Chapter 1
Introduction to Big Data

Amir H. Payberah and Fatemeh Rahimian

The amount of data generated during the last few years has been unprecedented.

This is not only due to the prevalence of online social networks and the ubiquitous
devices connected to the Internet, but also as the result of the advances in technology
across other fields, for instance, whole genome sequencing. Hence, it is fair to say
that we are living in the era of big data. Big data refers to large datasets or data flows
that have outpaced our capability to store and process, and cannot be analyzed by
traditional means. More specifically, challenges arise mainly due to one or several
of the following reasons:

o Volume: when we encounter massive data in size, e.g., data from crawling the
web, or genome sequencing data, traditional storage and processing systems
fall short. We, thus, need to build new systems, techniques, and algorithms
that efficiently store, retrieve, and process huge volumes of data.

e Velocity: big data is not only about the size. High rate of data generation is also
important. For example, data generated in Twitter or communication networks
come in form of continuous streams of data at a very high rate. Many systems
require to analyze this kind of data in real-time.

e Variety: sometimes data comes from multiple sources and in a variety of
forms, for example as a combination of structured, semi-structured, and un-
structured data. It is, therefore, important to have systems that handle diverse
data models without compromising performance.

In the presence of these challenges, traditional platforms fail to show the ex-
pected performance, and thus, new systems for storing and processing large-scale
data are crucial to emerge. In this chapter we explore some of the new trends of
technology for handling big data.

1.1 Big Data Platforms: Challenges and Requirements

A big data platform should provide means to efficiently store, retrieve, and process
massive amount of data. One of the main challenges a big data platform should ad-
dress is scalability. More specifically, the platform should allocate as much resources
as required for handling big data. There are two possible solutions to make a system

1

2 Introduction to Big Data

scalable: (i) to scale up (or scale vertically), by adding more resources to a single
machine, or (ii) to scale out (or scale horizontally), by adding more machines in a
network and use all their collective resources. Buying an extremely strong machine
for scaling up is probably less challenging, but it is very costly. More importantly,
you can scale up a system only to a certain degree, i.e., there is a limit in how much
resources you can add to a single machine, and this limit is far less than what most
big data processing applications require. In contrast, exploiting the collective re-
sources of a network of commodity machines is an economically and technically
attractive solution, and thus, scaling out is the approach taken by almost all the ex-
isting platforms. Nevertheless, due to the distribution of data and computation over
a network, new challenges and requirements arise:

e Fault tolerance: one or several machines may fail while running a job. Assume
a machine can stay up for 1000 days. If there are 1000 machines in a network,
we expect to observe one failed machine per day, on average. When there are
millions of machines in a network, like in Google sites, we may have 1000
machine failures per day. It is, therefore, crucial for the the platform to be
resilient to the failures.

e Transparency: while resources of a platform are distributed, it is widely agreed
that users should get an illusion of working with one single machine. More
precisely, the details of resource management, including resource allocation
and load balancing, should be hidden from an ordinary user of the platform.
This is one of the requirements of any big data processing platform.

e Parallel programming model: traditional programming models assume that
code, data and all the required resources for executing the code (e.g., CPU and
memory) are available locally. This assumption is not valid anymore in hori-
zontally scalable platforms. In the new model, data and/or operations should
be parallelized, so that different parts of the data can be processed in parallel.
Moreover, since transferring large amounts of data over network is costly, it is
often the code that is sent over to where the data is stored. This paradigm shift
calls for the development of many new parallel and distributed algorithms.

o Shared-nothing communication model: processes can communicate over a net-
work in three different ways: via storage, memory or network. These mod-
els are known as shared-storage, shared-memory, and shared-nothing, respec-
tively [1]. For scalability reasons, the shared-nothing architecture has become
the de-facto communication model in building big data platforms.

Currently there exist several big data platforms that provide the above features.
The diversity of these platforms can make it difficult to choose the best one for car-
rying out a task. Some platforms are designed for a specific type of processing, for
example GraphLab [2] for graph processing and Storm [3] for stream processing,
while some others are more generic and handle a wider range of processing types.
Example of such platforms include MapReduce [4], Spark [5] and Flink [6]. While

Introduction to Big Data 3

Data Processing

Graph Data

Pregel, GraphLab, PowerGraph

GraphX, X-Streem, Chaos

Structured Data
Spark SQL

Machine Learning
Milib

Tensorflow

Batch Data Streaming Data

Storm, SEEP, Naiad, Spark Streaming, Flink,
Millwheel, Google Dataflow

MapReduce, Dryad
FlumeJava, Spark

Data Storage

Distributed
File Systems

NoSQL Databases Distributed
Messaging Systems
Dynamo, BigTable,

GFS, FlatFS Cassandra Kafka

Resource Management

Mesos, YARN

Figure 1.1: Big data platforms stack.

the overall architecture of these platforms share many common features, the plat-
forms themselves can be integrated in a stack, depicted in Figure 1.1, which consists
of the following layers:

® Resource management: this layer contains platforms that are used to manage
resources of a cluster and share them among the platforms in the upper layers.

Data store: the platforms in this layer are used to store and retrieve massive
data. They includes distributed file systems that maintain data on distributed
disks, messaging system for handling real time data, and databases to maintain
structured data at scale.

Data processing: this layer contains the platforms for parallel processing of
data across a large number of commodity computers. These platforms are
categorized into a few subgroups, based on their target application and input
model, for example for batch data, streaming data, graph data, structured data,
or for higher level analysis, e.g., machine learning algorithms.

Due to lack of space, we chose to skip the platforms in the resource management
layer. We will, however, explore some of the well-known platforms in the two top
layers of Figure 1.1 that answer two main questions: (i) how to store big data, and
(i1) how to process it.

1.2 How to Store Big Data?

When the size of data exceeds the capacity of one disk, we have to use multiple disks
in a distributed environment. To build a distributed storage system, we need to take
into account the nature of data that we are going to store. We could be dealing with
batch or streaming data, and the data could be structured or unstructured. Based on

4 Introduction to Big Data

these characteristics and also on the target application, data can be stored in either a
file system, a messaging system, or a database. In this section we will explain some
of the well-known storage systems.

1.2.1 Distributed File Systems

In operating systems (OS), a file system refers to a collection of methods and data
structures to store files on a disk and retrieve them. In Unix-like file systems, for
instance, a file is divided into small data blocks, which are stored on a disk. The
OS, then, uses a data structure, called inode to maintain the file’s metadata, e.g.,
ownership and access mode, as well as the location of the file’s data blocks on disk.
The inode structure is originally designed for a single disk, and does not work over
multiple and distributed disks. We, thus, need to design a distributed file system that
makes it possible to store and retrieve files on/from distributed disks, without involv-
ing users in details and complexity of the system. Several distributed file systems
have been designed and developed, e.g., GFS [7], FlatFS [8], and Ceph [9], among
which GFS, and its open source implementation HDFS [10], are the most popular
ones.

