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Abstract—Operating large scale and feature-rich applications
is becoming increasingly complex as engineers need to deploy
highly configurable software releases on distributed cloud stacks
while managing ever-shorter production cycles. Although recent
proposals attempt to streamline cloud resources orchestration,
there is still a significant challenge in making such solutions
generalize to unseen cloud stacks. In other words, the behavior
of application-specific Key Performance Indicators (KPIs) and
resource configurations, crafted for specific stacks, may differ
on heterogeneous deployments, requiring time-consuming policy
adjustments. We introduce IMITA, a system that leverages
imitation learning to create models by imitating an expert
behavior that can be generalized seamlessly to new cloud stacks.
To make a generalized model, IMITA maps expert actions
taken based on the application KPI space to the space of
resource utilization metrics that are universally available in cloud
platforms. This mapping enables the model to trigger actions,
mimicking expert behavior, upon the occurrence of similar re-
source utilization footprints across deployments. We demonstrate
IMITA by learning to scale-out Cassandra deployments with
diverse configurations and workloads. Our results show IMITA
can replicate expert actions across deployments and extrapolate
to unseen environments by achieving 50 − 94% fewer false
positives actions than traditional threshold-based policies while
still adhering to Service-Level Objectives (SLO) and avoiding
under-provisioning of resources. Moreover, since collecting data
in clouds is costly, IMITA gathers data only for representative
configurations to train the imitator model. This approach reduces
the size of the collected data to 50%.

Index Terms—Cloud Orchestration, Imitation Learning, Gen-
eralization

I. INTRODUCTION

Large companies have drastically changed how software
functionality is deployed and offered to customers. Nowadays,
new software features and product releases are delivered on
a daily basis, or even more frequent [1]. The change towards
continuous software development is creating significant chal-
lenges in engineering operations as the pace of deployment
reaches unprecedented speed and scale [2]. As a consequence,
many companies create specialized teams to design strategies
for configuring, deploying, and maintaining cloud services at
scale [3], and also to collaborate with developers in deploying
new software functionality to large scale production environ-
ments (cloud environments) [4]–[6].

Whenever any change occurs across these distributed de-
ployments, it is required to tune plenty of configuration
parameters. However, due to the complexity of cloud stacks,
this is a time-consuming process. These changes can be caused
by workload variations, containers or virtual machine mod-
ifications, new software features, or underlying middleware
updates, to name a few. These changes usually require manual

adjustments that limit the frequency at which a production
system can be adapted. The need for human expertise is
mainly because applications have different cloud stack-specific
configurations and Key Performance Indicator (KPI) require-
ments, which may not be directly applicable in another setting,
given the multiplicity of variables that affect the application
performance.

Recent researches show that Machine Learning (ML) is a
promising approach to reduce human intervention in orches-
trating cloud stack [7]–[9]. For example, [10], [11] present
ML-based application-agnostic solutions to orchestrate ap-
plications effectively for a given set of resource utilization
metrics and application KPIs. However, these solutions require
long offline training phases to create accurate performance
models. Another group of solutions opts to calibrate the
systems by monitoring the applications executions online [12]–
[14]. Nevertheless, this approach requires a rich representative
set of expert actions to train the models.

Both of these ML-based solutions suffer from the same
problem; that is, the constructed models are implicitly tied
to the environments from which the training data is collected.
Thus, it is infeasible to use them directly in new environ-
ments without either retraining them with data from the new
environment or modifying them on-the-fly using such data.
As an example, consider an autoscaling system configured to
take action based on throughput exceeding a certain threshold.
Any change in the underlying container resources, such as
increasing the number of available cores and memory, can
render the initial threshold sub-optimal.

In this paper, we introduce IMITA, a solution that leverages
imitation learning (IL) [15] to train a generalized model, called
imitator, by associating expert actions (either human-based or
automated) with resource usage footprints, which are generic
platform metrics (e.g., CPU and memory utilization, I/O rate,
etc.) universally available in cloud stacks. The imitator, then,
mimics the expert actions in new environments, even if the
application-specific KPIs behave very differently. IMITA is
a system that (i) automates and reduces the calibration and
training phases by learning how to imitate expert actions
in scenarios and configurations that are different from those
known by the expert, and (ii) incorporates IL techniques for
automating data collection across cloud stacks.

To demonstrate IMITA, we create a software environment
that enables expert mechanisms to precisely annotate their ac-
tions with respect to underlying application KPIs and resource
utilization metrics. Therefore, IMITA learns the sequence
of actions taken by the expert to keep application KPIs in



the desired state. These actions are correlated to resource
utilization footprints; thus, the imitator can model the expert
actions with respect to normalized resource utilization rather
than application-specific KPIs. Since the imitator encodes
expert actions regarding resource usage (learned across a
variety of representative environments), it is generic enough
to perform in new unseen environments accurately.

We evaluate IMITA in an autoscaling scenario of a real
setup of Apache Cassandra [16] in a cluster, and we train
and test the imitator on different environments. We show
that IMITA’s data collection heuristic reduces the amount of
required data for training accurate and robust models (i.e.,
imitators) to 50% compared to the random heuristic as the
baseline. Moreover, we show that IMITA trains the imitator
using only 22% of a given configuration space; however, it
can effectively extrapolate to unseen configurations with F1-
score greater than 0.8 for the majority of the space. The results
also show that the trained imitator prevents resource saturation.
Furthermore, the imitator makes 50%−94% less false-positive
(that causes over-provisioning) compared to threshold-based
policies.

