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Abstract—While the algorithms for streaming graph parti-
tioning are proved promising, they fall short of creating timely
partitions when applied on large graphs. For example, it takes
415 seconds for a state-of-the-art partitioner to work on a social
network graph with 117 millions edges. We introduce an efficient
platform for boosting streaming graph partitioning algorithms.
Our solution, called HoVerCut, is Horizontally and Vertically
scalable. That is, it can run as a multi-threaded process on a
single machine, or as a distributed partitioner across multiple
machines. Our evaluations, on both real-world and synthetic
graphs, show that HoVerCut speeds up the process significantly
without degrading the quality of partitioning. For example,
HoVerCut partitions the aforementioned social network graph
with 117 millions edges in 11 seconds that is about 37 times
faster.

Index Terms—streaming graph; vertex-cut partitioning; graph
partitioning; parallel scalability

I. INTRODUCTION

Graph partitioning is an NP-Complete problem with a long
history in graph theory [1], [2]. The traditional form of graph
partitioning is edge-cut partitioning, which divides vertices of
a graph into disjoint partitions of nearly equal size, while
the number of edges that span partitions is minimum. There
is another form of partitioning, based on vertex-cut, which
divides the edges of a graph into nearly equal size partitions,
such that the number of replicated (cut) vertices is minimum.

Most of the real-world graphs exhibit power-law degree
distribution, i.e., the majority of vertices have relatively few
neighbors, while a small fraction of them have many neigh-
bors [3]. Several studies [4], [5], [6] have shown that the graph
processing systems cannot achieve a good performance, when
they apply edge-cut partitioning on power-law graphs. This
is due to unbalanced number of edges in each partition. On
the other hand, both theory [7] and practice [8], [9] prove
that power-law graphs can be efficiently processed, if vertex-
cuts are used. We, therefor, focus on vertex-cut partitioning
algorithms.

Streaming graph partitioning is a new approach to graph
partitioning, where graph elements (vertices or edges) are
received continuously over time, and assigned to partitions
as they are being streamed [10]. This is usually done in
one-pass, i.e, while reading through the graph, edges and
vertices are assigned to partitions once and for all. A few
algorithms have recently been developed for streaming vertex-
cut partitioning [11], [12], [13]. To the best of our knowledge,
HDRF [12] and the PowerGraph Greedy algorithm [11] have
shown the best partitioning results for power-law graphs.

Fig. 1: The partitioning time in HDRF and HoVerCut with different number
of threads for the graph of LiveJournal social network with 48M edges.

These algorithms create nearly equal size partitions with small
number of replicated vertices. However, these systems are
centralized and do not scale neither horizontally nor vertically.
They are not horizontally scalable, because they are not
designed to be deployed on a network or cluster of machines.
They are also not vertically scalable, because they can not
leverage the available computational resources of a machine to
improve their performance. For example, as Figure 1 depicts,
the partitioning time of HDRF drops dramatically, when it is
implemented as a multi-threaded application.

In this paper, we present HoVerCut, a parallel and dis-
tributed vertex-cut partitioner for streaming graphs. HoVerCut
uses multi-threading together with a windowing technique that
brings about a light-weight state sharing between the threads.
Each thread, called a subpartitioner, will run an instance of
a partitioning algorithm (e.g., any of the existing ones [11],
[12]), while receiving an exclusive subset of input edges.
Subpartitioners do not have to be on a single machine only. In
fact, HoVerCut can employ multiple machines in a distributed
environment to better utilize the available resources.

Every subpartitioner has a local state, based on which
it partitions the incoming edges. The local states include
information about the processed edges and vertices, and can
be shared on-demand, through a single shared state. To reduce
the contention over the shared state, subpartitioners do not
communicate with it every time they receive an edge. Instead,
they collect a number of incoming edges in a window of
a certain size, and then pull from the shared state the data
that concerns the current window, in one batch. The result
of the partitioning will also be pushed to the shared state
in one batch. Note that it is likely to encounter the same
vertices several time in a window, in particular the high degree
vertices, which constitute the most demanding part of the
shared state. Therefore, HoVerCut not only reduces the number



of communications between subpartitioner and the shared
state, but also the size of information that is pulled or pushed.
This results in a significant improvement in partitioning time,
which is the main contribution of our work.

