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Abstract. Deep neural networks used for computer vision tasks are
typically trained on datasets consisting of thousands of images, called
examples. Recent studies have shown that examples in a dataset are not
of equal importance for model training and can be categorized based
on quantifiable measures reflecting a notion of “hardness” or “impor-
tance”. In this work, we conduct an empirical study of the impact of
importance-aware partitioning of the dataset examples across workers
on the performance of data-parallel training of deep neural networks.
Our experiments with CIFAR-10 and CIFAR-100 image datasets show
that data-parallel training with importance-aware partitioning can per-
form better than vanilla data-parallel training, which is oblivious to the
importance of examples. More specifically, the proper choice of the im-
portance measure, partitioning heuristic, and the number of intervals
for dataset repartitioning can improve the best accuracy of the model
trained for a fixed number of epochs. We conclude that the parameters
related to importance-aware data-parallel training, including the impor-
tance measure, number of warmup training epochs, and others defined in
the paper, may be considered as hyperparameters of data-parallel model
training.
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1 Introduction

Data-parallel training (DPT) is the current best practice for training deep neural
networks (DNNs) on large datasets over several computing nodes (a.k.a. work-
ers) [11]. In DPT, the DNN (model) is replicated among the workers, and the
training dataset is partitioned and distributed uniformly among them. DPT is
an iterative process where in each iteration, each worker trains its model replica
on its dataset partition for one epoch. After each iteration, the parameters or
gradients of the worker models are aggregated and updated. Then, all work-
ers continue the training using the same updated model replicas. This “vanilla”
DPT scheme is shown in Figure 1.

The dataset partitions in vanilla DPT are constructed by random partition-
ing, i.e., randomly assigning training examples to each partition. However, it is
known that not all examples within a training dataset are of equal importance for
training DNNs [13, 3, 2, 6] meaning that different examples contribute differently
to the training process and the performance of the trained model (e.g., its pre-
diction accuracy). Prior works have used example importance to improve DNN
training schemes, mainly aiming at reducing the total training time or increas-
ing the performance of the trained models. For example, in dataset subset search
[3], the goal is to find subset(s) of a given training dataset that can be used to
train equally good or more performant models compared to the models trained
on the initial dataset. Example importance has also been used for developing
more effective sampling algorithms for stochastic gradient descent (SGD) [6], or
in active learning for choosing the best examples to label [2].
Contributions. All the above-mentioned solutions are mainly designed for non-
distributed model training. In this paper, we study different heuristics to assign
examples, based on their importance, to workers in a distributed environment
and in DPT. In particular, the contributions of this work are as follows.

– We introduce importance-aware DPT, which replaces the random partition-
ing of the dataset across workers in vanilla DPT, with heuristics that par-
tition the dataset based on some pre-determined notion of example impor-
tance, e.g., the average loss value of each example over a number of training
epochs.

– We study the effects of the hyperparameters of importance-aware DPT, in-
cluding different (i) example importance measures and metrics, (ii) partition-
ing heuristics, and (iii) partitioning intervals, on the quality of the training
scheme. Our experiments for image classification tasks on CIFAR-10 and
CIFAR-100 datasets demonstrate that importance-aware DPT can outper-
form vanilla DPT in terms of the best test accuracy achieved by models.

The remainder of this paper is structured as follows. In Section 2, we pro-
vide the necessary background, including an overview of DPT and a review of
some related work. In Section 3, we present importance-aware DPT and discuss
how it differs from vanilla DPT, which is importance-oblivious. In Section 4, we
discuss our prototype implementation of importance-aware DPT in PyTorch. In
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Fig. 1. The vanilla DPT scheme with four workers and one parameter server. At each
epoch, each worker gets a random partition of the dataset, and all the workers are
assigned the same model replica. After one epoch of training, the workers send their
local gradients or model parameters to the parameter server. The parameter server
performs either gradient aggregation or model aggregation and sends back the new
gradients or parameters to the workers.

Section 5, we present the results of our experimental evaluation of importance-
aware DPT. Finally, in Section 6, we give our conclusions and discuss the current
limitations of our importance-aware DPT prototype and further research direc-
tions.

2 Background and Related Work

Our work presented in this paper lies in the intersection of data-parallel DNN
training and prior work that studies the difference of examples within a dataset
in terms of their importance for model training. In this section, we give a brief
overview of the DPT of DNNs and some related work on example importance.

