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Abstract. Graph processing has become an integral part of big data an-
alytics. With the ever increasing size of the graphs, one needs to partition
them into smaller clusters, which can be managed and processed more
easily on multiple machines in a distributed fashion. While there exist
numerous solutions for edge-cut partitioning of graphs, very little effort
has been made for vertex-cut partitioning. This is in spite of the fact
that vertex-cuts are proved significantly more effective than edge-cuts
for processing most real world graphs. In this paper we present Ja-be-
Ja-vc, a parallel and distributed algorithm for vertex-cut partitioning
of large graphs. In a nutshell, Ja-be-Ja-vc is a local search algorithm
that iteratively improves upon an initial random assignment of edges to
partitions. We propose several heuristics for this optimization and study
their impact on the final partitioning. Moreover, we employ simulated
annealing technique to escape local optima. We evaluate our solution on
various graphs and with variety of settings, and compare it against two
state-of-the-art solutions. We show that Ja-be-Ja-vc outperforms the
existing solutions in that it not only creates partitions of any requested
size, but also requires a vertex-cut that is better than its counterparts
and more than 70% better than random partitioning.

1 Introduction

A wide variety of real-world data can be naturally described as graphs. Take
for instance communication networks, social networks, biological networks, etc.
With the ever increasing size of such networks, it is crucial to exploit the natural
connectedness of their data in order to store and process them efficiently. Hence,
we are now observing an upsurge in the development of distributed and parallel
graph processing tools and techniques. Since the size of the graphs can grow
very large, sometimes we have to partition them into multiple smaller clusters
that can be processed efficiently in parallel. Unlike the conventional parallel data
processing, parallel graph processing requires each vertex or edge to be processed
in the context of its neighborhood. Therefore, it is important to maintain the
locality of information while partitioning the graph across multiple (virtual)
machines. It is also important to produce equal size partitions that distribute
the computational load evenly between clusters.

Graph partitioning is a well known NP-Complete problem in graph theory. In
its classical form, graph partitioning usually refers to edge-cut partitioning, that
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(b)
Fig. 1. Partitioning a graph into three clusters, using (a) edge-cut partitioning and (b) vertex-cut
partitioning

is, to divide vertices of a graph into disjoint clusters of nearly equal size, while
the number of edges that span separated clusters is minimum. However, tools
that utilize edge-cut partitioning do not achieve good performance on real-world
graphs (which are mostly power-law graphs) [1–3], mainly due to unbalanced
number of edges in each cluster. In contrast, both theory [4] and practice [5, 6]
prove that power-law graphs can be efficiently processed in parallel if vertex-cuts
are used.

A vertex-cut partitioning divides edges of a graph into equal size clusters. The
vertices that hold the endpoints of an edge are also placed in the same cluster
as the edge itself. However, the vertices are not unique across clusters and might
have to be replicated (cut), due to the distribution of their edges across different
clusters. A good vertex-cut is one that requires minimum number of replicas.
Figure 1 illustrate the difference between these two types of partitioning.

While there exist numerous approximate solutions for edge-cut partitioning,
very little work has investigated vertex-cut partitioning. Figure 2 shows a graph
with three different vertex-cut partitionings. The graph edges are partitioned into
two clusters. Two colors, yellow and blue, are representing these two partitions.
Vertices that have edges of one color only, are also colored accordingly, and the
vertices that have to be replicated are colored white. A very näıve solution is
to randomly assign edges to partitions. As shown in Figure 2(a), nearly all the
vertices have edges of different colors, thus, they have to be replicated in both
partitions. Figure 2(b) illustrates what happens if we use an edge-cut partitioner,
and then assign the cut edges to one of the partitions randomly. As shown, the
vertex-cut improves significantly. However, the number of edges in the partitions
is very unbalanced. What we desire is depicted in Figure 2(c), where the vertex-
cut is kept as low as possible, while the size of the partitions, with respect to
the number of edges, is balanced.