GFS and HDFS

In GFS, a file is split into a number of chunks. A chunk is a single unit of storage,
which is transparent to users. Size of chunks is chosen relatively big (64MB or
128MB), compared to block size in OSs, to reduce the read/write time. From the
architectural perspective, GFS has three main components: master, chunk server,
and client. The master (similar to inode) stores metadata about files and the location
of their chunks, while chunk servers store chunks as regular files on their local file
systems. The clients, then, find the location of chunks by contacting the master, and
continue the rest of operation, e.g., read and write, by communicating directly with
the respective chunk server(s).

The GFS master maintains the file system namespace as a key-value table, with
file full pathname as key and the metadata as value. It also manages the access
control to files by acquiring a set of read/write locks on files in the namespace. For
example, in the path /foo/bar/test.txt, the master can apply a read lock on
internal nodes, e.g., /foo or /bar, to prevent the deletion or renaming of them and
their descendant sub-trees. Similarly, it can apply a read/write lock on the leaf nodes,
e.g., test.txt, to protect them from further read and write operations, while they
are opened by one client.

In GFS, each chunk is replicated on a number of chunk servers to increase data
reliability and availability. The master decides on replica placement, by placing the
replicas on chunk servers with below-average disk usage. It also creates new replicas
when the number of available replicas falls below a predefined threshold. To provide
consistency among replicas of a chunk, one replica is designated as the primary for
that chunk, and the other replicas are maintained as secondaries. The primary replica
decides the update order, and the secondaries follow this order.

Introduction to Big Data 5

GFS does not provide POSIX-based APIs for interaction, but it provides func-
tionalities to read, write and delete files. To read a chunk, the user application orig-
inates a read request and delivers it to a GFS client, who sends the request to the
master. Upon receipt of a read request, the master responds with the address of repli-
cas (over chunk servers). The client selects one of these chuck servers and sends
it the read request. Finally, the chunk server sends the requested data back to the
client, and the client forwards it to the application. Similarly, to write a chunk, the
application sends a write request to a client, which in turn forwards the request to
the master. Once more, the master replies with the address of existing replicas on
the chunk servers. When the client receives this information, it pushes data to all
the corresponding chunk servers, both primary and secondaries. The chunk servers
keep the received data in their internal buffers, without writing them to their disk.
When the client issues a write command, the primary serializes data instances, that
is, it writes the updates to chunks in a specific order. It then sends the data instance
order to the secondaries, so that they apply the update in that same order. The delete
function, is however, a metadata operation, meaning that when a user calls it, the
master just marks the name of the file as deleted, but the actual data will remain on
disks. After a certain time, the master deletes the data of all the marked files.

Since all the metadata information about the file system is on the GFS master,
the system can not work if the master fails. To make the system robust, the master
state is also replicated on multiple machines. If the master fails, a new master takes
over and continues from the latests replicated state.

1.2.2 Messaging Systems

Sometimes the complete data is not available in the beginning of a process, and
instead, it is received as streaming data gradually over time. For example, a web
server, as a data provider, continuously sends events every time someone requests
a page. The consumers, then, can use this data for different purposes, e.g., to store
in HDFS, trigger an alert, or send a notification email. A messaging system is a
middleware that facilitates a near real-time asynchronous computation by decoupling
all consumers works from the actual data provider services. When a new event takes
place at a provider, messages are added to the messaging system, and consumers can
read them based on their demands. Several messaging systems exist, e.g., Kafka [11],
ActiveMQ [12], RabbitMQ [13], and Flume [14]. Among this list we will briefly
explain Kafka.

Kafka

Kafka [11] is a distributed topic oriented log service, which was designed originally
in LinkedIn. It categorizes feeds of messages into multiple groups, called topics,
each containing a stream of messages of a particular type. Each Topic is divided
into a number of partitions, each being an append-only and immutable file on disk.
Messages generated by a producer to a particular topic partition are appended in the
same order they are sent, and consumers see them in the same order they are stored.

6 Introduction to Big Data

To increase the reliability of the system, partitions of a topic are replicated on
several servers, called brokers, where one broker becomes the leader of a partition,
and all writes and reads are managed through it. Kafka uses Zookeeper [15] to
manage its system on a cluster of machines. Zookeeper detects the addition and
the removal of brokers and consumers, maintains the consumption relationship, and
keeps track of the consumed offset of each partition.

1.2.3 NoSQL Databases

File systems store any type of data, whether it is structured or unstructured, but they
provide no means to take advantage of the structure in data in the former case. This
is where database systems can play an important role. Databases are built on top
of file systems to deal with well formatted data and perform efficient read, write,
update, and delete operations. Among the existing databases, relational database
management systems (RDBMSs) are the dominant ones for maintaining structured
data. RDBMSs guarantee certain properties, commonly known as the ACID proper-
ties, with the following descriptions: (i) Afomicity: either all or none of the opera-
tions in a transaction are executed, where a transaction is a single unit of work and
consists of a sequence of operations in a database, (ii) Consistency: database should
be in a consistent state before and after a transaction, (iii) Isolation: uncommitted
changes in the databases should not be visible to other transactions, and (iv) Durabil-
ity: changes should be written to a disk before a transaction is marked as committed,
so that any updated data could be later recovered in case the system fails.

With the emergence of big data in various domains, for example over the Web
2.0 applications, data management technologies are entering a new phase. The big
data applications have special demands, such as scalability and availability, which
are not necessarily in-line with the ACID properties provided by RDBMSs. For ex-
ample, when we are dealing with a high rate of read/write operations, treating each
operation as a transaction and locking the data to provide ACID guarantees, may
hinder the scalability of the system. One way out of this problem is to relax some of
the unnecessarily strong properties, for instance consistency and isolation. In fact, a
new set of properties have been defined for such scenarios. These properties, known
as BASE properties, are introduced to trade consistency and isolation of ACID prop-
erties for achieving scalability and availability. The BASE properties are: (i) Basic
Availability: faults may happen, but they should not obstruct the functioning of the
whole system, (ii) Soft-state: different copies of a data piece may be inconsistent,
and (iii) Eventually consistent: all copies of a data piece eventually become con-
sistent at some point in future, if no more updates happen to that data piece. The
BASE properties have become the baseline in all the emerging databases, knowns as
NoSQL (Not Only SQL) databases that deal with big data.

To put the two sets of properties in perspective, it is perhaps useful to recall the
famous CAP theorem, which states that in any distributed system, it is impossible
to provide consistency (C), availability (A), and partition tolerance (P) properties all
at the same time. In other words, a distributed database system can have only two
of these properties simultaneously. While most RDBMSs have chosen to provide

Introduction to Big Data 7

consistency and availability, without providing partition tolerance, NoSQL databases
are always partition tolerant, but provide either consistency or availability, not both
at the same time.

NoSQL databases can have different data models, that is they can store data
in different ways. There exist four popular data models in use, namely, key-value,
column-based, document-based, and graph-based. Key-value data model is the sim-
plest data model, where data is stored in form of pairs of key and value, and val-
ues could be any arbitrary data. Column-based data model enhances the key-value
model by adding some schema to values. The document-based databases are similar
to column-based store, except that values can have a flexible schema (e.g., XML, or
JSON), instead of a fixed schema. Finally graph databases model data and its inter-
dependencies as a graph, and store it in form of graph nodes, edges, and properties.