2.1 DNN Data-Parallel Training (DPT)

Given a training dataset D consisting of training examples e ∈ D, the aim of
training the model M is to optimize model parameters with regards to a cost
function, e.g., Mean Squared Error or Binary Cross-Entropy, using an iterative
optimization algorithm, e.g., Stochastic Gradient Descent. A training dataset
is typically made up of examples of a specific type, such as images, structured
data, or sentences. During each epoch of training, batches of examples are passed
through the model, and model parameters are optimized using the iterative
optimization algorithm. To scale out the training process, one can use multiple
processing nodes, a.k.a. workers, and partition the DNN (for model-parallelism)
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or the dataset (for DPT) and assign them to the workers to enable parallel
training. For our purposes, we define a worker w ∈ W as a process within a
processing node that is allocated exactly one GPU, i.e., each worker corresponds
to exactly one GPU in our cluster of processing nodes.

In a typical most common DPT scheme, which we refer to as vanilla DPT,
the DNN is replicated across the workers. At the beginning of each epoch, the
dataset is partitioned uniformly at random into disjoint subsets p ∈ P , such
that worker wi is allocated the partition pi (dataset partitioning step). More

formally, P =
⋃n−1

i=0 pi such that pi ∩ pj = ∅ for i ̸= j; and pi ̸= ∅ for each i.
For simplicity, we assume that the number of examples in the dataset, or |D|, is
divisible by the number of workers, n = |W |; but the approach and results can
easily be extended to cases where the assumption does not hold.

During an epoch, each worker independently trains its own replica of the
DNN model (local training step) on its own partition pi. At the end of an epoch,
a model synchronization step occurs, e.g., using a parameter server, and the
workers get a new identical replica of the model. This process is repeated for
a specified budget (e.g., a pre-determined number of epochs) or until a model
convergence criterion or performance metric is satisfied. We are interested to see
if using a partitioning function, based on notions of example importance, may
lead to better results compared to vanilla DPT’s random partitioning in terms
of the target performance metrics. We define the importance of an example,
denoted by Imp, as a mapping of an example to a scalar value:

Imp : e → R (1)

In practice, to implement Imp, a certain property of the example or the result
of its interactions with the model (e.g., the loss generated by the example after a
forward pass) is used in combination with an aggregation method (e.g., average,
or variance of the losses over a number of epochs).

A partitioning function PartitioningFunctionmaps the examples to workers
to create the set of partitions P , where each worker wi gets the partition pi. We
are interested in using the output of Imp to construct the PartitioningFunction.
Example definitions for a PartitioningFunction are explained in Section 3.3.

2.2 Prior Work on Example Importance

The diversity of examples in training datasets has attracted increasing attention
in recent years and has been exploited to improve the state-of-the-art in domains
such as dataset subset search [3, 13, 12] and sampling for SGD [2, 14, 13, 6].

Chitta et al. [3] propose an ensemble active learning approach for dataset
subset selection using ensemble uncertainty estimation. They also show that
training classifiers on the subsets obtained in this way leads to more accurate
models compared to training on the full dataset. Isola et al. [5] investigate the
memorability of different examples based on the probability of each image being
recognized (perceived as a repetition by the viewer) after a single view and train
a predictor for image memorability based on image features. Memorability is
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also a familiar phenomenon to humans, as we can all think of images or visual
memories that have stuck more in our minds compared to other images. Arpit
et al. [1] define example difficulty as the average misclassification rate over a
number of experiments.

Chang et al. [2] propose to prefer uncertain examples for SGD sampling,
e.g., the examples that are neither consistently predicted correctly with high
confidence nor incorrectly. They use two measures for “example uncertainty”: (i)
the variance of prediction probabilities and (ii) the estimated closeness between
the prediction probabilities and the decision threshold. Yin et al. [14] observe
that high similarity between concurrently processed gradients may lead to the
speedup saturation and degradation of generalization performance for larger
batch sizes and suggest that diversity-inducing training mechanisms can reduce
training time and enable using larger batch sizes without the said side effects in
distributed training.