An alternative solution for vertex-cut partitioning of a graph G is to trans-
form it to its corresponding line graph L(G) (where L(G) represents the adja-
cencies between edges of G) and then use an edge-cut partitioning algorithm.
However, in most real-world graphs the number of edges are orders of magnitude
higher than the number of vertices, thus, the line graph often has a significantly
higher number of vertices. Consequently, the complexity of the partitioning could
grow drastically. It is, therefore, necessary to devise algorithms that performs
the vertex-cut partitioning on the original graph.

In this paper, we present a distributed vertex-cut partitioning algorithm,
called Ja-be-Ja-vc, based on local search optimization, which is mainly inspired
by our previous work for edge-cut partitioning [7]. The algorithm starts with
a random assignment of edges to partitions. For simplicity we represent each
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(a) A random vertex-cut.

Edges are evenly distributed,

but nearly all the vertices

have to be replicated.

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
���������

����
����
����
����

����
����
����
����
���������
�����
�����
�����

�����
�����
�����
����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

G
D

E F

H

A

CB

J

K

I

NM

L

(b) Partitioning based on

edge-cut and then assigning

the cut edges randomly to one

partition. Only one vertex is

replicated, but edges are not

evenly distributed.
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(c) A good vertex-cut par-

titioning. Three vertices are

replicated and the number of

edges in the two partitions are

balanced.

Fig. 2. Vertex-cut partitioning into two clusters. The color of each edge/vertex represents the
partition it belongs to. The white vertices belong to both partitions.

partition with a distinct color. Over time, vertices exchange information (about
the color of their edges) with each other and try to locally reduce the vertex-cut,
by negotiating over the assignment of their edges to partitions. Every vertex
attempts to assign all its edges to the same partition (same color), because this
means the vertex does not have to be cut. If this case is not possible due to
the contention between neighboring vertices, then the vertex tries to have the
minimum number of distinct assignments. Two vertices will decide to exchange
the colors of their candidate edges, if the vertex-cut can be reduced. Otherwise,
the edge colors are preserved.

The aforementioned heuristic is likely to get stuck in local optima due to ini-
tial random partitioning and the nature of the problem, which is NP-Complete.
Thus, we employ the well-known simulated annealing technique [8] to escape lo-
cal optima and find a better vertex-cut. Note, Ja-be-Ja-vc will always maintain
the initial distribution of partition sizes. That is, if the initialization is uniformly
random, the partition sizes are expected to be balanced. If we require to have
partitions of a different distribution, e.g., one partition twice as big as the oth-
ers, then we only need to change the initialization step to produce the required
distribution.

We observe through experiments, that Ja-be-Ja-vc produces quality parti-
tions on several large graphs and scales well with varying number of partitions.
We also study the trade-off between the vertex-cut and the computation cost, in
terms of the number of iterations to compute the partitioning. Finally, we com-
pare Ja-be-Ja-vc to the state-of-the-art vertex-cut partitioner [9], as well as the
state-of-the-art edge-cut partitioner [7], and study their existing the trade-offs.
We show that Ja-be-Ja-vc consistently outperforms [7] and [9] on producing
requested size partitions, while not sacrificing the vertex-cut. Even for varying
number of partitions, Ja-be-Ja-vc always reduces the vertex-cut to lower than
30% and down to 10% for some graphs.

2 Problem statement

We are given an undirected graph G = (V,E), where V is the set of vertices
and E is the set of edges. A k-way balanced vertex-cut partitioning divides the



set of edges E into k subsets of equal size, where k is an input parameter. Each
partition also has a subset of vertices that hold at least one of the edges in
that partition. However, vertices are not unique across partitions, that is, some
vertices may appear in more than one partition, due to the distribution of their
edges across several partitions. A good edge partitioning strives to minimize the
number of vertices that belong to more than one partition.

A k-way balanced vertex-cut partitioning can be given with the help of a
partition function π : E → {1, . . . , k} that assigns a color to each edge. Hence,
π(e), or πe for short, refers to the color of edge e. Edges with the same color
form a partition. We denote the set of edges that are connected to vertex p by
Ep. Accordingly, Ep(c) indicates the subset of edges of p that have color c:

Ep(c) = {e ∈ Ep : πe = c} (1)

We refer to |Ep(c)| as the cardinality of color c at vertex p. Then, the energy
of a vertex p is shown with γ(p, π) and it is defined as the number of different
colors that has a cardinality greater than zero.