In this part we introduce two different NoSQL databases, Dynamo [16] and
BigTable [17], where the former is a key-value store that provides P and A prop-
erties, and the latter is a column-based storage that provides P and C properties.

Dynamo

Dynamo [16] borrows the idea of consistent hashing [18] from Distributed Hash Ta-
bles (DHTSs) for partitioning and distributing data across multiple machines. Each
machine is given an identifier (id), using a hash function, and the machines are or-
dered along a ring by their ascending ids. The same hash function is also applied on
data to give each data item an id in the same id space. Each machine, then, stores
data items with ids between its own node id and its predecessor id in the ring. The
predecessor of a node B would be a node A, whose id is the previous id anti-clock-
wise in the ring before the B’s id. In this case, node B is the successor of node A.
To achieve high availability and durability, Dynamo replicates data on multiple ma-
chines, listed on a preference list per data item, which are usually the n successor
machines of an id along the ring.

Although consistent hashing is an efficient way to distribute data over machines,
it may end up with imbalanced load on machines, due to several reasons, such as non-
uniform distribution of data ids (keys) over the ring, various popularity and hit rate
of the keys, or the heterogeneous power of machines. To overcome these challenges,
Dynamo uses virtual nodes, meaning that each physical machines picks multiple
random ids, where each id represents a virtual node. Hence, we can assume that
each physical machine runs multiple virtual nodes over different parts of the ring,
where each virtual node covers the range of keys between its id and its predecessor
virtual node id.

To read and write data, Dynamo provides two APIs: get, which returns a single
item or list of items with conflicting versions, and put, which stores an item under a
given key. These operations are handled by a coordinator for each item, which is the
first node on its preference list. As mentioned earlier, Dynamo does not guarantee
strong consistency, but provides eventual consistency, which enables asynchronous
updates of data items. More precisely, multiple versions of a data item may exist in
the system, but replicas of each item eventually become consistent. Dynamo tracks
the causality of events over different replicas, and if it identifies an order among

8 Introduction to Big Data

them, it replaces the older version of replica with the new one, otherwise it raises a
conflict, in which case reconciliation is required. A conflict may happen due to node
or network failures. If multiple versions of a data item exist, the system delegates the
reconciliation to users. Such a scenario can happen in online shopping, for example,
when a user finds inconsistent shopping baskets in her profile. The system never
refuses to add new items to the basket, but a user may find some already removed
items, back in the basket again.

Machines can be added to or removed from Dynamo by an administrator. Af-
ter new machines are added/removed, the membership change is propagated in the
system using a gossiping protocol [19], such that eventually all machines acquire a
consistent view of the system. When a new machine joins, it gets an id and thus, a
key range for which it is responsible. Then, the data items that fall into that range
are transferred to the new machine. For example, assume a new machine X is added
to the system between two existing machines A and B, where B was the successor of
A and responsible for the key range [A, B). After adding X, the data items for the key
range [A,X) should be transferred to X, and B would be responsible for the new key
range [X,B). When a machine is removed, for example the newly added X, a reverse
process will take place, during which data items on X are transferred to its successor
B. This is how the number of machines in Dynamo can dynamically change.

BigTable and HBase

BigTable [17], introduced by Google, is another NoSQL database. While BigTable
is built on top of GFS, the open source version of it, that is HBase [20], is part
of the Hadoop ecosystem and is built over HDFS. BigTable uses a column-based
data model to store data. A fable is the highest abstraction to store data. Each
table consists of multiple rows, where each row has one or more columns. Rows
are ordered lexicographically by their key. A group of columns with the same type
can build a group family, which are the basic units of access control. Each cell in
the table can have multiple values, distinguished by their timestamps. When a table
becomes too large, the system splits it into tablets, which are contiguous rows stored
together.

BigTable has three main components: master server, tablet server, and client
library. In each cluster there exist only one master server, which assigns tablets
to tablet servers. The master server also balances the load among tablet servers, and
conducts garbage collection of useless files in GFS. Moreover, it handles the changes
to the schema, e.g., creates new tables or adds new column families. Management
of tablets are done by the tablet servers. Multiple tablet servers exist in a cluster,
and they can be added or removed dynamically. Each tablet server is in charge of a
set of tablets and all the read and write operations that apply to those tablets. Each
tablet is assigned to only one tablet server. Note that the data of tablets are stored
in GFS, and tablet servers only handle the read and write requests for their assigned
tablets. Since files are replicated in the GFS layer, there is no need to replicate
tablets separately. Client libraries provide methods to communicate with the master
and tablet servers and cache the tablet locations. Clients can work with BigTable
through these libraries.

Introduction to Big Data 9

BigTable takes advantage of other existing platforms internally. For example, it
uses GFS to store log and data files, and Chubby lock service [21] to manage the
deployed system. Chubby is responsible for the following tasks: (i) to ensure only
one master is active in cluster, (ii) to store the location of the root tablet that contains
the location of all other tablets, (iii) to discover tablet servers, (iv) to store tables’
schema, and (v) to store access control lists. When a master starts, it communicates
with Chubby and grabs a lock to prevent any other master claiming the system. It,
then, gets the list of available tablet servers from Chubby and communicates with
them to discover their already assigned tablets.

BigTable uses a 3-level hierarchical structure to maintain the address of tablets:
(i) Chubby stores a file that contains the address of a metadata tablet, called root
tablet, (ii) the root tablet contains the location of all other metadata tablets, and (iii)
each metadata tablet maintains the address of a set of user tablets. Each tablet, inter-
nally, is divided into a number of SSTables, which are the fundamental components
of BigTable for storing data. An SSTable is a set of immutable sorted key-value
pairs, stored as a file in GFS.

When a user commits some update to a tablet, first the commit logs are stored
in GFS. Then, the responsible tablet server for that tablet keeps the most recent
updates in an in-memory structure, called memtable. When the size of a memtable
exceeds some threshold, it is written to an SSTable, and consequently to GFS. This
can eventually result in having a large number of SSTables in GFS, and thus, the
system periodically merges the SSTables of each tablet into a single SSTable, to
optimize the disk usage. To read data from a tablet server, both memtable, which
contains the latest updates, and the sequence of recent SSTables are used.

BigTable guarantees strong consistency, because each tablet is managed by one
tablet server only, and all concurrent queries for a tablet are serialized in that tablet
server. However, if a tablet server fails, the availability of its part of data is violated
until a new server is assigned. In other words, BigTable provides consistency, but
can not guarantee availability.

1.3 How to Process Big Data?

The next big challenge while dealing with massive data, is how to process it. Various
platforms and tools have been recently developed for this purpose, and choosing the
right tool is essential. The existing tools can be categorized based on the kind of
data they process, for example batch data, streaming data, graph (linked) data, and
structured data. In this section we explore some of the state-of-the-art tools from
each of these categories.

1.3.1 Batch Data Processing Platforms

Processing batch data, also known as data-at-rest, is the traditional way of data pro-
cessing. Building a single machine system for batch processing is simple and well
studied since when the first generation of computers emerged. When dealing with

10 Introduction to Big Data

batch data, we know that all the data is available at the processing time, but in case of
big data, it may be too big to be loaded into the memory all at once. Hence, when the
size of data exceeds the capability of one machine, then new solutions are required.