Vodrahalli et al. [13] propose an importance measure for SGD sampling based
on the gradient magnitude of the loss of each example at the end of training and
use this measure to select a subset of the dataset for retraining. This measure can
also be used to study the diversity of examples in datasets. Katharopoulos and
Fleuret [6] propose an SGD sampling method that favors the more informative
examples, which they describe as the examples that lead to the biggest changes
in model parameters. Toneva et al. [12] propose forgettability as an importance
measure for dataset examples. A forgettable example is an example that gets
classified incorrectly at least once, after its first correct classification, over the
course of training. They also suggest that the forgetting dynamics can be used
to remove many examples from the base training dataset without hurting the
generalization performance of the trained model.

Finally, in the domain of natural language processing, Swayamdipta et al. [10]
have investigated the difference in example importance. They introduce data
maps and calculate two measures for each example: the confidence of the model
in the true class and the variability of the confidence across different epochs in
a single training run. They then categorize the examples into three categories:
easy-to-learn, ambiguous, and hard-to-learn.

3 Importance-aware DPT

Importance-aware DPT consists of three stages of model training, as shown in
Figure 2. In the first stage, which we refer to as warmup training, we train the
DNN using vanilla DPT for a number of “warmup” epochs (Ewarmup). Blocks
(1) and (2) in Figure 2 show the first stage. In the second stage, we calculate the
importance of each example according to a predefined importance measure, e.g.,
the average loss value of each example over Ewarmup training epochs. In the third
stage (blocks (3)-(5) in Figure 2), we continue training using importance-aware
DPT in several intervals. Each interval consists of three steps: (i) dataset parti-
tioning, i.e., assigning examples to partitions based on a heuristic and allocating
one partition to each worker, (ii) model training, i.e., training the DNN using
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Fig. 2. An overview of Importance-aware data-parallel training. The model is first
trained with Vanilla DPT for Ewarmup epochs, after which the random dataset par-
titioning is replaced with heuristic-based dataset partitioning, and the dataset is par-
titioned at the beginning of each interval of training rather than at the beginning of
each epoch.

those fixed partitions for Einterval epochs, and (iii) example importance calcula-
tion, in which we recalculate and update the importance value of each example
for the next interval. In the rest of this section, we discuss importance-aware
DPT in more detail.

3.1 Warmup Training

In the first stage, warmup training, the model is trained with vanilla DPT for
Ewarmup epochs, in which the dataset is randomly partitioned among the work-
ers at the beginning of each epoch. We collect the value(s) needed for calculating
the importance of examples during this stage. In this work, we use the loss value
(the result of backpropagation forward pass) of each example in each epoch to
calculate its importance value, which is the average loss over a number of epochs.
It is worth noting that we will discard the loss values from the first Eignore epochs
in warmup training (e.g., the first three epochs), as the losses generated in the
first few epochs are influenced by the random initialization of the neural network
to a high degree.

3.2 Importance Calculation

The second stage is a pause in model training, in which we calculate the impor-
tance of examples using values collected during warmup training. To demonstrate
how this works, consider we calculate the importance of each example using “av-
erage loss across epochs”. To do this, during warmup training, we collect the loss
values (the result of the forward pass) of each example across Ewarmup epochs.
At the end of warmup training, we will have a matrix such as in Figure 3. In this
matrix, each row corresponds to a single example, and each column corresponds
to an epoch. Hence, an element ai,j in the matrix is the loss value of example
i in epoch j. Calculating the importance of each example would then require
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... ... ... ...
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Fig. 3. example-epoch-loss matrix that is used to calculate the importance score of
each example.

Fig. 4. Depiction of Stripes (left) and Blocks (right) partitioning heuristics for a
setting with eight examples (indexed in order of importance) and four workers.

a simple aggregation or computation over each row, e.g., a row-wise average.
At the end of this stage, we have one or more scalar values attributed to each
example, indicating its importance, which we use for sorting or categorizing the
examples in the next stage (dataset partitioning).

3.3 Dataset Partitioning Heuristics

Now that we have a mapping between examples and their importance values, we
can use various heuristics to proceed with dataset partitioning for importance-
aware DPT. Remind that in vanilla DPT, the examples are partitioned randomly
across the parallel workers at the beginning of each epoch. We have defined two
such heuristics, namely Stripes and Blocks, and compared them with random
partitioning (i.e., vanilla DPT).