γ(p, π) =
∑

|Ep(c)|>0

1,∀ c ∈ {1, . . . , k} (2)

In other words, the energy of a vertex p for a partition function π is the
number of different colors that are assigned to the edges of p, which is equivalent
to the number of required replicas (vertex-cut) for p. The energy of the graph is
sum of the energy of all its vertices:

Γ (G, π) =
∑
p∈V

γ(p, π) (3)

Now we can formulate an optimization problem as follows: find the optimal
partitioning π∗ such that:

π∗ = arg min
π
Γ (G, π) (4)

s.t. |E(c1)| = |E(c2)|,∀ c1, c2 ∈ {1, . . . , k} (5)

where |E(c)| is the number of edges with color c. Note, in all practical cases the
second condition is relaxed, such that it requires partitions of approximately
equal size. This is important, because the number of edges of the graph is not
necessarily a multiple of k. Therefore, throughout this paper, we address the
relaxed version of the problem.

3 Solution

In order to partition the edges of a given graph, we use an approach inspired by
Ja-be-Ja [7], our previous work on edge-cut partitioning. Our algorithm, called
Ja-be-Ja-vc, is vertex-centric and fully distributed, and no central point with



Algorithm 1 Optimization sketch
1: procedure run()
2: if self.isInternal() is not TRUE then
3: selfEdge ← self.selectEdge() . Select an edge (Algorithm 2)
4: candidates ← self.selectCandidates() . Select a list of candidate vertices (Algorithm 3)
5: for all partner in candidates do . Look for a swap partner among the candidates
6: if partner is not internal then
7: if policy is DominantColor then
8: selfColor ← self.getDominantColor()
9: partnerColor ← partner.getDominantColor()

10: if selfColor 6= partnerColor and partner.hasEdge(selfColor) then
11: partnerEdge ← partner.selectEdge(selfColor)
12: swapColor(selfEdge, partnerEdge)
13: break
14: end if
15: else . If the policy is based on Edge Utility
16: partnerEdge ← partner.selectEdge()
17: if swapUtility(selfEdge, partnerEedge) > 0 then
18: swapColor(selfEdge, partnerEedge)
19: break
20: end if
21: end if
22: end if
23: end for
24: end if

25: end procedure

a global knowledge is required. Vertices of the graph execute the algorithm inde-
pendently and iteratively. In this algorithm, initially a random color is assigned
to each edge of the graph. This is equivalent to a random assignment of edges to
partitions. Then we allow vertices to exchange the color of their edges, provided
that the exchange leads to a better cut of the graph. In the initialization step
we can control the required partition size distribution. If edges are initially as-
signed to partitions uniformly at random, then size of the partitions is expected
to be equal. We could also use any other distribution for initial edge assignment,
and Ja-be-Ja-vc guarantees to preserve this distribution during the course of
optimization.

The optimization step is illustrated in Algorithm 1. In each iteration, first a
vertex checks whether or not it is internal. An internal vertex is a vertex that is
surrounded with the edges of the same color (i.e., γ(p, π) = 1). If the vertex is
internal, it does not need to perform any optimization and waits for its turn in
the next round. Otherwise, the vertex proceeds with the following three steps:
(i) edge selection, (ii) partner selection, and (iii) swap. Each of these steps could
be realized by means of various policies. Here we explain a few possible policies
for these steps separately.

3.1 Edge Selection

In this step a vertex selects one of its edges for color exchange. We consider two
policies for edge selection: (i) random and (ii) greedy. In the random policy, a
vertex chooses one edge of its edges randomly. Although random selection is very
straight forward, it will not lead our local search in the right direction. Consider,
for example, a vertex with a majority of edges with blue color and just very few



Algorithm 2 Edge Selection
1: procedure selectEdge(color)
2: if color is null then
3: color ← self.getColorWithMinCardinality()
4: end if
5: edges ← self.getEdges(color)
6: return edges.getRandomElement()