To provide a practical example, assume there is a text file and the goal is to count
the number of distinct words in this file. Also, assume the size of the file is small
enough to be loaded into the memory of one machine. In this case, a simple bash
script command can count the number of words:

words (file) | sort | unig -c

where words (file) splits the words of the given file by space and returns a list
of words. However, if the file does not fit in the memory of one machine, the above
script does not work any longer. A possible solution to scale up the system is to
divide the file and distribute it across several machines and process them in parallel.
However, new challenges arise with such a system, including parallelization, fault
tolerance, data distribution, and load balancing.

MapReduce

MapReduce [4] is one of the first batch data processing systems that addressed the
above challenges, while providing users with a new programming model that en-
ables them to implement their code easily. In other words, MapReduce is both (i)
a programming model for big data processing, inspired by functional programming,
and (ii) an execution framework to run parallel algorithms on clusters of commodity
machines.

Programming in MapReduce model boils down to writing two main functions: a
map function that processes data and generates a set of intermediate key-value pairs,
and (ii) a reduce function that aggregates all the intermediate values associated with
the same intermediate key. There is also a shuffle step that takes place between the
execution of these two functions. During the shuffle step, the key-value pairs that are
generated by the map function, are sorted and prepared for the reduce function.

To implement the “word count” — the process of listing the words accompanies
with the number of their occurrences in a file — example using this model, the fol-
lowing three steps can be performed: (i) words (file) extracts words from file,
(ii) sort shuffles and sorts the words, and (iii) uniqg -c aggregates the intermedi-
ate results and generates the final output. This code can be perfectly modeled with
MapReduce, where each command corresponds to one of the phases of MapReduce.
If the sample input file contains Hello World, Hello Life, then the map
function reads the words and for each one generates a key-value pair with value 1,
e.g., (Hello, 1), (World, 1), (Hello, 1) and (Life, 1). The shuffle
phase between map and reduce phase creates a list of values associated with each
key, e.g., (Hello, (1, 1)), (World, (1)) and (Life, (1)). Finally,
the reduce function sums up the counts per key and generates the final result, e.g.,

(Hello, 2), (World, 1) and (Life, 1). Note that the user needs only to
implement the map and reduce functions, and the system takes care of the shuffle
phase.

An important notion here is that, while the code is very small, the data can be
big and possibly distributed over multiple machines in a network. A traditional com-

Introduction to Big Data 11

putation model will move the data over the network to be read and processed by the
code. In contrast, the MapReduce computation model suggests that we keep data
where it is, and instead move the computation close to data. The small piece of code
can then be executed in parallel on each machine, and the result will be aggregated
and reported. More specifically the following steps are taken to execute a program
in MapReduce:

1. The input files are read and divided into a number of splits. The size of splits
is typically the same as the size of chunks in HDFS.

2. The MapReduce library in the user program, then, sends a copy of the program
to each of the machines, among which one becomes the master, and the others
become workers. The master assigns tasks (map or reduce) to the workers,
who become mappers and reducers, accordingly.

3. Each mapper takes a set of splits as input and performs the map function on
them. The result of the map function is generated as intermediate key-value
pairs, which are buffered in the memory of the mapper.

4. Each mapper periodically writes the buffered data to its local disk, and sends
their addresses to the master. Then, the master forwards these addresses to the
reducers.

5. Each reducer reads the corresponding intermediate data from the local disks
of the mappers. When a reducer reads all the required key-value pairs, it sorts
and groups them by their keys.

6. Each reducer, then, iterates over the list of intermediate keys and their cor-
responding values, and performs the reduce function on them. The result of
reduce functions are appended to the final output file in HDFS.

7. When all map and reduce tasks have been completed, the master informs the
user program that the final result is ready.

The master monitors workers liveness via periodic heartbeats. If it detects the
failure of an in-progress map or reduce task, it re-execute it (possibly on a different
worker). If it detect a completed map task has failed, it again need to re-execute
the map task, because the output is stored on the local disk of the failed mapper.
However, if a reducer with a completed task fails, the master does not re-execute the
task, because the output is stored in HDFS. The state of the master is periodically
check-pointed. Hence, upon failure, a new master starts and resumes the work from
the last check-pointed state.

Spark

Although MapReduce facilitates an easy implementation of batch data processing
over a cluster, it is very rigid in nature and can not be used for building complex,
interactive or iterative programs. Sometimes adding only a little complexity can

12 Introduction to Big Data

render the whole MapReduce model infeasible. For example, let us add a few steps
to the word count example:
words (doc.txt) | grep | sed | sort | awk

This is a job that requires more than one map and reduce round, and each two
consecutive rounds can only communicate through HDFS. That is, the reducer of
one round writes the result in HDFS, and the mapper of the next round reads that
data from HDFS. However, reading from and writing to HDFS is a slow process.
To overcome this problem we need to reduce the interaction with HDFS as much as
possible, for example by keeping the intermediate results in memory, when there are
multiple consecutive rounds of map and reduce functions. Replacing a stable storage
with volatile memory is challenging, and the question is how to make such a memory
model efficient and fault tolerant.

Spark [5] provides an answer to this question. It is a batch processing engine for
massive data, which exploits in-memory processing by presenting a distributed mem-
ory abstraction, called Resilient Distributed Datasets (RDD). RDD is an immutable
collections of objects spread across a cluster. An RDD is divided into a number of
partitions (atomic pieces of information), where each partition can be stored on a
different machine in a cluster.

Spark works based on the master-worker model. The main program, the driver,
runs on a master machine and coordinates the execution of the whole application.
When a Spark application is executed, the driver connects to the cluster manager
and acquires executors on worker machines to run tasks and store data (one or more
partitions of RDDs). The driver, then, sends the application code, as well as tasks to
the executors. The entry point to Spark functionalities is through a SparkContext
object in the driver that defines how Spark can access the cluster, e.g., run locally,
run as a standalone cluster, or run on cluster via a resource management system, such
as Mesos [22] or YARN [23].

There are two types of operators that can be applied on RDDs: transformations
and actions. Transformations are lazy operators that are applied on RDDs and cre-
ate new RDDs. They are called lazy, because they do not compute the result right
away. Instead, they build a chain (graph) of operations over RDD, called lineage
graph. Actions, on the other hand, lunch a computation on RDDs and return a value.
When an action is called on a RDD, all the transformations in its lineage graph are
executed and then the final result is computed. More specifically, upon calling an
action, RDDs are broken down into multiple partitions and are loaded by the Spark
executors on worker nodes. Then, transformations are executed and finally the result
are calculated. When multiple actions are called on an RDD, all the transformations
in its lineage graph are recomputed per action. To reduce the overhead of recompu-
tation however, the transformed RDDs can be cached in memory. The caching, if
needed, should be explicitly done by the programmer.

The lineage graph is also used to recover from failures in an efficient way. Unlike
MapReduce that replicates data to make the system resilient, Spark keeps track of
the lineage information, by which it can reconstruct the lost partitions. If a partition
fails, Spark backtracks on the lineage graph until it finds a correct partition, and
then recomputes the lost partitions of RDDs. If a RDD becomes unavailable, all

Introduction to Big Data 13

its missing partitions are recomputed in parallel. If a task fails, it is re-executed on
another machine, providing that its parent RDDs on the lineage graph are available.