Stripes Heuristic. The Stripes partitioning heuristic is a cyclic assignment of
examples to workers. The intuition behind using this heuristic is to preserve the
same distribution of examples with regard to their importance values, in each
partition. To this end, we sort the examples of the dataset D by their importance
value and create a list called Sorted Examples (SE). Then, the partition Pi that
is allocated to worker wi is determined as:

Pi = {e ∈ D | sorted index(e) ≡ i( mod n)} (2)



8 S. Sheikholeslami et al.

where sorted index(e) returns the index of example e in the sorted list SE, n is
the number of workers, and i = 0, ..., n − 1. The Stripes heuristic is depicted
on the left side of Figure 4.

Blocks Heuristic. This partitioning heuristic assigns a continuous block of
examples to each worker so that we will end up with different importance distri-
butions across the workers. Assuming n workers, the Blocks heuristic allocates

the first |D|
n examples ranked in the SE list to the first worker, the second |D|

n
of SE to the second worker, and so on. Thus, the partition Pi that is allocated
to worker wi using the Blocks heuristic is determined as follows:

Pi = {e ∈ D | i× |D|
n

≤ sorted index(e) < (i+ 1)× |D|
n

} (3)

where sorted index(e) returns the index of example e in the sorted list SE and
i = 0, ..., n− 1. The Blocks heuristic is depicted on the right side of Figure 4.

3.4 Intervals of Model Training

After warmup training, calculating example importance, and partitioning the
dataset based on the importance values, we continue model training using fixed
partitions in intervals, each comprising of Einterval epochs. At the beginning of
each training interval, we repartition the dataset using the importance values
calculated during the previous interval. This means that dataset repartitioning
only occurs at the beginning of each interval rather than at the beginning of
every epoch (as in vanilla DPT).

4 Implementation in PyTorch

This section presents the implementation details of importance-aware data-
parallel training in PyTorch v1.10.1 [8, 9]. The implementation is mainly based
on several classes and methods that (i) track and calculate the importance of
examples as explained in Sections 3.1 and 3.2, (ii) partition the dataset across
workers based on importance-aware heuristics defined in Section 3.3, and (iii)
resume and continue the model training for fixed intervals of Einterval epochs as
described in Section 3.4.

4.1 Importance Calculation

Our proof-of-concept implementation of importance-aware DPT provides impor-
tance calculation for each example based on its average forward pass loss across
a number of epochs. Loss function implementations in PyTorch, by default, do a
batch-wise reduction on the losses and return a scalar aggregate value (e.g., the
average loss of examples in the mini-batch when using CrossEntropyLoss3). To

3 As described in https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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get individual (per example) loss values, we construct an additional loss function
of the same type and set its reduction parameter to None. This way, this loss
function returns a tensor instead of a scalar.

Hence, each step of the training consists of two forward passes: the first
one uses the customized loss function and writes values to a local worker copy
of a loss-epochs matrix similar to the one depicted in Figure 3, and the second
forward pass uses the default loss function implementation which is used with the
backward pass. Each worker maintains its own copy of the loss-epochs matrix,
and before each dataset partitioning step, the workers wait at a barrier (by calling
torch.distributed.barrier()) for the main process to merge the local copies
and aggregate, i.e., to compute the row-wise average which is the average loss
of each example across the epochs. The output of this step is a sorted list of
tuples (example, importance value) - the Sorted Examples list introduced in
Section 3.3, that is used with the importance-aware partitioning heuristics.

4.2 Dataset Partitioning Heuristics

In PyTorch, the DistributedDataSampler class implements the logic for as-
signing examples to workers. By default, this class contains an implementa-
tion of random sampling, so we extend this class and add a sampler, called
ConstantSampler, to arbitrarily assign the examples to workers. In this way,
we decouple the implementation for assigning examples to workers, from the
implementation of importance-aware partitioning heuristics. Hence, the same
ConstantSampler can be used with different partitioning heuristics.

A dataset partitioning heuristics provides a mapping between examples and
workers. We implement this mapping in PyTorch by creating a dictionary (dict)
with worker indices as keys and a list of example indices as the value of each key.
Depending on the heuristic, filling in this dictionary would then require iterating
over the list of examples or workers. The result of this step, which is a dict that
maps examples to workers, is used to construct a ConstantSampler instance that
assigns the dataset examples across the workers. Once the ConstantSampler

instance is constructed, the main process also reaches the barrier, so all the
worker processes exit the barrier they had entered before merging their local
matrices (as described in the previous section).