In summary, the contributions of this work are:
• IMITA, an IL-based solution that provides a systematic

method for mimicking expert’s actions in cloud orchestra-
tion and generalizing their capabilities to new deployments.

• A novel data collection heuristic to reduce the time required
to find a set of representative stack/workload configurations
to train the model. An exhaustive exploration of the entire
configuration space is infeasible; thus, our heuristic tries
to reduce the amount of data collected. To do so, we
use distance metrics over the configuration and resource
utilization spaces and take only the most difficult cases to
learn as samples.

• A software environment as a sandbox for data collection,
elasticity-aware workload generators, and executing con-
trollers.

II. BACKGROUND

In this section we first briefly explain the autoscaling
function as a well-known use case of cloud orchestration, and
then recall some basic concepts from IL and show how it can
be used in autoscaling operations.

A. Autoscaling

Autoscaling is a use case of cloud orchestration that we
built our system upon. However, our proposed solution is
general enough to be applied in other use cases, such as
migrating virtual machines across physical machines because
of noisy neighbors. An orchestration system can be modeled
as a feedback control loop, where the autoscaling function, as a
controller, scales out the resources of the target system (i.e., by
increasing the number of servers), when the performance of the
system exhibits a bottleneck. The controller continuously gives
control input to the target system, and based on the receiving
feedbacks (e.g., KPI, utilization, etc.) from the system, it scales
the resources. The feedback determines if the target system’s

performance deviates from the defined Service Level Objective
(SLO). If the performance goes below the defined threshold,
due to any bottlenecks, then the controller takes action to
resolve the deviation.

Performance bottlenecks can stem from different sources,
such as high resource utilization (a.k.a saturation), interfer-
ence, deadlocks, failures, or any other anomalies. In this work,
we focus on resource saturation as a source of bottlenecks,
but any of the aforementioned reasons can also be considered.
We define the saturation footprint as the normalized values of
a set of utilization metrics when the application resources are
saturated. Saturation can occur in a single resource or multiple
resources [17]–[19]. Single resource bottlenecks simply can be
identified by analyzing sub-linear behaviours [17]; however,
this approach does not scale in multiple bottlenecks in large
systems with dozens or hundreds of metrics. Therefore, we
consider a data-driven approach to identify saturation foot-
prints regardless of their type. Our goal is to identify as many
saturation footprints as possible, given constraints on data
collection time.

B. Imitation Learning

Imitation Learning (IL) is a family of ML algorithms, in
which a learning model (imitator) tries to learn a policy π
by mimicking an expert policy π∗ in the environment [15].
The environment is a set of states S, such that in each state
a number of actions A(S) are feasible, and the policy π is
a function from a state s ∈ S to an action a ∈ A(S). At
each point in time t, the imitator receives a state st, and takes
an action at, i.e., at = π(st). A sequence of pairs (st, at),
observed by applying the policy π on the states of the target
system over time is called a trajectory τ . Similarly, we define
the expert trajectory τ∗, a trajectory generated by the expert
policy π∗, which is considered as a reference behaviour, and
consists of a set of pairs (st, a

∗
t ), where a∗t = π∗(st).

Dataset Aggregation (DAgger) [20] is an IL algorithm to
train an imitator by re-training the model iteratively, based
on its failures. Algorithm 1 illustrates how DAgger works.
It first trains an initial policy (model) π0 on a set of the
expert trajectories τ∗. To train the policy, we use the learning
algorithm A that can be any supervised learning algorithm.
Then, in each iteration i, the trained policy πi controls the
system and annotates the states visited by the model using the
expert policy π∗. As a result, a new policy π̂i is created based

Algorithm 1: DAGGER(π∗, A,N)

1 Train← ∅
2 τ∗ ← GENERATETERAJECTORY(π∗)
3 π0 ← A(τ∗0 )

4 for i = 1..N do
5 π̂i = βiπ

∗ + (1− βi)πi−1

6 τi ← GENERATETERAJECTORY(π̂i)
7 Train = Train

⋃
τi

8 πi ← A(Train)

9 return best πi



on the trained policy from the previous iteration πi−1 and the
expert policy π∗. The parameter β (Line 5) defines how much
the expert is allowed to generate new trajectories. If β is one,
the expert is in control all the time. Afterward, iteratively a
new trajectory τi is generated using the policy π̂i, and will be
added to the training set. A new model πi is, then, trained on
the aggregated trajectories. Finally, after several iterations, the
best πj (not necessarily the last one) is returned, based on its
performance on the entire aggregated set of trajectories.

III. OUR ALGORITHM (IMITA)

In this section, we explain IMITA, our proposed IL algo-
rithm for autoscaling problems.

A. Autoscaling with Imitation Learning

IMITA incorporates IL to the autoscaling control loop. We
aim to train the imitator to behave like the expert when the
target system runs in new deployments. In this case, a state
s ∈ S consists of a vector of input feedback metrics that
demonstrates if the target system is saturated, and action a ∈
A(S) is a resource scaling action to ensure the target system
has enough resources for its tasks.