1.3.2 Streaming Data Processing Platforms

Some applications need to process streams of live data and provide results in real-
time. Wireless sensor network services, traffic management systems, and stock mar-
kets are examples of such applications. Stream Processing Systems (SPS) are a group
of platforms that process such streaming data [24]. In contrast to batch processing
systems and Database Management Systems (DBMS), which are used to analyze
data-at-rest, a SPS processes data-in-motion. Typically, batch processing systems
and DBMSs store and index data before computation, and process them only when
explicitly asked by users. However, a SPS processes data as it arrives, without having
to store it persistently.

A SPS receives streaming data as an unbounded sequence of individual data
items, called ruples. A tuple is the atomic data item in a streaming data, which is
equivalent to a row in table. The tuples can be either structured in a predefined
schema, semi-structured with self-describing tags (e.g., XML), or totally unstruc-
tured in custom formats (e.g., video and/or audio).

The programming model for a SPS is normally based on defining jobs in form of
dataflows to represent the logical plan of the work. A dataflow is a directed acyclic
graphs (DAG) composed of data sources, processing elements (PE), and data sinks.
A PE is the basic functional unit in a dataflow that reads some input tuples, applies a
specific function on them, and outputs new tuples.

Two fundamental questions regarding the dataflow programming model are (i)
how to compose a dataflow, and (ii) what functions to use. Dataflow composition
is the process of creating a DAG associated with a job. DAG composition can be
static or dynamic. If all the PEs and their relation in the DAG are known in advance,
they can be connected statically, otherwise the dynamic composition is used. The
PEs that are put in a DAG in this step are higher order functions that belong to one
of the following operation categories: (i) aggregation, to collect and summarize a
subset of tuples, (ii) merge/split to combine/partition input streams, (iii) logical and
mathematical operations, (iv) sequence manipulations, to reorder or delay tuples,
or (v) any other custom data manipulations, e.g., data mining algorithms. Each of
these categories include many different functions, and thus, the next step is to decide
which function should be used inside each PE.

A PE can be either stateless or stateful. In a stateless model, a PE processes
tuples independent of each other and then forgets about them; whereas in a stateful
model, a PE is a synopsis of the already received tuples, meaning that it maintains an
internal state with the footprint of the processed tuples. In this case, a PE also keeps
a subset of the most recent tuples in a buffer, namely a window. There exist two
popular window models: fumbling and sliding. Both models keep a certain number
of tuples, defined by the window size. When the buffer is full, a tumbling window
will remove all the buffered tuples at once, while a sliding window only removes the
oldest ones from the buffer. The tumbling window model is usually used for batch

14 Introduction to Big Data

operations, while the sliding window model fits better in scenarios with incremental
operations.

More specifically, the semantics of a window model is defined by its eviction pol-
icy and trigger policy, where the eviction policy determines the properties of tuples
that are to be removed, and the trigger policy defines when the buffered tuples should
be processed. In general four different policies are available: (i) count-based, which
defines the maximum number of tuples the buffer can hold (for an eviction policy) or
the number of tuples that should be received before the tuples can be processed (for
a trigger policy), (ii) delta-based, which is specified by a delta threshold in a tuple
attribute, for eviction or trigger, (iii) time-based, which defines a time interval for
eviction or trigger, and (iv) punctuation-based, which triggers processing or eviction
of tuples, upon receipt of a punctuation. Any combination of these policies can be
used independently for eviction and trigger. For example, a count-based eviction
policy could co-exist with a time-based trigger policy.

The dataflow that a user defines is a logical plan that should be converted to
a physical plan at run time and deployed over a cluster. Vertices and edges of a
logical plan correspond to PEs and their connections, respectively. Whereas, in a
physical plan vertices represent the operating system processes, and edges denote
the data communication medium (e.g., network connection and/or shared memory).
The physical plan is not unique and the transformation task is not straightforward. A
decent physical plan takes into account the workload of each PE and the amount of
data transfer between different PEs, when partitioning the logical plan and deciding
if a partition or a set of PEs should be located on a single machine or multiple ones.
These are however, similar to the challenges of parallelization in general.

Parallelization enables the SPSs to remain efficient with the increasing number
of queries and the high rate of incoming data. There are different ways to parallelize
a SPS. The first approach is pipelined parallelization, where sequential PEs of a
dataflow run concurrently on different tuples of a stream. For example, if A and B
are sequential PEs, represented as (A — B), then B can start processing a tuplel,
as soon as A completes processing it and moves on to process tuple2. The second
model is task parallelization in which, independent PEs are executed concurrently
on the same or distinct tuples. For example, if A and B are independent PEs, they
can run in parallel on the same tuple, e.g., tuplel. Data parallelization is the third
model, where the same PE runs in parallel on different parts of a tuple. For example
if tuplel is a big data item, it can be divided into a number of parts, and different
instances of a single PE, e.g., A, can be executed concurrently on different parts of
the tuple. In the data parallelization model, the incoming tuples can be distributed
randomly between PEs, or they can grouped by some keys and divided between PEs,
or all tuples can be sent to all PEs.

Since failures are inevitable in a distributed system, data recovery becomes an
important challenge for any SPS. A popular technique for avoiding data loss is roll-
back recovery, which can benefit from either an active backup, passive backup, or up-
stream backup. In the active backup, a backup node is associated with each process-
ing node (called primary), and the same input is given to both primary and backup
nodes. However, the output of the backup node is logged and is not sent downstream.

Introduction to Big Data 15

Once the primary fails, the backup node takes over and sends the logged tuples to all
downstream nodes and remains active afterwards. In the passive backup, the state of
each node is periodically checkpointed in a shared storage. If a node fails, it will be
replaced by a new node to take over from the latest checkpoint. Finally, in the up-
stream backup, upstream nodes (the parent node in DAG) store and keep the tuples
until the downstream nodes acknowledge that the tuples are not needed any longer.
If a node fails, a new node takes over by rebuilding the latest state of the failed node
from the logged tuples at the upstream node.

In the rest of this section, we will explain three stream processing systems, Spark
Streaming [25], Storm [3] and Flink [6]; Spark Streaming uses a mini-batching pro-
cessing model, while the other two use a tuple-at-a-time processing model. In the
mini-batching processing model, the streaming data is divided into small batches,
and the streaming process is run as a series of deterministic computations over the
batches. In the tuple-at-a-time processing model, stateful PEs process every incom-
ing tuple, update their internal state, and emit new tuples.

Spark Streaming

Spark Streaming [25] is a SPS built on top of Spark that runs a streaming compu-
tation as a sequence of small and deterministic batch jobs. The incoming streaming
data is divided into batches of n seconds, and each batch of data is treated as one
RDD. A continuous sequence of RDDs is called Discretized Stream or DStream.
DStream supports different operations, including standard RDD operations (such as
map and join), as well as other operation specifically developed for DStream (such
as window operations). When an operation is applied on a DStream, it will be ap-
plied on all its RDDs, and the final result would be a new DStream.