7: end procedure

Algorithm 3 Partner Selection
1: procedure selectCandidates()
2: candidates ← self.getNeighbours().getSubset() . a subset of direct neighbors
3: candidates.add(getRandomVertices()) . a subset of random vertices from the graph
4: return candidates

5: end procedure

Algorithm 4 Calculate Swap Utility
1: procedure swapUtility(edge1, edge2)
2: c1← edge1.getColor()
3: c2← edge2.getColor()
4: u1c1 ← getEdgeValue(edge1.src, edge1.dest, c1); . utility of edge1 before swap
5: u2c2 ← getEdgeValue(edge2.src, edge2.dest, c2); . utility of edge2 before swap
6: u1c2 ← getEdgeValue(edge1.src, edge1.dest, c2); . utility of edge1 after swap
7: u2c1 ← getEdgeValue(edge2.src, edge2.dest, c1); . utility of edge2 after swap
8: return ((u1c2 + u2c1)× Tr)− (u1c1 + u2c2)

9: end procedure

red edges. If this vertex selects a random edge for a color exchange, it is more
likely that the vertex selects a blue edge (because it has a majority of blue

edges), and such selection is not in the interest of the vertex. Whereas, if the
vertex selects an edge with red color, it will have a higher chance of unifying the
color of its edges. With a greedy policy, a vertex selects one of its edges, e.g., e,
which has a color with minimum cardinality:

e ∈ Ep(c∗), c∗ = argmin
c
|Ep(c)|

Since random policy is ineffective in our optimization process, we only con-
sider the greedy edge selection in our experiments. Algorithm 2 describes how
an edge is selected with this policy.

3.2 Partner Selection

In this step a vertex selects a subset of other vertices from the graph as candidates
for a color exchange. A vertex considers two sets of vertices for partner selection:
(i) direct neighbors, and (ii) random vertices. Direct neighbors of a vertex p are
a set of vertices that are directly connected to p. Every vertex has knowledge
about its directly connected neighbors. Since some vertices may have a very
large degree, this local search could become exhaustive for such vertices if they
have to check each and every of their neighbors. Hence, vertices only consider a
fixed-size random subset of their direct neighbors.



Vertices choose their partners for color exchange first from their direct neigh-
boring. To increase the chance of finding a swap partner, vertices also consider
a few random vertices from the graph. This random subset of vertices could be
acquired through a peer sampling service [10–13] or random walk [14] that is
continuously running on all the graph vertices. In our previous work [7] we have
extensively discussed these two vertex selection policies (i.e., direct and random)
and how they can be realized. Moreover, we showed that the best outcome is
achieved while the hybrid of direct and random neighbors are taken into account.
We, therefore, use the hybrid policy, where as shown in Algorithm 1 (Line 5)
and Algorithm 3 vertices first check a subset of their direct neighbours, and then
if they do not succeed, they check some random vertices.

3.3 Swap Heuristics

To make a decision for color exchange we consider two heuristics: (i) dominant
color and (ii) edge utility.

Dominant Color (DC). We define the dominant color of a vertex p as the
color with the maximum cardinality at p. That is:

c∗p = argmax
c
|Ep(c)|

With this heuristic, a vertex p looks for a partner which (i) is not internal, and
(ii) has an edge with vertex p’s dominant color. If vertex p finds such a vertex,
it exchanges with that vertex one of its non-dominant colors for the dominant
color. In other words, every vertex tries to unify the color of its edges, in order
to reduce its energy. Since the global energy of the graph is sum of all vertices’
energy, this optimization has the potential to lead us toward a globally optimal
state. Although condition (i) prevents disturbing those vertices that are already
stabilized, vertices are still acting very greedily and do not consider the benefits
of the other endpoint of the edge that they are negotiating over. Consequently,
this policy could end up in contention between neighboring vertices, and the
color of some edges might fluctuate. In Section 4, we will study the evolution of
the partitioning under such policy.