IMITA considers two types of feedback metrics: (i) yp,
the application-specific KPIs, which is given as input to the
expert, and (ii) yz , the resource utilization metrics, which
is given as input to the imitator. We define the expert’s
actions a∗ ∈ {True, False} as a binary value to identify
saturation footprints based on the performance feedback yp.
In other words, the expert policy π∗ is a mapping from ypt ,
at time t, to a binary action a∗t as an indication of saturation.
We also consider two types of actions for the imitator: (i)
actuation, denoted by U+1, to add more resources to the
system, and (ii) no-actuation, denoted by U0, to do nothing,
i.e., a ∈ {U+1, U0}.

The trajectories are collected in a controlled environment;
thus, if a bottleneck occurs at time t, the resource utilization
yz is mapped to an intended expert action a∗t . Thus, given a∗t ,
we define the imitator policy as:

π(yzt) =

{
U+1, if a∗t = True

U0, if a∗t = False

Our aim in IMITA is to find the policy π to associate
resource utilization yz to scale-out actions, either U+1 or U0,
whenever saturated footprints are observed in run-time. This
approach’s benefits are relieving cloud operators from fre-
quently configuring software stacks per application separately
while producing accurate saturation examples.

B. The IMITA Algorithm

IMITA is a novel IL algorithm, inspired by DAgger [20],
for the autoscaling problem. IMITA iteratively collects data,
aggregates them, and re-trains the model on the entire collected
dataset. We have an expert (either human-based or automated)
in the control loop during the training that we can query in
all the collected states in each iteration. However, after the
training, we have no access to the expert. To collect more

Algorithm 2: BOOSTINGHEURISTIC(π∗, A, C, θ,∆, N)

1 Train← ∅
2 c← POPFIRST(C)

3 for i = 1..N do
4 τ∗i ← GENERATETERAJECTORY(π∗, c)
5 Train = Train

⋃
τ∗i

6 πi ← A(Train)

7 δ ← CALCDIFFICULTY(A, τ∗i , θ)
8 if δ ≤ ∆ then
9 c← POPFURTHEST(C, c)

10 else
11 c← POPNEAREST(C, c)

12 return best πi

Algorithm 3: CALCDIFFICULTY(A, τ, θ)

1 len←∞
2 Train← ∅
3 D : 〈dj〉|τ|j=1 ← τ

4 for each d ∈ D do
5 Train← {d}
6 scmin ← 0

7 while scmin < θ and D \ Train 6= ∅ and |Train| < len do
8 π ← A(Train)

9 d̂← arg mini∈D\Train(score(π, i))
10 scmin ← score(π, d̂)

11 Train← Train
⋃
{d̂}

12 if |Train| < len then
13 len← |Train|

14 δ ← len/|D|
15 return δ

effective samples in the training phase, we focus on collecting
additional data only for the difficult states that cause the
model to fail at its task. The intuition is that the training on
the difficult states will lead to a more robust model within
fewer iterations compared to the random training. This is
reminiscent of existing re-weighting techniques for boosting,
as we sequentially add difficult trajectories to our training
set [21].

IMITA slightly differs from DAgger, that is, in DAgger,
the model policy π controls the system by observing states
and taking actions, and the expert policy π∗ is used to anno-
tate incorrect actions taken by the model policy. In IMITA,
however, the expert policy is used for demonstrating the right
actions of a trajectory in the training process, but the model
policy is used to forecast which unexplored configurations
are the most effective ones (i.e., the configurations that the
model policy produces the most number of wrong actions) to
explore in subsequent training. This procedure is formalized
in Algorithms 2 and 3.

Algorithm 2 (the boosting heuristic) effectively explores the
environment configuration space. As input, it gets (i) π∗, the
expert policy, (ii) A, a supervised learning algorithm, (iii)
C, a set of possible environment configurations, (iv) θ, the
minimum target score, (v) ∆, a threshold on the difficulty
of a trajectory, and (vi) N , the total number of iterations



(the number of trajectories to explore). First, the POPFIRST
function returns a configuration from the extreme points of
the available environment configuration space (i.e., minimum
or maximum settings from each dimension of configura-
tion space). Then, for the selected configuration c, we call
GENERATETERAJECTORY that queries the expert to collect
data and make the expert trajectory τ∗i in each iteration i (Line
4). The expert trajectory τ∗i consists of tuples of states (i.e.,
both performance yp and utilization metrics yz) and expert
actions a∗. We then append τ∗i to the list of training trajectories
(Line 5), and retrain the imitator’s policy πi on the aggregated
data (Line 6).

Next in Lines 7-11, first we invoke CALCDIFFICULTY, (de-
scribed in Algorithm 3) to estimate the difficulty of trajectory
τ∗i collected by the expert. If τ∗i is not difficult enough (i.e.,
its difficulty metric is less than the defined threshold ∆), then
we call the POPFURTHEST to get a new configuration that is
estimated to be highly distant (we can use different distance
metrics, but in our experiments we use Manhattan distance -
see Section V) from the explored configurations c. Otherwise,
we call POPNEAREST to get a configuration that is near to the
current configuration c. Then, we proceed to the next iteration
using this new configuration. Finally, after N iterations, we
return the best imitator π.