Spark Streaming supports the sliding window model and allows to apply a trans-
formation over a set of RDDs collected in a window. A sliding window is defined
by two parameters: window length that declares the size of window in time, and
slide interval that defines how much a window should slide every time. Note that if
we need to apply a function over all the received RDDs, then the sliding window is
not enough. In this case, we should checkpoint and maintain the computation state,
while continuously updating it with new incoming data. To enable checkpointing,
user should create a directory in a reliable storage where the checkpointed states will
be saved. Given the checkpointed data, user can apply a function over the state as
well as on the new incoming data.

Spark Streaming architecture follows a master-worker model, where the master
keeps track of DStream dataflow graph and schedules tasks on worker nodes, and
workers keep partitions of RDDs and execute tasks. Moreover, workers receive data
from client libraries or load them periodically from an external storage. The mas-
ter, then, tracks the location of data items and helps clients to find the required data.
To make the system fault tolerant, Spark Streaming takes advantage of the lineage
graph used in the core of Spark by remembering the sequence of transformations
over RDDs. If some data is lost due to a worker failure, it can be recomputed using
the parent RDDs in the lineage graph. Moreover, the input data stream is replicated

16 Introduction to Big Data

in memory of multiple worker nodes, so that in the worst case, when all the transfor-
mations should be recomputed from scratch, the original data is accessible.

Storm

While Spark Streaming is a non-native SPS, meaning that it discretizes the input
stream into mini-batches, and applies short-lived batch tasks over them, Storm [3]
and Flink [6] are two native SPSs. In these systems we have long-lived task execu-
tion, where each task maintains its own state. Storm is a distributed SPS for real-time
processing of streaming data. There are two types of PEs in Storm: spouts as sources
of streams, and bolts that contain the main computation functions. Each bolt receives
tuples from spouts and/or other bolts, processes them, and emits new tuples. In the
Storm terminology, the DAG of spouts and bolts is called fopology. To execute a
topology, Storm runs spouts and bolts in parallel on different machines of a cluster.
It is through the data and task parallelization models that Strom provide scalability.

Storm provides two types of delivery semantic guarantees: at-most-once, where
each tuple is either processed once, or dropped if a failure happens, and at-least-
once (also called reliable processing), in which each tuple is processed at least once
even if failures happen. To guarantee the reliable delivery, Storm uses a number
system level bolts, called acker bolts, which keep track of the tuples of every spout
in a topology. When a bolt successfully executes its function on a received tuple, it
notifies the acker bolt by sending an ack message to it. When the acker bolt receives
an ack message for all tuples in a fuple tree, it sends a final ack to the spout that
emitted the tuple. A tuple tree, refers to all the tuples emitted by subsequent bolts
starting from a spout tuple. A spout also assigns a timeout for each tuple, and the
acker bolt keeps track of these timeouts. If the ack message for a tuple does not
arrive by the timeout, the tuple is considered to has failed, and thus, it is replayed by
the spout.

The Storm cluster consists of two main components: (i) one master, called nim-
bus, that distributes and coordinates the execution of topologies, and (ii) a number
of worker nodes that carry out the actual stream processing. A worker node executes
one or more worker processes. Every worker process, in turn, runs one or more
executors, each containing one or more tasks (spouts or bolts). Each worker node
also runs a supervisor that receives assignments from nimbus and spawns worker
processes for those assignments. The supervisor periodically contacts nimbus and
inform it about the topologies the worker node is currently running, as well as
the available resources for running more assignments and topologies. To coordi-
nate the interaction between nimbus and the supervisors, Storm takes advantage of
Zookeeper [15] coordination service. Zookeeper also provides fault tolerance, by
maintaining the state of both nimbus and supervisors.

Flink

Flink is a distributed dataflow processing system that unifies stream and batch pro-
cessing. Similar to previous systems, a job in Flink is defined as a DAG of PEs and
their connections. In addition to the basic transformations, e.g., map, reduce, and
filter, Flink provides binary stream transformations, e.g., coMap and coReduce,

Introduction to Big Data 17

flexible window operations, and native iterations. It also supports several different
windowing policies, including time-based, count-based, and delta-based windows.

Flink uses a master to schedule tasks, coordinate checkpoints, and perform re-
covery in case of failures. Jobs are submitted to the master in form of a dataflow
graph (job graph). The master first transforms the job graph to an execution graph,
which consists of information on job scheduling along with the tasks. Then, it sends
the tasks to the workers, which perform the real computations by running one or
more processes that carry out the assigned tasks.

As we explained, the fault tolerance in Spark Streaming is coarse-grained, based
on RDD recomputation. On the other hand, the recovery in Storm is fine-grained, as
it keeps track of each tuple individually. The fault tolerance in Flink is something in
between: instead of asking an acknowledgement per tuple, a sequence of tuples are
acknowledges together. Flink uses asynchronous barrier snapshotting for globally
consistent checkpoints, inspired by Chandy-Lamport snapshot algorithm [26]. In
this model, data sources periodically inject checkpoint barriers into the data stream
that flows through the connections of the DAG. Upon receipt of a barrier at a PE,
it emits all the tuples that only depend on the tuples before the barrier. Once a PE
receives barriers from all it input links, it checkpoints its state, and then emits barrier
and continues its computations.

1.3.3 Graph Data Processing Platforms

Graph is a well-known flexible abstraction for describing linked data, and a natural
way of modeling a variety of problems across various domains. Although graph the-
ory is well studied in mathematic, physics, and computer science over the years, the
traditional graph algorithms often fail to provide a good performance when applied
to big graphs. In fact, processing of large graphs that cannot fit in the memory of a
single machine, brings about new challenges.

While the intuitive approach to overcome the size limitation, is to partition the
data and parallelize the computation, data partitioning in a graph is not straight-
forward, because each vertex of a graph should be processed in the context of its
surrounding vertices. Hence, the data-parallelism in systems like MapReduce and
Spark, do not necessarily show a good performance for large-scale graphs. Graph-
parallel processing model, is an alternative to data-parallel model, and has proven
efficient and effective for large graph processing. In data-parallel computation, there
is a record-centric view of data, and computation is done in parallel on separate
and independent data records. On the other hand, in graph-parallel computation, a
vertex-centric view of graphs is used, and the computation is done in parallel on all
the vertices, each having access to its neighboring vertices.

In this section we present four different graph processing platforms, i.e., Pregel [27],
GraphLab [2], PowerGraph [28], and GraphX [29].

Pregel

Pregel is a large-scale graph processing system, developed at Google, and inspired
by the bulk synchronous parallel (BSP) model [30]. In the BSP model, there exists

18 Introduction to Big Data

a set of processor-memory pairs that are communicating in a point-to-point manner,
and there is a barrier mechanism to synchronize them. Giraph [31] is the open source
counterpart of Pregel, developed as an Apache project.

Pregel executes an applications as a sequence of iterations, referred to as super-
steps. In a superstep, a vertex receives all the messages sent to it in the previous
superstep, updates its local state, and sends messages to its neighbors, to be deliv-
ered in the next superstep. Vertices use message passing to communicate directly
with each other. A vertex can be either active or inactive. Initially, all the vertices
are in the active state, but if they do not receive any message during a superstep they
become inactive. Note that an inactive vertex becomes active again, as soon as it re-
ceives some messages in the subsequent supersteps. The algorithm terminates when
all vertices are simultaneously inactive and there are no messages in transit.