Edge Utility (EU). An alternative policy is to assign a utility value to every
edge based on the cardinality of the colors at its endpoints. The main idea of
this heuristic is to check that whether exchanging the color of two edges decreses
the energy of the their connected vertices or not. If it does, two edges swap their
colors, otherwise they keep them. To every edge epq (with two endpoints p and
q) we assign a value υ, with respect to color c, that indicates the relative number
of neighboring edges of e with color c. That is:

υ(e, c) =

{ |Ep(c)|−1
|Ep| +

|Eq(c)|−1
|Eq| if c = πe

|Ep(c)|
|Ep| +

|Eq(c)|
|Eq| otherwise



Graph Name |V |E| power-law Avg. Clustering Coeff. Diameter Source
Data 2851 15093 no 0.486 79 Walshaw Archive [15]
4elt 15606 45878 no 0.408 102 Walshaw Archive [15]
Astroph 17903 196972 yes 0.6306 14 Stanford Snap Datasets [16]
Email-Enron 36692 367662 yes 0.4970 11 Stanford Snap Datasets [16]

Table 1. Datasets used in the experiments

Note, in the first case, Ep(c) and Eq(c) include edge e, and that is why we need
to decrement them by one. Next, the objective is to maximize the overall value
of edges during the color exchange process. More precisely, vertex p exchanges
the color of its edge epq with the color of another edge e′p′q′ , if and only if:

υ(e, c′) + υ(e′, c) > υ(e, c) + υ(e′, c′)

where c = πe and c′ = π′e. Hence, the swap utility is calculated as follows:

utility = (υ(e, c′) + υ(e′, c))− (υ(e, c) + υ(e′, c′))

Simulated Annealing. Since our swap policy is based on local optimization
with limited information at each vertex and no central coordinator, it is prone to
getting stuck in local optima. Therefore, we need to employ some techniques to
help it get out of local optima and move towards better configurations over time.
To achieve this goal, we use simulated annealing [8] with constant cool down rate.
Two parameters of the simulated annealing are the initial temperature T0 and
the cool down rate δ. The temperature at round r is then calculated as follows:

Tr = max(1, T0 − r · δ)

Finally, as shown in Algorithm 4 we bias the utility computation with the
value of temperature at each round, as follows:

utility = ((υ(e, c′) + υ(e′, c))× Tr)− (υ(e, c) + υ(e′, c′))

4 Experiments
In this section, we first introduce the datasets and metrics that we used for
evaluating our solution. Then, we study the impact of our simulated annealing
parameters on the partitioning quality. Next, we show how different policies,
introduced in Section 3.3, perform. We also measure the performance of these
policies in scale, and compare them to two state of the art solutions.

To evaluate Ja-be-Ja-vc we used four graphs of different nature and size
for evaluating our ideas. These graphs and some of their properties are listed in
Table 1. Note, graphs Astroph and Email-Enron have power-law degree distribu-
tion. We measure the following metrics to evaluate the quality of the partitioning:

– Vertex-cut: this metric counts the number of times that graph vertices has
to be cut. That is, a vertex with one cut has replicas in two partitions, and a
vertex with two cuts is replicated over three partitions. This is an important
metric, because when a graph vertices are scattered over several partitions,
every computation that involves a modification to a vertex, should be prop-
agated to all the other replicas of that vertex, for the sake of consistency.
Therefore, vertex-cut directly affects the required communication cost of the
partitioned graph.



– Normalized vertex-cut: this metric calculates the vertex-cut of the final par-
titioning relative to the random partitioning, thus, it shows to what extent
the algorithm can reduce the vertex-cut.

– Standard deviation of partition sizes: this metric measures the Standard De-
viation (STD) of normalized size of the partitions. First, we measure the size
of the partitions (in terms of the number of edges) relative to the average
(expected) size. Then, we calculate how much the normalized size deviates
from the perfect normalized size, i.e., 1.