The goal of Algorithm 3 is to indicate the difficulty of
the input trajectory τ . For analysis purposes, we decompose
trajectories into a set D of disjoint sub-trajectories d, such
that each sub-trajectory represents a maximum trajectory sub-
sequence, where the system stays in the same state. To be more
precise, a sub-trajectory consists of a sequence of any number
of pairs with U0 actions, followed by a single pair with U+1

action. We can compute the difficulty of a trajectory by finding
the smallest set of its sub-trajectories, such that if a model
trained on them and tested on the rest of the sub-trajectories,
the accuracy metric (F1-score in our work) becomes greater
than θ. The difficulty is then defined as the ratio of the number
of sub-trajectories in the training-set over the total number of
sub-trajectories in D.

Algorithm 3, as input, gets (i) A, a supervised learning
algorithm, (ii) τ , a trajectory, and (iii) θ, a scoring threshold,
and returns δ as the difficulty of τ . We first create D as the
list of sub-trajectories of τ , and then iterate through all the
sub-trajectories in the outer-loop in the algorithm (Line 4-13).
For each sub-trajectory d, we train the model π using d, and
test it on the rest of the sub-trajectories one by one. We then
select the sub-trajectory d̂ that generates the lowest score and
append it to the training set Train. The lowest score indicates
that d̂ is the most difficult sub-trajectory among the rest of the
sub-trajectories. Thus, including it into the training set means
that we try to narrow down our training to use only the most
difficult sub-trajectories, rather than all. In Line 14 we return
the difficulty value δ as the ratio of the size smallest training
set over the total number of sub-trajectories.

Fig. 1: The architecture of the deployment environment. In this framework,
IMITA controls the applications (e.g., Cassandra) running in LXCs.

IV. IMPLEMENTATION

In this section, we describe how we use IMITA to create an
imitator for autoscaling an Apache Cassandra cluster [16], as a
use case. Below, we first describe the use case implementation
and then present how the expert indicates the minimum
requirements to run the target application and generates the
trajectories.

A. Use Case

As a use case, we show how IMITA manages a cloud
stack for Apache Cassandra [16]. Our design objective is to
provide a framework to facilitate training a generalized model
and testing it across different deployments. The expert in this
use case is a meta-algorithm that describes how one would
manually learn when to take action for given application
deployment.

Architecture and Technologies: Figure 1 illustrates the de-
ployment environment, where we use to generate the expert
trajectories and to test the trained imitators. In our design,
we can launch various applications (e.g., Cassandra, Hbase,
etc.), with variable amounts of computing resources (e.g., 2-8
CPUs 1-8 GB RAM), and a configurable number of instances
for running applications (e.g., 1-20 Cassandra servers). The
applications run on Linux Containers (LXC) for lightweight
management and a portable orchestration. We use Docker
as a management layer for containers and Docker Swarm
for treating all machines as one cluster of resources [22].
We also rely on control groups (cgroups) [23] to isolate
resources (e.g., CPU or memory) allocated to containers.
The cgroups performs a fine-grained resource allocation and
controls containers not to interfere with each other.

We use cadvisor [24], an LXC-based monitoring agent,
per machine to collect the utilization metrics yz at the
container level. The performance metrics yp (i.e., throughput
and latency) are also measured and collected by the traffic
generator’s load-balancer (explained in the next sub-section).
The traffic generator allows online control of traffic intensity.
Both yz and yp are stored in Prometheus time-series
database [25]. At each control interval, the controller queries
the suitable feedback metrics (yp or yz) from Prometheus



to make scaling decisions. During the training sessions,
the expert controls the traffic generator in order to produce
representative training patterns. Expert decisions are enforced
by an actuator that uses the Docker Swarm to control the
number of instances. It also allows changing the system
configuration parameters, such as cool-down time, concurrent
scaling, etc.

KPI Metrics yp: We take advantage of a traffic generator to
(i) generate data labeled by the expert, (ii) test the system in a
controlled environment, and (iii) characterize the performance
metrics yp under heavy loads. In this deployment, we use
Yahoo! Cloud System Benchmark (YCSB) [26] as the traffic
generator with key adaptations to allow it to scale with
the application. YCSB generates high-intensity traffic with
accurate precision for task assignment among running threads.

The existing implementation of YCSB does not scale to
multiple instances, and it can only run workloads against appli-
cations with a fixed setup during the execution of a workload.
Moreover, it only outputs the calculated performance statistics
when the workload is finished. Therefore, to have a fine-
grained evaluation, we need to add a few features to YCSB
to work with elastic systems. To do so, we modified YCSB,
such that it can reproduce time-varying traffic intensities from
external sources to stress the application. Synthetic intensity
functions and real-world workload traces can be executed
remotely by the controller. Moreover, our modified YCSB
can measure the performance statistics in configurable time-
windows.

As the performance metric yp we consider two metrics: (i)
throughput, the number of the started, finished, and failed
operations for different operation types in YCSB (i.e., READ,
UPDATE, INSERT, and DELETE), and (ii) latency, various
percentiles of the latency per operation. If Pk denotes the
kth percentile, we collect Pk for k ∈ {25, 50, 75, 90, 99, 100}
of latency per operation. At run-time, the traffic generator
pushes micro-batches of calculated throughput and latency
metrics to our time-series storage. Thus, in summary,
we collect and process three throughput metrics (i.e., for
started/finished/failed operations), and seven latency metrics
(i.e., Pk) per operation, and given four query operations in
YCSB, in total we have (3 + 7)× 4 = 40 metrics as yp.