Moreover, by decoupling the state from the actual parti-
tioning algorithm, HoVerCut facilitates the parallel as well as
distributed implementation of any of the existing partitioning
algorithms, without degrading the partitioning quality. This
means even in presence of network latency, these algorithms
can gain a remarkable speedup if used together with HoVerCut.

We perform a comprehensive evaluation of HoVerCut with
two of the exisiting heuristics for vertex-cut partitioning [11],
[12]. We use both synthetic and real world datasets, and show
that HoVerCut produces partitions as good as the original
heuristics, but tens of times faster in both single machine and
distributed configurations. For example, the implementation of
HDRF in HoVerCut with 32 threads, partitions the Orkut social
network graph (with 3.1 million vertices and 117 millions
edges) 37 times faster than the original HDRF.

The paper is structured as follows. In section II, we define
the problem of streaming graph partitioning and its challenges.
In section III, we present HoVerCut and elaborate on the state
sharing and the partition selection policies. We present the
evaluation results in section IV. Our study on the related work
is presented in section V. We conclude the paper in section VI.

II. PROBLEM DEFINITION

We address the problem of k-way vertex-cut partitioning for
streaming graphs, in a parallel and/or distributed environment.

A. Vertex-cut Partitioning

To formally define the k-way vertex-cut partitioning, let us
define a graph G = (V,E), where V is the set of vertices
and E is the set of edges. We consider a partition function
π : E → {1, . . . , k} that assigns a partition to each edge,
where π(e), or πe for short, refers to the partition of edge e.
When an edge is assigned to a partition, the two vertices at
its endpoints are also assigned to that partition. We denote the
set of edges that are connected to vertex v by Ev . Since the
edges in Ev may be scattered across partitions, vertex v might
have a copy in multiple partitions. Ev(p) indicates the subset
of edges incident with v that belong to partition p:

Ev(p) = {e ∈ Ev : πe = p} (1)

The number of copies of vertex v (replicas) across all
partitions, is denoted by RF (v, π) and calculated by:

RF (v, π) =
∑

|Ev(p)|>0

1,∀ p ∈ {1, . . . , k} (2)

The Replication Factor (RF) of the graph, RF (G, π), is
then defined as the average of the replicas of all the vertices:

RF (G, π) =

∑
v∈V RF (v, π)

|V |
(3)

We want to minimize the RF, subject to a constraint on the
balanced size of the partitions. If we denote size of partition

p as |E(p)| (the number of edges in p), we can formulate an
optimization problem as follows:

π∗ = argminπ RF (G, π)
s.t. |E(p1)| = |E(p2)|,∀ p1, p2 ∈ {1, . . . , k}

(4)

B. Data Processing Model and Assumptions

We assume that edges of the graph are read in a streaming
fashion. They can be generated at some source on the fly, or
can be read from a disk, or a cluster. In the former case, part of
the graph data is not generated yet, thus, we can only process
partial data. In the latter cases, the whole graph already exists,
but will not be loaded into memory all at once (e.g., the size
of the graph is big to fit in the memory).

We assume that we do not have access to the entire graph,
and therefore, we can not perform global operations. At every
point in time we only have access to a subset of edges that
are read latest, and if needed, some aggregate values or states
about what we have read so far. The stream could have
either a single source or multiple sources. In case of multiple
sources, we process the received data in parallel, and strict
synchronization between the parallel processing units is not
required.

III. THE HOVERCUT FRAMEWORK

HoVerCut is a parallel and distributed vertex-cut partitioning
platform for streaming graphs. It runs as a multi-threaded
process on a single machine, or as a distributed partitioner
across a cluster of machines. All the threads apply the same
partitioning algorithm on a subset of the graph edges. This
means we can have multiple streaming sources, or we can
load a graph from disk using parallel loaders. We call each
instance (thread) a subpartitioner. Each subpartitioner receives
a subset of edges over time, and assigns them to partitions
based on a given heuristic, referred to as the partitioning
policy. We can use different partitioning policies in HoVerCut,
e.g., Greedy [11] or HDRF [12].