4.3 Modified Training Loop for Importance-aware Training

Model training in PyTorch typically consists of a few blocks of code for setting up
the training (e.g., downloading the dataset, constructing the train/test/validation
folds and data samplers, and creating the model), followed by a single loop for it-
erative training of the model. To implement different stages of importance-aware
DPT, we first break down the default training loop into two separate loops: one
for warmup training (Section 3.1) and the other for intervals of importance-aware
training (Section 3.4). The first loop is similar to a typical PyTorch training loop
but is extended with code to track and calculate the importance of examples.
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The second loop is nested: an outer loop maintains the intervals, while the in-
ner loop contains the code for the actual dataset partitioning step, the example
importance calculation step, and the model training step.

5 Evaluation

In this section, we describe our experimental setup and scenarios and discuss the
results of the experiments. When talking about “model performance” we mainly
refer to best test accuracy of a model trained for 100 epochs. Our hardware setup
consists of a single machine with 4 GeForce RTX 2070 SUPER graphic cards,
so we train on 4 workers.

5.1 Experimental Setup

To be able to empirically evaluate the effects of importance-aware dataset parti-
tioning on the performance of DPT systems, we use two well-known DNN archi-
tectures for image classification: ResNet-18 and ResNet-34 [4] and train them on
CIFAR-10 and CIFAR-100 datasets [7]. We use official PyTorch implementations
of the models4 and initialize them with random weights. In total, our experi-
ments consist of 1830 training runs across 183 workloads (different combinations
of datasets, models, partitioning heuristics, importance metrics, Ewarmup, and
Einterval). Three of these 183 workloads use vanilla DPT (ResNet-18 on CIFAR-
10, ResNet-34 on CIFAR-10, and ResNet-34 on CIFAR-100), and we use them
as baselines for comparison. For all runs that use importance-aware DPT, we
set Eignore to 5. We use the same hyperparameters for all runs of vanilla DPT
and importance-aware DPT, i.e., SGD with a 0.9 Nesterov momentum and a
learning rate starting at 0.1 and weight decay (L2 penalty) of 0.0005.

Considerations for Randomness: The training process of DNNs is a stochas-
tic one and is affected by many factors, e.g., choice of hyperparameters, stochas-
ticity in the optimization algorithms, and the stochastic behavior of the tools,
frameworks, and hardware used for training [15]. To better control for this
stochasticity, each of the 183 workloads is repeated ten times using ten pre-
determined global random seeds. In Tables 1-5, we report the average best test
accuracy and standard deviation of ten runs for each workload. Also, the box
plot of the performance of the top five settings of each table, alongside the per-
formance of the corresponding baseline (vanilla DPT), is shown in Figure 5.

5.2 Different Dataset Complexities

We consider workloads of (ResNet-34, Stripes, Variance) with each of the
CIFAR-10 and CIFAR-100 datasets. The results of the runs can be seen in Ta-
bles 4-5, and in Figure 5 subfigures (4)-(5). CIFAR-10 and CIFAR-100 contain

4 See https://pytorch.org/vision/main/models.html
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Fig. 5. Box plots comparing the performance of the top 5 settings of Ewarmup (W) and
Einterval (INT) for different combinations of (Dataset, Model, Partitioning Heuristic,
Importance Metric). The leftmost box plot in each subfigure is the performance of
vanilla DPT (baseline), and the other five box plots are ordered in decreasing average
best test accuracy. The white square on each box plot denotes the average best test
accuracy for a setting. Each subfigure (1)-(5) corresponds to a table with the same
number, which contains the average best test accuracies and standard deviations over
ten runs for each of the combinations of W and INT.
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Table 1. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Einterval (I), when training ResNet-18
on CIFAR-10 with Stripes policy and loss variance as the importance metric. The
baseline (using vanilla DPT) is 82.983±0.327.