Utilization Metrics yz: We use the cadvisor monitoring
tool [24] to collect 44 utilization metrics yz: 10 CPU-related, 7
memory-related, 17 filesystem-related, and 10 network-related
metrics per container. These metrics should be pre-processed
in order to be used by the controllers. First, we normalize them
by the total amount of available resources in the application
container. For example, CPU metrics are normalized to the
number of CPU cores in the container. We do the normal-
ization when the metrics are fetched from Prometheus [25].
Here, we use the rate of values instead of the absolute values
as they preserve an indication of trend in the final magnitude.
The indication of trend is a metadata that allows the model
to distinguish between the same absolute values occurring in

increasing and decreasing traffic trends. In the end, the pre-
processing pipeline aggregates each container’s metrics into
a single vector by summarizing them using seven quantile
measurements, i.e., Pk for k ∈ {0, 25, 50, 75, 90, 99, 100}.
Thus, each controller receives yz as a vector with 44×7 = 308
metrics.

B. Indicating the Minimal Requirements

To train an imitator, IMITA first requires the expert inter-
vention to determine the minimum system requirements for
running the target application. We need to conduct this task
only once per application; thus, it is not a time-consuming
task in the whole process. In our use case, we achieve this
by exploring the configuration space for CPU intensive work-
loads. We empirically find the minimal container requirements
for Apache Cassandra to work without failures and then
verify if horizontal scaling relieves resource saturation for such
containers in the given workloads.

If Apache Cassandra is under-provisioned, then two types
of errors are dumped into the YCSB log: errors due to (i)
connection failure, and (ii) timeouts. So, to better understand
the system behavior, we include these errors as additional
metrics to YCSB and measure the correlation between them
and resource utilization. We figure out that these errors are
correlated to the initial caching and the amount of data in
the Apache Cassandra database. Cassandra rejects connections
when the caching effect begins. The duration of the effect is
proportional to the amount of data in the database.

To overcome this problem, we decrease the amount of stored
data, as long as the system is CPU-bounded, and set the
minimum container’s RAM to 3GB to remove timeouts and
excessive memory swaps. The reason we focus on CPU is that
the horizontal scaling is not able to resolve resource saturation
involving RAM limitations. After running the experiments, we
find out the minimum CPU-bounded container flavor requires
2 CPUs and 3GB of memory for 40000 randomly generated
database rows, each 1KB (the YCSB’s default setting).

Given this flavor, we inject an increasing ramp-shaped work-
load (with 100% READ operations) and reach a throughput
bottleneck. We repeat the same experiment for clusters with
more nodes (horizontal scaling) and observe that the saturating
throughput increases with the number of nodes, though not
always monotonically. The average latency of reads is around
1ms in unsaturated states, but it increases to 100ms near
saturation. We also scale the system vertically by adding more
CPUs in each container and increasing it to 4, 8, and 16.
We observe that experiments with 4 and 8 CPUs give higher
throughput, while the 16 CPUs flavor does not provide any
noticeable benefit compared to the 8 CPUs flavor for our
workloads. In all these experiments, the requests are uniformly
distributed over the records in the database.

C. Generating Expert Trajectory

We set up the training sessions based on the trajectories
collected using the boosting data collection heuristic
(Algorithm 2). In most of the trajectories, the fraction



of time that the system is not saturated is much larger
than in saturation because the expert takes action to avoid
resource saturation. However, the lack of enough training
data exhibiting saturation is highly problematic for the
learning methods, as it produces a class imbalance in the
training examples. To circumvent data skewness, we let the
expert controller manage the training sessions for detecting
performance degradation. So, the expert injects traffic in
such a way to avoid data skewness. The expert splits the
training session into a sequence of two-phases: saturation
identification and data sampling.

Saturation Identification: The purpose of this phase is to
estimate the capacity of the current system configuration so
that the expert can gather relevant data during the subsequent
data sampling phase. To perform saturation identification, the
controller saturates the application for several epochs, with
a constant and high traffic rate that exceeds the limit that
the system can serve. Then, it calculates the capacity of the
system over that window.

Sampling Phase: The sampling phase follows saturation
identification without changing the system settings. The expert
leverages the computed system capacity from the first phase to
adjust the range of traffic used in this phase. More precisely, it
creates a ramp traffic starting from 0, and gradually increases
to twice the computed capacity value at a constant rate until
when the system becomes saturated. The expert, then, labels
all samples that occur after the first time the system exceeds
the estimated capacity as saturated, and all samples prior
that as unsaturated. The ramp traffic modeling and labeling
by the expert allow generating a balanced set of samples of
both saturated and unsaturated states. In our experiments in
Section V, the expert generates 200 samples, such that 100
samples are taken in the saturated state, and 100 samples are
in unsaturated.

V. EVALUATION

In this section, we evaluate the performance of IMITA and
present the experimental results for synthetic and real-world
workloads. In particular, we answer the following questions:
(i) how much data should IMITA collect in order to achieve
a certain level of accuracy?, (ii) to what extent can IMITA
generalize models to unseen environments?, and (iii) how does
the imitator perform as an elastic controller?

For all experiments, we use our sandbox system (Figure 1).
We deploy the sandbox on a cluster of seven servers, each with

TABLE I: Exploration space for generating trajectories.

