metrics related to playback continuity: where

nodes have a playback continuity of (i) greater than

90% and (ii) greater than 99%;

2. Playback latency: the difference in seconds between

the playback point of a node and the playback point at

the media source.

5.2 GLive vs. Sepidar vs. NewCoolstreaming

In this section, we compare the playback continuity and

playback latency of GLive with Sepidar and NewCool-

streaming in the following scenarios:

1. Flash crowd: first, 100 nodes join the system follow-

ing a Poisson distribution with an average inter-arrival

time of 100 milliseconds. Then, 1000 nodes join fol-

lowing the same distribution with a shortened average

inter-arrival time of 10 milliseconds;

2. Catastrophic failure: 1000 nodes join the system fol-

lowing a Poisson distribution with an average inter-

arrival time of 100 milliseconds. Then, 500 existing

nodes fail following a Poisson distribution with an av-

erage inter-arrival time 10 milliseconds;
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(a) Churn.
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(b) Flash Crowd.
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(c) Catastrophic failure.

Figure 3. Playback continuity of the systems in different scenarios.

3. Churn: 500 nodes join the system following a Poisson

distribution with an average inter-arrival time of 100

milliseconds, and then till the end of the simulations

nodes join and fail continuously following the same

distribution with an average inter-arrival time of 1000

milliseconds;

Figures 3 shows the percentage of the nodes that have

playback continuity of at least 90% and 99%. We see that

all the nodes in GLive receive at least 90% of all the blocks

very quickly in all scenarios, while it takes more time in

Sepidar. That is because in Sepidar, at the beginning, nodes

spend time constructing the trees, while in GLive the nodes

pull blocks quickly as soon as at least one of their down-

load connections is assigned. As we see in figure 3, both

GLive and Sepidar outperform NewCoolstreaming in play-

back continuity for the whole duration of the experiment in

all scenarios. GLive and Sepidar use the Gradient overlay

for node discovery. The Gradient overlay arranges nodes

based on their number upload bandwidth capacity, and so

the neighbours of a node are those with the same upload

bandwidth capacity, or slightly higher. This helps the high

capacity nodes to quickly discover the media source. In

contrast, NewCoolstreaming uses a random overlay, and it

takes more time for nodes to find appropriate parents. The

result is a higher number of changes in parent connections,

causing lower playback continuity in NewCoolstreaming

compared to GLive and Sepidar.

As we see in figure 3, the difference between GLive and

Sepidar increases, when we measured the percentage of the

nodes that receive 99% of the blocks in time. Again, the tree

structure used in Sepidar causes this difference. Although,

Sepidar has a multiple-tree structure, which is resilient to

the failures, it has a lower playback continuity than GLive

when nodes crash. In a multiple-tree structure, a stream

is split into a number of sub-streams, and a node receives

each sub-stream from a parent. Although, a node typically

receives the blocks of each sub-stream independently, if the

parent providing a sub-stream fails, then it loses the block

from that sub-stream. While the node is trying to find a new

parent for that sub-stream, it will miss the blocks for that

sub-stream. However, this problem does not apply to the

mesh overlay, because the nodes pull the blocks indepen-

dently of each other. Therefore, if a node loses one of its

parents, it can pull the required blocks from other parents.

Figure 7 shows the playback latency of the systems in

different scenarios. As we can see, GLive keeps its play-

back latency relatively constant, close to 15 seconds, which

is the initial buffering time. The playback latency of Sepi-

dar also converges to 15 seconds, but it takes longer to con-

verge than GLive. The reason for this delay is, again, the

time needed to construct the trees. The playback latency of

GLive and Sepidar, are both less than NewCoolstreaming.

In NewCoolstreaming, the higher playback latency is a re-

sult of nodes only reactively changing parents when their

playback latency is greater than a predefined threshold.

Another difference between GLive, Sepidar and New-

Coolstreaming is the behavior of the systems when play-

back latency increases. In GLive and Sepidar, if playback

latency exceeds the initial buffering time and enough blocks

are available in the buffer, nodes are given a choice to fast

forward the stream and decrease the playback latency. In

contrast, NewCoolstreaming jumps ahead in playback by

switching parent(s) even it misses several blocks, thus neg-

atively affecting playback continuity [8].