4.1 Experimental setting

We conducted several experiments to tune the two parameters of the simulated
annealing, namely T0 and δ. For these experiments we selected the Data graph
(Table 1) and k = 2. As shown in Figure 3(a), the vertex-cut decreases when
T0 increases. However, Figure 3(b) illustrates that this improvement is achieved
in a higher number of rounds, that is, a bigger T0 delays the convergence time.
Similarly, a smaller δ results in a better vertex-cut, at the cost of more rounds. In
other words, T0 and δ are parameters of a trade-off between vertex-cut and the
convergence time and can be tuned based on the priorities of the applications.
Moreover, we found out that for a larger k, it is better to choose a smaller δ,
because when the number of partitions increases, the solution space expands and
it is more likely for the algorithm to get stuck in local optima. Unless otherwise
mentioned, in the rest of our experiments T0 = 2 and we use delta = 0.0005
for k = 32 and k = 64, and δ = 0.001 for other values of k. Moreover, each
node selects 4 candidates in a round, including three random nodes among its
neighbors (line 3 in Algorithm 3) and one random node from the whole graph,
provided by the peer sampling service (line 4 in Algorithm 3).

4.2 Performance

We observe the evolution of vertex-cut over time on different graphs, with two
different swap policies: (i) DC, i.e., dominant color, and (ii) EU , i.e., edge utility.
For this experiment k = 4, and the results are depicted in Figure 4. As shown,
the main gain with the DC policy is acquired in the very beginning, when the
vertex-cut drops sharply. After the first few iterations, the vertex-cut does not
change considerably. In contrast, the EU policy results in a lower vertex-cut, but
in a larger number of iterations. It is important to note, the convergence time
is independent of the graph size and is mainly determined by the parameters
of the simulated annealing. The algorithm converges soon after the temperature
reaches value 1.

It is interesting to note, for the first two graphs, the DC policy can produce a
better vertex-cut in a short time, but in the long run, the EU policy outperforms
it. For the other graphs in Figures 4(d) and 4(c), the EU policy is always per-
forming better. This is due to the different structural properties of these graphs.
More precisely, Astroph and Email-Enron are power-law graphs (Figures 4(d)
and 4(c)), that is the the degree distribution of graph vertices resembles a power-
law distribution. More structural properties of these graphs are listed in Table 1.
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Fig. 4. Evolution of vertex-cut with different swap policies (K=4).

We also measure the vertex-cut for various number of partitions. For this
experiment, we only use the EU policy. Figure 5(a) depicts how the vertex-cut
changes for various number of partitions. To better understand this result, we
also report the vertex-cut of Ja-be-Ja-vc relative to that of a random parti-
tioning in Figure 5(b). As shown, Ja-be-Ja-vc reduces the vertex-cut to nearly
10-15% for Data and 4elt graphs, and to 20-30% for our power-law graphs.

4.3 Comparisons to the state of the art

In this section we show that our solution outperforms two state-of-the-art solu-
tions in that it produces partitions with equal size, while requiring a very low
vertex-cut. First, we use an edge-cut partitioner, Ja-be-Ja [7] to partition the
graph. Then, the cut edges are randomly assigned to one of the partitions, where
their endpoints belong to. This is similar to the example in Figure 2(b). We also
compare Ja-be-Ja-vc to the state-of-the-art vertex-cut partitioner by Alessio et
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Fig. 5. The improvements for different number of partitions.
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Fig. 6. Comparisons (k=20)

al. [9], which includes two policies of its own, namely D-fep, and D-fep Variant.
This experiment is performed on Astroph and Email-Enron graphs with k = 20.
To make the comparisons more meaningful, we report the normalized vertex-
cut, that is the vertex-cut relative to that of a random partitioning. As shown in
Figure 6(a), Ja-be-Ja produces the minimum vertex-cut. However, Figure 6(b)
shows that the partition sizes are very unbalanced. The number of cut vertices
in D- fep and its variant is more than that of Ja-be-Ja, but their partition sizes
are much more balanced. Ja-be-Ja-vc has a better vertex cut than D-fep, while
the partition sizes are nearly equal.

As explained in Section 4.1, the convergence time of Ja-be-Ja-vc is indepen-
dent of the graph size and is mainly affected by the parameters of the simulated
annealing process. While this is true for Ja-be-Ja, [9] shows that both D-fep and
its variant converge in only very few rounds and produce very good vertex-cuts
for graphs Astroph and Email-Enron. However, as depicted in Figure 6(b) these
algorithms do not maintain the balance of the partition sizes. In fact, without
proper coordination, the standard deviation of the partition size distribution
could grow to prohibitively large levels. Ja-be-Ja-vc, however, maintains the
initial distribution of edge colors, and can even be used to produce partitions of
any desired size distribution, with a better vertex-cut. This comes, however, at
the cost of longer running time.