Dimension Range

Container Flavor {C2, C4, C6}, where
Ci has i cores, and 8GB RAM

Workload Mix {100R (or R), 50R, 0R (or U)} where
xR is x% READ, (1− x)% UPDATE

Number of Nodes [1-20]

Fig. 2: This difficulty matrix shows the values
of the difficulty metric for configurations in our
configuration matrix according to Algorithm 3.

32-core AMD 6378 processors, 132GB RAM, Linux CentOS
7, and a 10Gbps network. Containers are launched on all
servers that are swarm members, connected through an overlay
network in Docker Swarm for container communication. We
use Apache Cassandra [16], as the test application in the
scaling scenario since it is a representative and widely used
distributed key-value store usually offered by cloud providers.
As described in Section IV, we use YCSB [26] as the traffic
generator. We use Random Forest as the learning algorithm
to train the imitator (A in Algorithms 2 and 3), but any other
ML algorithm could be used to implement our solution.

The environment configuration space is shown in Table I.
The first two dimensions (container flavor and workload mix)
define nine distinct configurations (3× 3) used for collecting
nine trajectories. We consider 20 scaling levels, such that each
one corresponds to one sub-trajectory; thus, we have 9×20 =
180 sub-trajectories. Given these sub-trajectories, the expert
generates 180 × 200 = 36000 samples, where each sample
is collected at a 6-second interval. As explained in Section
IV-C the 200 samples are generated by the expert, such that
the number of saturated and unsaturated samples are equal,
i.e., 100 samples. Moreover, the configuration space is defined
according to Section IV-B to satisfy the minimum required
resources.

To have a concrete definition of distance between configura-
tions, we map the configuration space into a two dimensional
matrix (as depicted in Figure 2), such that the rows represent
different container flavors sorted by number of cores (i.e.,
C2, C4, and C6), and the columns show different workload
mixes (i.e., R, 50R, and U), sorted as in Table I. Thus, we
have a 3 × 3 matrix with nine cells in total, and we use the
Manhattan distance with respect to this matrix to compute
the distance between configurations. The value in each cell
shows the difficulty value of the trajectory generated on that
configuration (as computed in Algorithm 3). For example, as
Figure 2 shows, the difficulty of C6 50R is 25%.

A. How many subtrajectories must IMITA explore?

The models’ training time is affected by several factors,
including the size of the exploration space (i.e., configuration
space), the variation of saturation footprints inside that space,
and the target accuracy. To present how much time is required
to explore our configuration space, we need to show how we
quantify the different configurations’ difficulty.

The difficulty values for the nine trajectories in our con-
figuration matrix is shown in Figure 2. We observe that
the difficulty of trajectories increases when we change the
configuration from C2 towards C6 (i.e., increasing the number
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Fig. 3: The learning curve shows that the boosting heuristic compared to
the random heuristic achieves higher F1-score faster with lower variances.

of cores). Moreover, the trajectories generated in only-update
U configurations are more difficult than their only-read R
counterparts. For C2 the read-update mix 50R is more difficult
than the only-read R and only-update U, whereas in C4 and
C6 this is the other way round. Based on our observation, the
throughput signal of C2 is less noisy than that of C6 for R and
vice versa for U. The noise in the throughput signal, which is
correlated to the throughput volume, also explains the diffi-
culty. We conclude that the amount of required training data
depends not only on the size of the environment configuration
space, but also on the difficulty of different dimensions.

We showed in Algorithm 2 the boosting heuristic that
IMITA uses to collect training data and train the imitator.
The data collection heuristic goal is to collect as few samples
as possible due to the cost of collecting data in different
configurations. We compare the F1-score of the model trained
using data collected by the boosting heuristic with the model
trained using randomly selected samples. Figure 3 shows the
result, where the x-axis is the sample collection time, and
the y-axis is the F1-score of the models on the test set. The
test set contains 20% of samples randomly selected from all
trajectories, and it is fixed in all the experiments. We repeat the
experiment 10 times, and we show the median and variance of
the F1-scores in Figure 3. Here, we use the 3×3 configuration
space presented above, in which it takes 36000 × 6 = 216K
seconds to collect all samples (considering that each sample is
collected at a 6-second interval). We set the accuracy threshold
of F1-score to be greater than 85% (θ = 0.85 and ∆ = 0.5
in Algorithm 2).

In both of the data collection heuristics (random and boost-
ing), initially, the F1-scores of the models are low because
the size of the training set is small. On the other hand, the
F1-scores of the models in the final iterations tend to the
same value for both data collection heuristics since both of
them finally explore the whole configuration space. Thus, in
Figure 3 we only focus on where we can see the impact of the
heuristics on data collection, i.e., from 60K, where the F1-
scores start taking off, to 140K, where both heuristics start
converging again.