HoVerCut decouples the partitioning policy from the parti-
tioning state, to enable efficient parallelism. In a distributed
configuration, subpartitioners can access the partitioning state
remotely, but their algorithm would be the same. Each sub-
partitioner holds a local state, which contains the information
required by the partitioning policy. For example in case of
HDRF policy, the state includes (i) the partial degree of
vertices that have been processed so far, (ii) the partitions they
are assigned to, and (iii) the current size of partitions. Further,
HoVerCut maintains the global system state in a shared stor-
age accessible by all subpartitioners. Subpartitioners read and
update the shared state periodically and asynchronously. They
use this information to decide about the partitions of receiving
edges. The more subpartitioners refer to the shared state,
the more updated information they receive, and consequently
better decisions they make, but the slower the system will
be. Therefore, instead of contacting the shared state for each
incoming edge, subpartitioners access the shared state for a
window of edges. As a result, subpartitioners access the shared
state less frequently and pull/push information in batches. This



Algorithm 1 The HoVerCut core algorithm.

1: procedure MAIN
2: while loader.hasnext() do
3: e ← loader.nextEdge() . read the next edge
4: window.add(e)
5: e.src.incDegree()
6: e.dest.incDegree()
7: vertices.update(e.src)
8: vertices.update(e.dest)
9: if trigger(window) then

10: partitionWindow(window, vertices)
11: window.clear()
12: vertices.clear()
13: end if
14: end while
15: end procedure

Algorithm 2 The algorithm for partitioning a window of edges.

1: procedure PARTITIONWINDOW(Set edges, Set vids)
2: state ← SharedState.getState(vids)
3: for e ∈ edges do
4: u ← state.vertices.get(e.src) . the degree and partitions of e.src
5: v ← state.vertices.get(e.dest)
6: u.updateDegree(u.degree, vids.vertice(u).degree)
7: v.updateDegree(v.degree, vids.vertice(v).degree)
8: p ← selectPartition(u, v, state.partitions)
9: u.addPartition(p)

10: v.addPartition(p)
11: p.incrementSize()
12: state.update(u, v, p)
13: end for
14: SharedState.putState(state)
15: end procedure

reduces the latency entailed by the network communication
and the overall size of transferred information in a distributed
HoVerCut.

The generic HoVerCut framework is illustrated in Algo-
rithms 1 and 2. Each subpartitioner executes Algorithm 1
locally to make a window (buffer) of incoming edges. Upon
receipt of a new edge e at a subpartitioner, the local state is
partially updated, e.g., the local degree of visited vertices is
incremented.

When a window reaches a certain condition (based on time
or the number of buffered edges), the subpartitioner reads the
information of the buffered edges and their corresponding ver-
tices from the shared state (Algorithm 2). The subpartitioner,
then, iterates through the edges in its buffer, and for each
edge e, calls the selectPartition method. In case of
using HDRF policy (Algorithm 3), the selectPartition
method takes as input the latest partition sizes (received from
the shared storage) and the information about the two end-
point of an edge e (their partial degree, and the current
partitions they are assigned to). We can use any other policy to
define the selectPartition method. When all the edges
in a buffer are assigned to partitions, the subpartitioner writes
back the modified part of its local state to the shared storage.

A. Partitioning Policy

We can use any vertex-cut partitioning heuristics in HoVer-
Cut, e.g., DBH [13], PowerGraph Greedy [11], or HDRF [12].
DBH [13] indicates that replication factor (RF) of a power-law
graph can be reduced if vertices with relatively higher degrees

Algorithm 3 HDRF as partition selection policy.

1: procedure SELECTPARTITION(Vertex u, Vertex v, Set partitions)
2: maxP ← findMaxPartitionSize(partitions)
3: minP ← findMinPartitionSize(partitions)
4: for p ∈ partitions do
5: rScore ← replicationScore(u, v, p) . Eq. 6 and 8
6: bScore ← balanceScore(p, maxP.size, minP.size) . Eq. 10
7: scores.set(p, rScore + bScore) . Eq. 5
8: end for
9: p ← findMaxScore(scores)

10: return p;
11: end procedure

are cut. Therefore, for a given edge with two end vertices,
DBH chooses the identifier of a vertex with lower degree to
create a hash value and assigns the edge to a partition with
the correspondent identifier. To implement this heuristic, we
need to know the degree of vertices, which is not available in
a one-pass streaming graph partitioning. Inspired by Petroni
et al. [12], we can use partial degree of vertices (number of
times that a vertex has been encountered in incoming edges).