Pregel uses the master-worker model, where the master coordinates workers, de-
cides the number of partitions, and assigns partitions to workers. Each worker main-
tains the state of its partitions, executes the process of its vertices, and handles the
message exchange with other workers. As mentioned earlier, graph partitioning is a
crucial step in all the graph processing platforms that deal with huge graphs. Nev-
ertheless, Pregel uses a naive graph partitioning, by assigning vertices randomly to
different machines. The random partitioning is expected to impose a high network
traffic, because neighbors of a vertex are most likely not located on same machine
(specially if the number of partitions is large) and thus, can not be accessed locally.

Fault tolerance in Pregel is achieved by checkpointing, meaning that master asks
the workers to save their states at start of every k supersteps. This state includes
the value/state of all the vertices and edges, as well as the incoming messages. If
the master detects the failure of a worker, it tells all workers to revert to the last
checkpoint, and resume the work from there.

GraphLab

Although Pregel makes large-scale graph-processing possible, it is limited in effect
by its rigid synchronization mechanism. Considering the fact that the workload is
not necessarily evenly distributed (due to the random partitioning) and taking into
account the heterogeneous power of worker machines, the runtime of each superstep
in Pregel is determined by the slowest machine in that superstep.

GraphLab utilizes an asynchronous model for graph processing. In this model
vertices can read and modify the data in their scope directly, instead of sending
read/update requests through messages passing. The scope of a vertex is the data
stored in that vertex and in all its adjacent vertices and edges. All vertices, then, run
in parallel, and the user defined function in each vertex has access to all the data in
its scope. Note that vertex scopes are overlapping, meaning that vertices are shared
among each other’s scope. The overlapping scopes may cause a race condition when
two update functions execute simultaneously on the same vertices.

To solve this problem, GraphLab defines three levels of consistency: (i) full-
consistency, where during the execution of a function at vertex v, no other vertices
can read or modify data within the scope of v, (ii) edge consistency, where during
the execution of a function at vertex v, no other function can be applied to v and

Introduction to Big Data 19

its adjacent edges, but the data in its adjacent vertices can be read, and (iii) vertex
consistency, during the execution a function v, no other vertices can read or modify
data at v. The stronger consistency level is used, the lower level of parallelization
takes place. In the full consistency model, which is the strongest level, only vertices
in the non-overlapping scopes can run in parallel, while in the vertex consistency
level, all vertices can execute their functions in parallel.

To make GraphLab fault tolerant, two synchronous and asynchronous check-
pointing models are proposed. In the synchronous model, the master periodically
signals all workers to store their cached data, i.e., data that has been modified since
the last checkpoint, to disk. The asynchronous model, however, is inspired by the
Chandy-Lamport algorithm [26]. In this model, the checkpoint function is imple-
mented as a function in all vertices with higher priority than all other functions, and
the edge consistency model is used among them. The checkpoint function, then, is
called periodically by each vertex to save its current vertex state, as well as the state
of all the edges connected to not-checkpointed vertices.

GraphLab uses two-phase partitioning to split the input graph. In this model,
the input graph is first turned into a smaller graph, called meta-graph, by grouping
neighboring vertices and replacing them with a super node. Since the size of the
meta-graph is much smaller than the original one, a fast balanced partition algorithm
can be easily applied on it. When the meta-graph is divided into a number of parti-
tions, each called an atom, the workers become responsible for one or more atoms
each.

PowerGraph

PowerGraph improved on GraphLab, by: (i) introducing a new graph programming
model, and (ii) employing a new vertex-cut partitioning. It factorizes the user defined
functions in GraphLab into three steps of gather, apply and scatter (GAS). In the
gather step, a vertex accumulates data from its neighbors. Then, in the apply step,
the user defined function is applied on the accumulated data and the vertex state
is updated accordingly. Finally, in the scatter step, the vertex updates its adjacent
edges and vertices. Initially all the vertices are active, and once a vertex function
completes the scatter phase it becomes inactive. A vertex can become active again
and then activate its neighboring vertices. The order in which active vertices are
processed, is up to the PowerGraph execution engine.

Two synchronization modes can be used in PowerGraph. First is the synchronous
mode, similar to Pregel, which uses the BSP model by defining supersteps. In each
superstep, it executes the gather, apply, and scatter for all the active vertices with a
barrier at the end. When all the workers complete their tasks, then, updates made
to the vertices and edges are committed, and will be visible in the subsequent su-
persteps. Next mode is the asynchronous mode, in which changes made to vertices
and edges during the apply and scatter functions are immediately committed to the
graph, and are visible to the neighboring vertices.

The second big improvement of PowerGraph over GraphLab is replacing the
edge-cut partitioning with vertex-cut partitioning. A vertex-cut partitioning divides
edges of a graph into equal size clusters. The vertices that hold the endpoints of an

20 Introduction to Big Data

edge are also placed in the same cluster as the edge itself. However, the vertices are
not unique across clusters and might have to be replicated, due to the distribution of
their edges across different clusters. A good vertex-cut is one that requires minimum
number of replicas. Both theory and practice [32, 33] prove that power-law graphs
can be efficiently processed in parallel, if vertex-cuts are used instead of edge-cuts,
which is mainly due to unbalanced number of edges in each cluster in the edge-cut
partitioning. PowerGraph takes this partitioning model into account and presents a
new greedy algorithm for vertex-cut partitioning. The graph is read as a sequence
of edges, and the master decides where to put the end point vertices of the received
edge, based on their current membership in the existing partitions.

GraphX

GraphX is a graph processing platform, implemented on top of Spark, that unifies
data-parallel and graph-parallel models. GraphX introduces the property graph, a
new data structure and API that blurs the distinction between tables and graphs. In
other words, the property graph makes it possible to express both table and graph
views of the same physical data. Each table and graph view, then, has its own op-
erators that exploit the semantics of the view to achieve efficient execution. This
characteristic makes GraphX very efficient for running a pipeline of graph analytic
tasks, where we have to switch between table and graph views frequently. The prop-
erty graph is represented using two RDDs for vertices and edges, and an auxiliary
table, which is a logical map from a vertex to the set of partitions that contain edges
adjacent to that vertex. To partition the input graph, GraphX uses a vertex-cut parti-
tioning, similar to PowerGraph.

1.3.4 Structured Data Processing Platforms

In the systems we have seen so far, data structure or schema is not considered. How-
ever, there are systems that are developed to exploit data schema in order to achieve
an even better performance and ease of use. In this section, we introduce two of
these systems, Hive [34] and Spark SQL [35].

Hive

Hive, initially developed at Facebook, is a system for managing and querying struc-
tured data. It is built on top of MapReduce and converts a query to a series of
map and reduce tasks to run. Hive reuses the table data model in RDBMS, where
a table is a set of rows with the same schema (columns). In Hive, each table cor-
responds to a HDFS directory. To work with tables, Hive uses HiveQL, a SQL-
like query language that supports Data Definition Language (DDL) operations, e.g.,
create, alter, drop, as well as Data Manipulation Language (DML) opera-
tions, e.g., load and insert (overwrite), and also data retrieval query operations,
e.g., select, filter, join, group by. It does not, however, support any op-
eration for updating and deleting data items (rows).