As we can see in Figure 3, the variance of the boosting
heuristic monotonically decreases: from 0.1 in 70K, 0.02
in 93K, to 0.015 in 140K. In this period, the median F1-
score of the boosting heuristic is always superior to the
random heuristic’s median, and its variance is about 1/3 of

Fig. 4: Each small cell represents an environment configuration, and the
cell-value is the F1-score of the models trained in that configuration. The
bold values highlight the training configurations for that block.

the random’s. Moreover, the boosting heuristic achieves 0.81
F1-score with 0.02 variance by 93K seconds, whereas the
random heuristic’s median gets to 0.81 with 0.04 variance
by the time of 125K seconds. The variance of the random
heuristic converges to 0.02 around 180K seconds. Therefore,
the random heuristic requires 34% more data to get to the
median score, and it needs 100% more data to become
robust compared to the boosting heuristic. Practically, the data
collection in the boosting heuristic can be stopped after 26
hours (93K/3600). In contrast, the random heuristic needs to
collect data ≈ 36 hours and ≈ 50 hours for the same median
and the same variance, respectively.

B. How well do models generalize?

We run an experiment to illustrate how well the trained
model (i.e., imitator) performs on unseen configurations. As
Figure 4 shows, from the nine existing configurations (3 ×
3 configuration space), we train the model using only two
configurations (shown in bold and with *). The trained model
is then tested on the next seven configurations of that block.
Figure 4 has five block-columns, shown as Read-Extremes,
Update-Extremes, Small-Flavors, Large-Flavors, and Cornet-
Extreme. Each of the first four block-columns indicates the
configurations used for training the model. For example, in the
Read-Extreme, only the configurations with only-read R are
used for training, and in Large-Flavors, only the configurations
with C6 are used for training. In the Corner-Extreme, unlike
the first four block-columns, four configurations are used for
training. Moreover, given that we collect one trajectory that
contains 20 sub-trajectories for a configuration, we present the
minimum, the 25th percentile, and the median of F1-scores
in distinct block-rows separately.

As a general trend, we see that in all the blocks, the further
away a cell is located from the training cells (by Manhattan
distance), the darker color or, the lower value the cell has:
the training cells have the highest F1-scores, then their direct
neighbors, and the forth. Intuitively, in this two-dimensional
configuration space, the model that is trained on a config-
uration, such as C2 R, performs better on a configuration
that varies only on one dimension, such as C2 50R, than
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Fig. 5: Testing the imitator on an unseen configuration (C6 50R). We execute real traffic traces from the web-site access dataset for the 1998 World Cup.

another configuration that varies on both dimensions, such as
C4 50R. As we change the training configurations in different
block-columns, we still observe the same trend regardless of
training the model on only-read traffic, only-update traffic,
small container flavors, or large container flavors. However,
this general trend has some exceptions that are due to different
difficulty levels in different configurations (as Figure 2 shows).
For example, the top-3 most difficult trajectories, C6 U, C4 U,
and C6 R according to Figure 2, also tend to yield low F1-
scores when they are not part of the training set. The C2 U
and C6 U also behave differently, as C2 U has a low F1-score
even when part of the training set.

C. How efficient is IMITA as an elastic controller?

To test the imitator under various workloads, we inject
traffic traces based on web-site access patterns for the World-
cup98 [27], as these patterns capture important phenomena like
traffic surges. We aggregate requests on a one-minute time-
scale, scale them up to saturate our cluster, and stretch the
traces to a time-horizon of 1600 samples. We selected four
traces (Big Spike, Dual Phase, Large Variations, and Steep-
Tri-Phase) resembling some important patterns presented in
the literature [28], [29]. As the test configuration, we choose
the 50R workload, and a five cores container, C5. We launch
Cassandra with one seed node and one data node per run.
Figure 5 shows traffic throughput, resource adaptation, and
SLO violations for the mentioned runs.

Each column of Figure 5 shows the system behavior per
traffic pattern. The first row compares the request arrival rate
against the request service rate, and as we see, the two plots
match almost entirely for all the traffic patterns as the imitator
scales out the system as required. The second row compares
the amount of resource demand against the amount of supplied
resource by the imitator. According to a measurement that we

TABLE II: The false-positive benchmark of autoscaling policies shows that
the imitator makes 50 − 94% fewer mistakes compared to threshold-based
policies over the traffics of Figure 5.

Policies Big S. Dual Ph. Large Var. S. Tri Ph.

Single Metric 10 37 6 16
Rule-Based 18 81 13 31
DT Imitator 11 20 10 8
RF Imitator 1 6 3 3

TABLE III: Fulfilment analysis of Cassandra’s SLO targets when or-
chestrated with the imitator. We set two target SLOs to obtain 99th and
90th percentile latency of 300ms and 50ms, respectively. We calculate SLO
violations, V 99

300 and V 90
50 these SLOs, using the runs in Figure 5.

Latency SLO Big S. Dual Ph. Large Var. S. Tri Ph.

V 90
50 READ 0.69% 1.25% 0.36% 0.30%

V 99
300 READ 4.14% 1.08% 0.60% 0.72%

V 90
50 UPDATE 0.46% 0.48% 0.12% 0.18%

V 99
300 UPDATE 4.77% 2.15% 0.91% 1.09%

carried out based on the elasticity metrics from BUNGEE [30],
the imitators have zero under-provisioning on all runs except
the Steep-Tri-Phase, which incurs under-provisioning with an
average of 2% resource units in the entire run. As expected,
since our imitator does not scale-in, there is significant over-
provisioning at the end of the run for these traces. Interestingly,
in the last three traffic patterns, IMITA appears to over-
provision at the start of the trace. This is actually due to non-
monotonic behavior in the throughput capacity (for example,
the expert finds out that four nodes have lower throughput
capacity than three nodes). Therefore, the amount of over-
provisioning is not the product of false-positive actions.