The idea of DBH [13] is enhanced in Greedy [11] and
HDRF [12] heuristics by adding the impact of the partitions
sizes. For an edge with two end vertices u and v, and for each
partition p, Greedy and HDRF compute a score S(u, v, p),
and select a partition that maximizes the score. S(u, v, p) is
computed as bellow:

S(u, v, p) = SR(u, v, p) + SB(p) (5)

where SR is formulated to reduce the RF, and SB is computed
based on the size of partitions. The difference between the
Greedy and HDRF is in the way they compute SR and SB .
To compute SR, the Greedy heuristic gives a higher score to
partitions that have replicas of the end vertices u and v, while
HDRF gives a higher score to partitions that have a replica of
lower degree vertices. For both the Greedy and HDRF we can
define SR as follows:

SR(u, v, p) = g(v, u, p) + g(u, v, p) (6)

where g(v, u, p) in Greedy heuristic is:

gGreedy(v, u, p) =

{
1, if p ∈ P (v).
0, otherwise.

(7)

and in HDRF is:

gHDRF (v, u, p) =

{
1 + d(v)

d(v)+d(u) , if p ∈ P (v).
0, otherwise.

(8)

where P (v) is set of partitions that vertex v has been replicated
in and d(v) is the partial degree of vertex v. SB , in both
the Greedy and HDRF, is formulated according to number of
edges in partition p compared to the partitions with maximum
(pmax) and minimum (pmin) number of edges. The difference
is an added weight (λ) in HDRF that controls the importance
of load balancing. SB for a partition p in the Greedy heuristic
is as follows:

SGreedyB (p) =
|pmax| − |p|

1 + |pmax| − |pmin|
(9)



Dataset |V | |E|
Autonomous systems (AS) [14] 1.7M 11M
Pokec social network (PSN) [15] 1.6M 22M
LiveJournal social network (LSN) [6] 4.8M 48M
Orkut social network (OSN) [16] 3.1M 117M

TABLE I: Real world graph datasets.

and SB in HDRF is:

SHDRFB (p) = λ.SGreedyB (p) (10)

In Algorithm 3, we demonstrate HDRF heuristic in HoV-
erCut. HDRF for end vertices u and v, requires to have
information about d(u), d(v), P (u), P (v) and the edge size
of all partitions. The implementation of Greedy heuristic is
slightly different. It does not need the partial degree of vertices.

B. Partitioning State

The partitioning heuristics explained in the previous section
require the state of the processed edges. For example, DBH
needs the partial degree of vertices and the Greedy requires the
current size of partitions. To provide this, HoVerCut maintains
a shared state that includes two tables: the vertex table, and the
partition table. The vertex table maps each vertex to its partial
degree, as well as the partitions that the vertex is replicated in,
and the partition table holds the edge size of each partition.

The shared state provides two interfaces getState and put-
State. The getState operation receives a list of vertex identifiers
as input and returns the state of all partitions and correspond-
ing vertices. The getState operation does not entail any lock
either on the tables or the data entries, which increases the
number of parallel access to the shared state. The putState
operation receives the local state of a subpartitioner as input
and updates the shared state accordingly. We update the
entries of the vertex and partition tables with aggregation
operations, in which the state of the vertices and partitions
are accumulated with deltas. This guarantees that the shared
state will be consistent regardless of the order in which it
applies the update operations from parallel subpartitioners.

Each subpartitioner has a local copy of the shared state.
The more subpartitioners contact the shared storage, the more
up-to-date copy they will have, thus, the better partitioning
decisions they can make. However, contacting the shared stor-
age is costly and has a negative impact on the processing time.
Therefor, subpartitioners should contact the shared storage as
less as possible. In other words, there is a trade of between
partitioning quality and the partitioning time.

To control the state update interval, we use a configurable
window. Subpartitioners buffer the incoming edges in a win-
dow of certain size (either counter-based or time-based size).
When the window is full or timed-out, the subpartitioner pulls
the required updates from the shared storage. We assume a
tumbling window model, in which non-overlapping subset of
edges are processed, one at a time.

(a) Speedup. (b) Partitioning time.

Fig. 3: The impact of window size on speedup and partitioning time of
HoVerCut with different number of subpartitioners.

IV. EXPERIMENTS

In this section we demonstrate the performance results of
HoVerCut1 compared to the of state-of-the-art algorithms2

HDRF [12] and Greedy [11].

A. Experimental Settings

We use two different types of graphs in the experiments: (i)
real-world datasets with power-law degree distribution, listed
in Table I, and (ii) synthetic graphs, which are generated by
Gengraph [17]. In the synthetic graphs, the probability that
a vertex has degree d under power-law distribution is d−α,
where α is a constant. We increase α from 1.4 to 1.7, which
ends up with graphs from 195M to 33M edges, respectively.
We set the minimum and maximum degrees of the synthetic
graphs to 4 and 30000, and the number of vertices to 1M .