Introduction to Big Data 21

To execute a query, Hive processes HiveQL statements and generates the execu-
tion plan in three phases: (i) parsing query that is to transform a query string to a
parse tree representation, (ii) generating a logical plan from the parse tree represen-
tation, and optimizing the plan, and (iii) generating a physical plan by splitting the
optimized logical plan into multiple map and reduce tasks.

Spark SQL

Hive conducts some optimizations in the logical plan generation to improve the per-
formance, however Shark [36] pushes the performance improvement further, by re-
placing the MapReduce physical execution engine with Spark. More specifically,
Shark is built on the Hive code base, but the physical execution engine part of Hive
is replaced with Spark. Although Shark enables users to speed up their queries, the
complicated code base that it inherits from Hive, brings about many challenges for
query optimization. This is due to the fact that the optimization techniques used in
Hive were designed for the MapReduce engine, not the Spark engine. Consequently,
Spark SQL [35] was developed that borrowed data loading process from Hive, and
in-memory column-oriented data store from Shark. Moreover, Spark SQL intro-
duces some new features, for example, it enables adding schema to RDDs, and uses
an RDD-aware optimizer, called catalyst optimizer.

Spark SQL introduces DataFrame, a distributed collection of rows with a ho-
mogeneous schema. DataFrame is equivalent to a table in a relational database,
but it can also be manipulated in similar ways to RDDs. To have access to the
functions of Spark SQL we need to build an SQLContext, just like we used an
SparkContext as the entry point into Spark functionalities. By using an instance
of SQLContext, one can build DataFrames from an existing RDD, from a Hive
table, or from other data sources. Spark SQL provides a rich set of domain-specific
languages for structured data manipulation with DataFrames.

Another feature added by Spark SQL is the catalyst optimizer, which is used
in four phases: (i) to analyze the logical plan and resolve attribute references by
tracking tables in data sources, (ii) to optimize the logical plan by applying standard
optimization rules, e.g., null propagation, constant folding, boolean and filter simpli-
fications, push predicate through joins and projection, etc., (iii) to generate several
physical plans using Spark physical operators and to select a plan using some cost
model, e.g., based on join algorithms, and finally (iv) to generate Java bytecode to
run on workers.

1.4 Concluding Remarks

The unprecedented growth of data we have witnessed in recent years have brought
about new challenges. This big data is commonly characterized by its extreme di-
mensions in terms of volume, the speed with which it is updated or produced, or
the heterogeneity of its representation schemes. These properties have caused the
traditional platforms fall short to store and process data efficiently, and thus, sev-
eral new solutions are developed, among which we briefly explored a few of the
state-of-the-art platforms. Each of these systems, of course, deserve more elaborated

22 Introduction to Big Data

descriptions, but we kept it short, because our main goal was to position each system
relative to other systems in the big data ecosystem. These systems and platforms
are continuously evolving, but even if the tools and technologies for dealing with
big data change over time, the main challenges and requirements that this chapter
touched upon will remain the same. As opposed to many other technology hypes
that go out of fashion in a few years, big data is here to stay.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

D. DeWitt and J. Gray, “Parallel database systems: the future of high perfor-
mance database systems,” Communications of the ACM, vol. 35, no. 6, pp.
85-98, 1992.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: a framework for machine learning and data mining in
the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716-727,
2012.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm @ twitter,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of data.
ACM, 2014, pp. 147-156.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and 1. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 2-2.

P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas,
“Apache flink: Stream and batch processing in a single engine,” Data Engi-
neering, p. 28, 2015.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in ACM
SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003, pp. 29-43.

E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue, “Flat
datacenter storage,” in Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12), 2012, pp. 1-15.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:
A scalable, high-performance distributed file system,” in Proceedings of the
7th symposium on Operating systems design and implementation. USENIX
Association, 2006, pp. 307-320.

23

24 BIBLIOGRAPHY

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” in 2010 IEEE 26th symposium on mass storage systems and tech-
nologies (MSST). 1EEE, 2010, pp. 1-10.

[11] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging system
for log processing,” in Proceedings of the NetDB, 2011, pp. 1-7.

[12] Apache activemgq. [Online]. Available: http://activemq.apache.org

[13] A. Richardson et al., “Introduction to rabbitmq,” Google UK, Sep, vol. 25,
2008.

[14] Apache flume. [Online]. Available: https://flume.apache.org

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ‘“Zookeeper: Wait-free coor-
dination for internet-scale systems.” in USENIX Annual Technical Conference,
vol. 8, 2010, p. 9.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: ama-
zon’s highly available key-value store,” ACM SIGOPS Operating Systems Re-
view, vol. 41, no. 6, pp. 205-220, 2007.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system
for structured data,” ACM Transactions on Computer Systems (TOCS), vol. 26,
no. 2, p. 4, 2008.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” ACM SIG-
COMM Computer Communication Review, vol. 31, no. 4, pp. 149-160, 2001.

[19] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo-
rithms,” IEEE/ACM Transactions on Networking (TON), vol. 14, no. SI, pp.
2508-2530, 2006.

[20] M. N. Vora, “Hadoop-hbase for large-scale data,” in Computer science and net-
work technology (ICCSNT), 2011 international conference on, vol. 1. IEEE,
2011, pp. 601-605.

[21] M. Burrows, “The chubby lock service for loosely-coupled distributed sys-
tems,” in Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 335-350.

[22] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing
in the data center.” in NSDI, vol. 11, 2011, pp. 22-22.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

BIBLIOGRAPHY 25

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013, p. 5.

H. C. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of Stream Process-
ing: Application Design, Systems, and Analytics. Cambridge University Press,
2014.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized
streams: Fault-tolerant streaming computation at scale,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 423-438.

K. M. Chandy and L. Lamport, “Distributed snapshots: determining global
states of distributed systems,” ACM Transactions on Computer Systems
(TOCS), vol. 3, no. 1, pp. 63-75, 1985.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: a system for large-scale graph processing,” in Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management
of data. ACM, 2010, pp. 135-146.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Dis-
tributed graph-parallel computation on natural graphs,” in Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 12), 2012, pp. 17-30.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Sto-
ica, “Graphx: Graph processing in a distributed dataflow framework,” in 7/th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
14), 2014, pp. 599-613.

L. G. Valiant, “A bridging model for parallel computation,” Communications
of the ACM, vol. 33, no. 8, pp. 103-111, 1990.

C. Avery, “Giraph: Large-scale graph processing infrastructure on hadoop,”
Proceedings of the Hadoop Summit. Santa Clara, vol. 11, 2011.

A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning power-
law graphs,” in Proceedings 20th IEEE International Parallel & Distributed
Processing Symposium. 1EEE, 2006, pp. 10—pp.

K. Lang, “Finding good nearly balanced cuts in power law graphs,” Preprint,
2004.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-reduce
framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1626—
1629, 2009.

26 BIBLIOGRAPHY

[35] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data pro-
cessing in spark,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1383-1394.

[36] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: Sql and rich analytics at scale,” in Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of data. ~ ACM, 2013, pp.
13-24.