5.3 Free-rider detector settings

Here, we compare the playback continuity of GLive and

Sepidar in the free-rider scenario. In this scenario, 1000

nodes join the system following a Poisson distribution with

an average inter-arrival time of 100 milliseconds, such that

30% of the nodes are free-riders, and the total amount of

upload bandwidth in the system is less than total amount

of download bandwidth required by nodes. Figure 5 shows

the percentage of the nodes that receive 99% of the blocks

before their playback time. It shows this value for all the

nodes in the system, including the strong nodes (top 10%
of upload bandwidth nodes), the free-riders, and the weak

nodes (the bottom 10% of upload bandwidth nodes).
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(c) Catastrophic failure.

Figure 4. Playback latency of the systems in different scenarios.
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Figure 5. Playback continuity in the free-rider

scenario.

Figure 5 shows that all the strong nodes in both systems

receive all the blocks in time, however, GLive converges

faster than Sepidar. In GLive, we are using the scoring

mechanism to find the nodes who contribute less bandwidth

than they claim when bidding for connections, while Sep-

idar uses a free-rider detector module that identifies nodes

that do not meet their contractual requirement to forward the

stream to their child nodes [17]. In GLive, at the beginning,

a high percentage of weak nodes and free-riders receive all

the blocks in time, which shows that free-riders have not

been detected yet. That is because nodes need time to up-

date and validate the scores of their parents, and, thus, iden-

tify freeriders. Meanwhile, the free-riders use the resources

of the system. However, after enough time has passed and

the nodes’ scores have been updated, the free-riders are de-

tected. Thus, after about 100 seconds the percentage of the

free-riders who have a high playback continuity decreases.

As figure 5 shows, after about 600 seconds from the be-

ginning of the experiment, in both GLive and Sepidar the

free-riders and weak nodes receive roughly the same qual-

ity of stream, that is, they have the same percentage of play-

back continuity. As the playback continuity of the weak

nodes and free-riders keeps decreasing in GLive, we can

also see that the playback continuity decreases for all nodes

in GLive. After 500 seconds, playback continuity even de-

creases below Sepidar.

Importantly, as we can see in figure 5, the existing free-

riders in the system have a very low effect on the playback

continuity of the strong nodes in GLive. Strong nodes have

consistently higher playback continuity than weak nodes

and free-riders. This is due to the fact that weak nodes

have a lower amount of money compared to strong nodes,

which makes them take longer to find good parents. Also,

the punishment of free-riders negatively affects their play-

back continuity. As such, nodes are strongly incentivized

to contribute more upload bandwidth through receiving im-

proved relative performance.

5.4 Comparing the Gradient with random neigh-

bour selection

In this experiment, we compare the convergence speed

of our market model for the Gradient overlay and a ran-

dom overlay. We use the churn scenario in this experiment,

as this is the most typical environment for P2P streaming

systems on the Internet. Our market model is run using (i)

samples taken from the Gradient overlay, where the sam-
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GLive in the Gradient overlay and the random
overlay.



pled nodes have similar upload bandwidth or money, and

(ii) samples taken from a random network, where the sam-

pled nodes have random amounts of money.

As nodes in the Gradient overlay receive bids from a set

of nodes with almost the same money, the difference be-

tween received bids is less than the expected difference for

the random network. Figure 6 shows that in the case of us-

ing the Gradient overlay, more nodes can quickly receive

high playback continuity. As such, the Gradient overlay

can be said to be a more efficient market maker for our dis-

tributed market model than a random overlay.

5.5 Varying buffering time

Finally, we compare the performance of GLive for dif-

ferent buffering times. We compare three different settings:

0, 3 and 15 seconds of buffering time in the churn scenario.

Buffering 0 seconds of blocks, means nodes start playing

the media as soon as they receive the first block. As we see

in figure 7(a), the higher the buffering time, the higher the

percentage of the nodes who receive blocks in time. How-

ever, higher initial buffering times increase the playback la-

tency (figure 7(b)). As such, there is a trade-off between

increasing playback continuity and decreasing playback la-

tency.
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Figure 7. The performance of the system in
different initial buffering time.

6 Conclusions

In this paper, we presented GLive, a P2P live stream-

ing system that uses a distributed market-model to con-

struct a mesh overlay with two properties: (i) nodes with

increasing upload bandwidth are located closer to the me-

dia source, and (ii) nodes with similar upload bandwidth

are the neighbours of each other. Our distributed market-

model leverages the structure of the Gradient overlay to

efficiently assign suitable connections to other nodes. We

addresse the problem of free-riding in GLive through par-

ent nodes auditing the behaviour of their children nodes by

querying their grandchildren. We showed in simulation that

the mesh-based implemention of our market-model has bet-

ter performance in different scenarios compared to both a

multiple-tree implementation of the system in Sepidar and

NewCoolstreaming.
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