We measure the following metrics to compare the systems:
1) Replication Factor (RF): the average number of repli-

cated vertices (Equation 3).
2) Load Relative Standard Deviation (LRSD): the relative

standard deviation of edge size in each partition. The
value zero for LSRD indicates equal size partitions.

3) Partitioning time: the required time to partition a graph.
4) Speedup: the time it takes for partitioning with multi-

thread compared to a single thread.
We denote the number of parallel subpartitioners by t, and

the size of the window by w, and we use H(t = x,w =
y) to represent a configuration with x subpartitioners and the
window size y. We also show the implementation of HDRF
and Greedy in HoVerCut by HoVerCut(H) and HoVerCut(G),
respectively. All the reported results are the average of three
runs. In all the experiments, we set the number of partitions
to 16, and the input graphs are streamed by their edges.

B. One Host Configuration

In these experiments, we deployed HoVerCut as a single
process in one machine, and each subpartitioner runs as a sepa-
rate thread in this process. Here, we apply H(w = 32, t = 32)
configuration in HoVerCut, and use the real-world datasets,
shown in Table I.

Table II represents the result of comparison of the RF and
partitioning time of HoVerCut(H) and HoVerCut(G) with the
original HDRF and Greedy algorithms. As it shows, HoVerCut

1https://github.com/shps/HoVerCut
2https://github.com/fabiopetroni/VGP



Partitioning time [s] RF
Dataset HDRF HoVerCut (H) Greedy HoVerCut (G) HDRF HoVerCut (H) Greedy HoVerCut (G)

AS 33 1 28 1 1.99 2.00 2.24 2.24
PSN 72 2 66 3 3.90 3.89 3.89 3.89
LSN 138 5 123 5 2.76 2.76 2.83 2.83
OSN 415 11 371 11 5.57 5.54 5.29 5.29

TABLE II: Summary of the partitioning results for HDRF, Greedy, HoVerCut(H) and HoVerCut(G). The configuration of HoVerCut is H(t = 32, w = 32).
The LSRD is 0.00% in all the experiments.

(a) AS (b) PSN (c) LSN (d) OSN

Fig. 2: The speedup in HoVerCut with different number of threads for different window sizes.

partitions the AS graph 33 times faster than HDRF and 28
times faster than the Greedy. For a bigger graph like OSN,
HoVerCut is 37 times faster than HDRF. Note that this level of
speedup is reached without degrading the quality of partitions,
i.e., RFs are almost equal and LRSD = 0.00 in the final
partitions. Due to the lack of space, in the rest of this section
we only compare HoVerCut with HDRF partition that shows
a better performance compare to the other heuristics.

Figure 3(a) shows the gained speedup of HoVerCut with
different number of subpartitioners and window sizes. As we
see, for a fixed number of threads (subpartitioner), increasing
the window size can effectively improve the speedup, due to
reducing the congestion over the shared state. For example,
for t = 32, increasing w from 1 to 32 makes HoVerCut to
run 5 to 37 times faster than HDRF. In contrast to HoVerCut,
increasing the number of threads has a negative impact on
the performance of HDRF, because HDRF requires to entail
locks over the vertex and partition entries in every partitioning
step. We remark that, in all of the configurations, RF and
LRSD are the same as in HDRF. Figure 3(b) represents
how increasing w improves the partitioning time in different
number of subpartitioners. However, the partitioning time
becomes constant for w greater than 16.

C. Distributed Configuration

To further utilize the available resources in a distributed en-
vironment, we implemented each subpartitioner as a separate
process on a machine, and we deployed the shared state on a
remote storage. However, in this configuration, the partitioning
time can dramatically increase due to the network latency.
For example, the distributed partitioning of the graph LSN
with H(t = 256, w = 1) takes around six hours, while
in a single process with H(t = 2, w = 1), the time is

around one minute. In this section, we show that HoVerCut
can significantly reduce the partitioning time if we use bigger
window sizes.