5 Related Work

In this section we study some of the existing work on both edge-cut and vertex-
cut partitioning.



5.1 Edge-cut partitioning

A significant number of algorithms exist for edge-cut partitioning [17–23]. These
algorithms can be classified into two main categories: (i) centralized algorithms,
which assume cheap random access to the entire graph, and (ii) distributed
algorithms.

A common approach in the centralized edge-cut partitioning is to use Mul-
tilevel Graph Partitioning (MGP) [19]. METIS [20] is a well-known algorithm
based on MGP that combines several heuristics during its coarsening, partition-
ing, and un-coarsening phases to improve the cut size. KAFFPA [23] is another
MGP algorithm that uses local improvement algorithms based on flows and
localized searches. There exist also other works that combined different meta-
heuristics with MPG, e.g., Soper et al. [24] and Chardaire et al. [25] used Genetic
Algorithm (GA) with MPG, and Benlic et al. [26] utilized Tabu search.

Parallelization is a technique that is used by some systems to speedup the
partitioning process. For example, PARMETIS [21] is the parallel version of
METIS, KAFFPAE [27] is a parallelized version of its ancestor KAFFPA [23],
and [28] is a parallel graph partitioning technique based on parallel GA [29].

Although the above algorithms are fast and produce good min-cuts, they
require access to the entire graph at all times, which is not feasible for large
graphs. Ja-be-Ja [7] is a recent algorithm, which is fully distributed and uses
local search and simulated annealing techniques [8] for graph partitioning. In this
algorithm each vertex is processed independently, and only the direct neighbors
of the vertex, and a small subset of random vertices in the graph need to be
known locally. DIDIC [30] and CDC [31] are two other distributed algorithms
for graph partitioning, which eliminate global operations for assigning vertices
to partitions. However, they may produce partitions of drastically different sizes.

5.2 Vertex-cut partitioning

While there exist numerous solutions for edge-cut partitioning, very little effort
has been made for vertex-cut partitioning. SBV-Cut [32] is one of the recent work
for vertex-cut partitioning. The authors proposed a solution to identify a set of
balanced vertices that can be used to bisect a directed graph. The graph can
then be further partitioned by a recursive application of structurally-balanced
cuts to obtain a hierarchical partitioning of the graph.

PowerGraph [5] is a distributed graph processing framework that uses vertex-
cuts to evenly assign edges of a graph to multiple machines, such that the number
of machines spanned by each vertex is small. PowerGraph reduces the commu-
nication overhead and imposes a balanced computation load on the machines.
GraphX [6] is another graph processing system on Spark [33, 34] that uses a
vertex-cut partitioning to improve its performance.

ETSCH [9] is also a graph processing framework that uses a distributed
vertex-cut partitioning algorithm, called DFEP [9]. DFEP works based on a
market model, where the partitions are buyers of vertices with their funding.
Initially, all partitions are given the same amount of funding. The algorithm,
then, proceeds in rounds, such that in each round, a partition p tries to buy



edges that are neighbors of the already taken edges by p, and an edge will be
sold to the highest offer. There exists a coordinator in the system that monitors
the size of each partition and sends additional units of funding to the partitions,
inversely proportional to the size of each partition.

6 Conclusions

We presented Ja-be-Ja-vc, a distributed and parallel algorithm for vertex-cut
partitioning. Ja-be-Ja-vc partitions edges of a graph into a given number of
clusters with any desired size distribution, while the number of vertices that have
to be replicated across clusters is low. In particular, it can create balanced parti-
tions while reducing the vertex-cut. Ja-be-Ja-vc is a local search algorithm that
iteratively improves upon an initial random assignment of edges to partitions.
It also utilizes simulated annealing to prevent getting stuck in local optima. We
compared Ja-be-Ja-vc with two state-of-the-art systems, and showed that Ja-
be-Ja-vc not only guarantees to keep the size of the partitions balanced, but
also outperforms its counterparts with respect to vertex-cut.
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