W
I

1 5 8 10 15 30

10 82.766±0.185 82.848±0.278 82.742±0.152 82.862±0.237 82.836±0.387 82.988±0.299
15 82.743±0.373 82.752±0.157 82.891±0.302 82.888±0.296 82.958±0.247 82.873±0.262
20 82.776±0.243 82.832±0.262 82.749±0.309 82.722±0.221 82.878±0.283 83.044±0.311
30 82.846±0.202 82.858±0.376 82.837±0.263 82.946±0.204 82.843±0.307 82.773±0.266
40 82.946±0.246 82.773±0.208 82.985±0.238 82.869±0.364 82.815±0.296 82.827±0.161
60 82.813±0.283 82.898±0.300 82.882±0.152 82.764±0.293 82.830±0.249 82.705±0.415

Table 2. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Einterval (I), when training ResNet-18 on
CIFAR-10 with Stripes policy and average loss as the importance metric. The baseline
(using vanilla DPT) is 82.983±0.327.

W
I

1 5 8 10 15 30

10 82.941±0.262 82.880±0.339 82.859±0.312 82.815±0.290 82.836±0.226 82.891±0.195
15 82.885±0.231 82.816±0.287 82.841±0.316 82.778±0.259 82.866±0.260 82.773±0.247
20 82.952±0.314 82.913±0.247 82.903±0.240 82.889±0.265 82.841±0.278 82.919±0.210
30 82.939±0.294 82.854±0.185 82.853±0.236 82.889±0.227 82.743±0.335 82.929±0.279
40 82.864±0.138 82.903±0.152 82.883±0.225 82.766±0.220 82.905±0.244 82.851±0.236
60 82.908±0.337 82.931±0.339 82.818±0.245 82.956±0.228 82.806±0.195 82.758±0.237

the same number of examples in train (50000 examples) and test (10000 exam-
ples) subsets, but they differ in the number of classes. CIFAR-10 has ten classes
(5000 training examples per class), and CIFAR-100 has 100 classes (500 training
examples per class). Hence, CIFAR-100 has a higher complexity than CIFAR-10
in terms of classes.

The results show that there are several combinations of (Ewarmup, Einterval)
for training settings that can train better models than vanilla DPT. Thus, the
gains of importance-aware DPT seem to hold across different datasets, given
that we can find and select good hyperparameters for the training setting (e.g.,
Ewarmup and Einterval).

5.3 Different Models

We consider workloads of (CIFAR-10, Stripes, Variance) with each of the
ResNet-18 (18 layers, 8 residual blocks) and ResNet-34 (34 layers, 16 residual
blocks) models [4]. The results of the runs can be seen in Tables 1 and 4, and in
Figure 5 subfigures (1) and (4). There are combinations of (Ewarmup, Einterval)
corresponding to each model that train better models than their corresponding
baselines, but ResNet-34 shows to gain more from importance-aware DPT than
ResNet-18.
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Table 3. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Einterval (I), when training ResNet-18 on
CIFAR-10 with Blocks policy and loss variance as the importance metric. The baseline
(using vanilla DPT) is 82.983±0.327.

W
I

1 5 8 10 15 30

10 82.921±0.352 83.067±0.270 82.778±0.426 82.743±0.218 82.662±0.240 82.706±0.165
15 82.992±0.321 82.899±0.308 82.890±0.253 82.805±0.165 82.664±0.178 82.109±0.338
20 82.845±0.292 82.939±0.376 82.850±0.429 82.716±0.205 82.747±0.289 82.523±0.165
30 82.956±0.189 82.942±0.309 83.055±0.153 82.954±0.382 82.815±0.247 82.583±0.206
40 83.001±0.270 82.861±0.336 82.786±0.247 82.925±0.18 82.865±0.177 82.894±0.254
60 82.918±0.348 82.873±0.283 82.848±0.271 82.886±0.273 82.884±0.228 82.462±0.222

Table 4. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Einterval (I), when training ResNet-34
on CIFAR-10 with Stripes policy and loss variance as the importance metric. The
baseline (using vanilla DPT) is 82.661±0.478.

W
I

1 5 8 10 15 30

10 82.650±0.547 82.653±0.399 82.590±0.395 82.621±0.243 82.751±0.461 82.753±0.632
15 82.537±0.332 82.424±0.510 82.745±0.401 82.799±0.481 82.832±0.239 82.433±1.020
20 82.845±0.441 82.659±0.637 82.787±0.407 82.606±0.541 82.890±0.321 82.492±0.300
30 82.671±0.434 82.539±0.307 82.719±0.509 82.920±0.287 82.594±0.434 82.720±0.589
40 82.669±0.426 82.773±0.403 82.422±0.728 82.530±0.305 82.649±0.339 82.562±0.353
60 82.789±0.336 82.615±0.342 82.683±0.397 82.768±0.525 82.678±0.451 82.622±0.661

5.4 Different Partitioning Heuristics

We consider workloads of (CIFAR-10, ResNet-18, Variance) with each of the
Stripes and Blocks heuristics. The results of the runs can be seen in Tables 1
and 3, and in Figure 5 subfigures (1) and (3).