Figure 2 represents the partitioning time of the real-world
graphs (Table I). The straight line in these plots is the time of
a single thread HDRF. The results show when the number of
parallel subpartitioners is more than 64, HoVerCut achieves a
better partitioning time with widows bigger than 256. These
plots also show that when there are fewer subpartitioners in
the system, HoVerCut still can beat HDRF by increasing the
window size. This improvement is mainly due to reducing the
rate of access to the remote shared state, which entails costly
communication over the network.

Although increasing w improves the partitioning time, it
may increase RF and LRSD. In Figures 4 and 5, we see
the RF and LRSD of the same experiments as in Figure 2.
These figures demonstrate that in bigger graphs (with respect
to their number of edges, |EPSN | < |ELSN | < |EOSN |), we
can employ bigger windows and more parallel subpartitioners
to achieve better partitioning time without degrading the
partitioning quality. For example, H(t = 256, w = 16384)
for the graph AS, with 11M edges, makes partitions with
LRSD = 5%, while for the graph OSN with 117M edges, it
makes partitions with near zero LRSD. These results confirm
that we can horizontally scale HoVerCut for larger graphs,
without degrading the quality of output partitions.

We also evaluate HoVerCut with a set of synthetic graphs
to study the effect of vertices degree distribution on the its
performance. Figure 6 shows the results of HoVerCut with 64
subpartitioners. As we see, HoVerCut generates competitive
partitions to HDRF for graphs with different values of α.
Furthermore, for small values of α, HoVerCut can employ



(a) AS (b) PSN (c) LSN (d) OSN

Fig. 4: RF for different datasets.

(a) AS (b) PSN (c) LSN (d) OSN

Fig. 5: LRSD for different datasets.

bigger windows without significantly degrading the quality of
partitions. For example, for α < 1.55, the RF and LRSD of
partitions in HoVerCut with w = 16384 are close to HDRF.

V. RELATED WORK

In this section we study some of the existing work on
graph partitioning. Considering edge-cut vs. vertex-cut, as
well as offline vs. online (streaming) algorithms, we review
four groups of graph partitioning algorithms: offline edge-
cut, online edge-cut, offline vertex-cut, and online vertex-cut
partitioning. In addition to these, we also study the state-of-
the-arts on multi-loader graph partitioning systems.

A. Offline Edge-Cut Partitioning

Kernighan-Lin (KL) [18] is a classic graph partitioning
algorithm that minimizes the edge-cut while keeping the
cluster sizes balanced. Hierarchical algorithms (agglomerative
or divisive) are another approach in edge-cut partitioning, in
which in agglomerative algorithms [19], initially all vertices
are placed in different partitions of size one, and over time
the pair of partitions with the shortest distance are merged
into a single partition. The divisive algorithm [20] operates in
reverse, such that in the beginning, all the vertices are put in
a single partition, and then at each step it chooses a certain
partition and split it into two parts.

A common solution in edge-cut partitioning is the multi-
level partitioning [2] that consists coarsening, partitioning, and
un-coarsening phases. METIS [21], KAFFPA [22], and [23],
[24], [25] are examples of multi-level partitioning algorithms.

We can also refer to spectral [26] and Markov cluster-
ing [27] algorithms as two other partitioning solutions. The
former algorithm assign vertices to partitions based on the

eigenvectors of matrices, and the latter clusters graphs via ma-
nipulation of the transition probability matrix corresponding to
the graph.

In addition to the above solutions, which all require access
to the entire graph, there exist distributed algorithms for large
graphs. Ja-be-Ja [28], [29] is a fully distributed algorithm that
uses local search and simulated annealing techniques [30] for
graph partitioning. Sheep [31] is a distributed graph partitioner
that reduces the graph to an elimination tree, partitions the tree,
and then translates the tree partitions into graph partitions.
Spinner [32] and [33] are two other large scale graph parti-
tioners that take advantage of the label propagation algorithm
for graph partitioning.

B. Online Edge-Cut Partitioning

In online (streaming) edge-cut partitioning algorithms, ver-
tices/edges arrive in sequence and the algorithms assign them
to different partitions. Most of the streaming algorithm are
one-pass algorithm and they forbid partition refinement af-
ter assignments. Stanton et al. [34], [35] studied different
heuristics, and observed the best performance with the linear
deterministic greedy (LDG) heuristic. The algorithm assigns
each vertex to a partition where the vertex has the most edges,
and the algorithm weights the assignment by a penalty function
based on the size of the partitions. FENNEL [10] is another
online edge-cut algorithm with the aim of maximizing the
modularity.