False-positive actions are one of the main reasons for over-
provisioning, mainly related to the accuracy of controllers.
We evaluate the imitator created in IMITA by comparing its
performance in four different autoscaling policies, presented
in Table II. We calculate the false-positive decisions that the



imitator makes out of the 1600 actions of the presented runs.
The benchmark is based on true labels that are produced by the
saturation identification procedure, explained in Section IV-C.
Here, we use four different learning algorithm (A in Algo-
rithms 2 and 3) to build the imitator as below:

1) A single-metric threshold-based controller that takes ac-
tions based on the CPU usage.

2) A rule-based controller that considers CPU usage and
received network packets to take actions.

3) A decision tree controller with depth of 16 that takes into
account all the resource utilization metrics yz .

4) A random forest controller that consists of 128 decision
trees with depth 8, which are built using all the resource
metrics yz .

The first two policies result from training depth bounded
decision trees on all the resource metrics yz; thus, the used
metrics in those policies are the most important ones. Sur-
prisingly, the single metric policy seems to be more generic
than the simple rule-based, revealing that more complex rules
do not necessarily generalize better. Similarly, the decision
tree model is inferior to the single metric policy in Big Spike
and Large Variation traffics. However, it has almost 50%
fewer false-positives in Dual Phase and Steep-Tri-Phase. The
random forest model performs very accurately for these unseen
configurations, having only 1 − 6 deviation in decisions than
the expert.

Moreover, to quantify how well the imitator adheres to an
SLO, we define two SLO targets in tail latency (a short tail
latency is a desirable SLO). We do not use throughput, as
it is the expert’s KPI metric to identify resource saturation.
The two SLO targets are: SLO1: P99(latency) < 300ms, and
SLO2: P90(latency) < 50ms. We calculate the percentage of
SLO violations (V in Table III) as the proportion of epochs
violate the total number of epochs for each run. The third
row of Figure 5 shows the percentiles latency along with a
smoothed bezier curve of their values to give an idea about
their distribution, as the x-axis is quite dense. The scale-out
actions taken by the imitator keep both SLOs consistent under
their bounds. As Table III shows, IMITA has an average
of 2.23% of violations for SLO1, with the worst-case being
4.77% for the Big Spike. The number of violations for SLO2 is
0.31% on average, with the worst case for Dual-Phase, that has
0.48%, which is promising since latency was not considered
at training time. Thus, results show that tail latency issues
are quite infrequent for the imitator deployed in an unseen
environment, even during large traffic variations.

VI. RELATED WORK

We classify the autoscaling experts by the type of metrics
used, as listed below.

Autoscaling experts based on KPI metrics: KPIs used in
autoscaling scenarios are typically the round-trip time [13],
the response time [31], [32], the throughput [33], and the
deadline [34]. KPI-based autoscalers are accurate when
designed by domain experts but are also limited to the

specific application environment. KPI-dependent models with
fixed run-time parameters are dependent on their design-time
setup (e.g., state-space modeling [35]), whereas solutions with
tunable parameters are slightly adaptive to new operational
setups [33], [36], [37]. ML-based solutions [28], [34], [38],
or fuzzy logic-based [28], [39] have the most precise models.
The downside, however, is the need for re-training in new
environments. Hybrid controllers and control switching
solutions are suggested in [40]–[42] and [43], respectively.
Both groups come short in generalizing to new environments
and can be unstable during workload surges.

Autoscaling experts based on platform metrics: These
solutions can be optimized for performance [44] or resource
utilization objectives [45]. Queuing [46] and blackbox
models [47], [48] are used in fixed-gain autoscalers, where
the model parameters are estimated offline, and therefore
remain fixed at runtime. The self-tuning blackbox controller
in [49] and the parameter estimation based on Kalman
filter in [45] can adapt to varying workloads but are
application-specific. AGILE [9] uses online CPU prediction
by curve-fitting on wavelet signals. Although it is accurate, it
requires re-training to be used in new environments.

Autoscaling experts based on both KPI and platform met-
rics: Compared to the previous two classes, this class of
autoscaler can better relate performance degradation to sat-
uration, resulting in more accurate scaling actions [50], [51].
Techniques include ML [10], [11] and fuzzy systems [39],
[52]. However, as mentioned above, the use of KPIs introduces
environment-dependency issues that complicate software pro-
visioning/operation.

VII. CONCLUSIONS

In this paper, we have introduced the concept of imitation
learning (IL) for cloud orchestration. It enables the domain
experts to train machine learning (ML) models that can be
easily generalized across deployments, simplifying operations.
As IL is based on expert examples (trajectories), it requires less
data collection to converge to an appropriate model compared
to other approaches. To demonstrate this concept, we imple-
mented IMITA, a controller model based on IL, to imitate
the expert autoscaling functions. IMITA relies on platform
metrics (instead of application-specific KPIs) that allow the
learned model (imitator) to extrapolate the expert behavior to
new environments. Experiments show that IMITA effectively
learns to autoscale the application in an environment for which
it was not trained – avoiding resource under-provisioning with
fewer false-positive scale-out actions than baseline approaches.
As future work, we plan to include more orchestrator actions
such as vertical scaling and migration to achieve a generic
solution for a broader class of applications.
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