The results show that for both heuristics, there are combinations of (Ewarmup,
Einterval) that can train better models than vanilla DPT. It is particularly inter-
esting that training using the Blocks heuristic shows comparable performance
to training with both Stripes heuristic and vanilla DPT.

5.5 Different Importance Metrics

With the loss values generated by each example in forward passes across sev-
eral epochs as our importance measure, we evaluate the effects of the choice of
two different metrics: average loss and loss variance. We consider workloads of
(CIFAR-10, ResNet-18, Stripes) with each of the above metrics. The results
of the runs can be seen in Tables 1-2, and in Figure 5 subfigures (1)-(2). Loss
variance as an importance metric performs marginally better than the average
loss.

5.6 Added Overheads

The overheads of importance-aware DPT compared to vanilla DPT include (1)
tracking importance data for each example at every epoch (a.k.a., importance
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Table 5. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Einterval (I), when training ResNet-34
on CIFAR-100 with Stripes policy and loss variance as the importance metric. The
baseline (using vanilla DPT) is 49.042±0.698.

W
I

1 5 8 10 15 30

10 49.169±0.335 49.064±0.312 49.167±0.432 48.758±0.597 49.04±0.503 49.033±0.450
15 49.156±0.332 48.959±0.437 49.264±0.292 49.186±0.498 49.073±0.573 49.079±0.351
20 48.978±0.550 49.144±0.637 49.024±0.365 49.149±0.297 48.944±0.436 48.977±0.380
30 49.278±0.399 48.906±0.792 49.102±0.393 48.897±0.432 49.152±0.446 48.966±0.389
40 49.129±0.549 48.978±0.527 49.262±0.489 49.155±0.387 48.998±0.450 49.024±0.284
60 49.083±0.348 49.224±0.338 49.027±0.453 49.194±0.396 49.107±0.461 49.270±0.429

Table 6. Overhead statistics (in seconds) of importance-aware DPT when training
ResNet-18 on CIFAR-10 with the different 36 combinations of Ewarmup and Einterval.

Quantity Min Average Max

Importance tracking overhead (each epoch) 0.979 1.052 1.407
Heuristic overhead (each interval) 2.456 2.643 5.213

Total training time 715 721.556 758

tracking overhead) and (2) calculating the importance of examples and reparti-
tioning the dataset based on heuristics at the beginning of each interval (a.k.a.,
heuristic overhead). In Table 6, we report the statistics on these overheads (in
seconds) when we train ResNet-18 on CIFAR-10 for 100 epochs using four work-
ers and the different 36 combinations of Ewarmup and Einterval (as reported in
Tables 1-5). The importance tracking overhead is independent of Ewarmup and
Einterval, as it happens at every epoch, and on average accounts for 14.57% of
the total wallclock time. However, we should note that this is a prototype im-
plementation of importance-aware DPT, and many optimizations can be made
to significantly reduce the overheads (e.g., getting the individual example losses
and the mini-batch losses in the same forward pass or using MPI operations
for calculating the importance of examples). By only requiring repartitioning at
every Einterval, importance-aware DPT has the potential to significantly reduce
the network and I/O overhead that vanilla DPT requires for fetching exam-
ples at each epoch, especially in large training settings consisting of hundreds of
thousands or millions of examples.

6 Conclusion

In this paper, we proposed importance-aware DPT, a data-parallel training ap-
proach for deep neural networks, that partitions the dataset examples across the
workers based on a notion of the importance of each example. Our empirical
evaluation across a number of well-known image classification workloads sug-
gests that by setting relevant values for the hyperparameters of this approach,
most notably Ewarmup and Einterval, we can find better models (in terms of
best test accuracy) compared to when training with vanilla DPT. Future work
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can concentrate on, e.g., using hyperparameter tuning methods for finding the
best values for the hyperparameters of importance-aware DPT and evaluating
the effects of different importance metrics and measures.
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