A new approach in this group of partitioners is restreaming
the data, meaning that the same (or approximately the same)
graph repeatedly streamed on a regular basis. Nishimura et
al. [36] showed that they achieved a better performance by



(a) RF (b) LRSD (c) Partitioning time

Fig. 6: RF, LRSD and partitioning time with respect to different alphas.

restreaming LDG and FENNEL.

C. Offline Vertex-Cut Partitioning

While there exist numerous solutions for edge-cut partition-
ing, very little effort has been made for vertex-cut partitioning.
Florian et al. in [37] analyzed the balanced vertex-cut as
an alternative to balanced edge-cut partitioning by providing
explicit characterization of the expected communication cost
for different variants of the graph partition problems. SBV-
Cut [38] is one of the few algorithms for vertex-cut partition-
ing. In this algorithm, initially a set of balanced vertices are
identified for bisecting a directed graph, and then he graph is
further partitioned by a recursive application of structurally-
balanced cuts to obtain a hierarchical partitioning of the graph.

Ja-be-Ja-vc [39] is a recent distributed vertex-cut parti-
tioning algorithm, inspired by Ja-be-Ja [28], [29] for edge-
cut partitioning. Similar to Ja-be-Ja, this algorithm uses local
search and simulated annealing to iteratively improve initial
random assignment of edges to partitions. DFEP [40] is
another distributed vertex-cut partitioning algorithm that works
based on a market model, where the partitions are buyers of
vertices with their funding. Firstly, all partitions are given the
same amount of funding. Then, in each round, a partition p
tries to buy edges that are neighbors of the already taken
edges by p, and an edge will be sold to the highest offer.
Another algorithm in this area is VSEP [41] that presented a
parallel vertex-cut partitioning based on two heuristic methods
to compute edge partitioning iteratively.

D. Online Vertex-Cut Partitioning

Existing online vertex-cut partitioning algorithms are
grouped into two main categories: hashing algorithms and
greedy algorithms. The former group of the algorithms ignore
the history of the edge assignments and rely on the presence
of a predefined hash function, while the latter group uses
the entire history of the edge assignments to make the next
decision.

The hashing algorithms can end up with a good load
balancing with a uniform hash function. A simple solution
based on the hashing technique was presented at [11], where
the algorithm assigns each edge randomly to a partition based
on given hash function. This solution results in a large number
of vertex-cuts. Degree-Based Hashing (DBH) [13] is another
hash-based algorithm that considers the degree of the vertices

for the placement decision. Grid-based hashing solution is an
approach that presented at GraphBuilder [42]. This model
arranges partitions in a matrix and maps each vertex to a
matrix cell using a hash function. The algorithm allows each
vertex to be replicated only in a small subset of partitions.

In addition to the hashing solutions, there are a number of
algorithms presented based on the greedy model. One of the
early solutions introduced at PowerGraph [11], where edges
are evenly assigned to multiple machines. The aim of the
algorithm is to make the number of machines spanned by
each vertex small, and to reduce the communication overhead
and impose a balanced computation load on the machines.
Rong et al. proposed an hybrid solution in Ginger [43] that
combines both edge-cut and vertex-cut approaches together.
Ginger, however, needs extra reassignment phases after the
original streaming graph partitioning. A recent work in this
area is HDRF [12], where our work is inspired by it. HDFR is a
streaming vertex-cut graph partitioning algorithm that exploits
skewed degree distributions by explicitly taking into account
vertex degree in the placement decision.

E. Multi-Loader Online Graph Partitioning

There is not much work in multi-loader online graph par-
titioning. To the best of our knowledge, GraSP [44] is the
only work on online edge-cut partitioning. Its implementation
follows the restreaming partitioning [36] that shows the single-
pass algorithms of FENNEL [10] and WDG [35] can be
repeated over the same data in the same order, yielding a
convergent improvement in quality.

VI. CONCLUSIONS

We targeted the scalability problem of vertex-cut partition-
ing algorithms for streaming power-law graphs. We introduced
HoVerCut, a parallel and distributed vertex-cut partitioner that
can employ different partitioning policies in a scalable fashion.
HoVerCut decouples the partitioning policy from the state,
and utilizes an efficient tumbling window model to share
state between multiple instances of the partitioning algorithm.
We demonstrated that HoVerCut scales both horizontally and
vertically to partition large graphs tens of times faster than
the state-of-the-art algorithms, without degrading the quality
of partitions.
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