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Abstract—Numerous text classification tasks inherently pos-
sess hierarchical structures among classes, often overlooked
in traditional classification paradigms. This study introduces
novel approaches for hierarchical text classification using Large
Language Models (LLMs), exploiting taxonomies to improve
accuracy and traceability in a zero-shot setting. We propose two
hierarchical classification methods, namely (i) single-path and (ii)
path-traversal, which all leverage the hierarchical class structures
inherent in the target classes (e.g., a bird is a type of animal
that belongs to a species) and improve naı̈ve hierarchical text
classification from literature. We implement them as prompts for
generative models such as OpenAI GPTs and benchmark them
against discriminative language models (BERT and RoBERTa).
We measure the classification performance (precision, recall, and
F1-score) vs. computational efficiency (time and cost). Through-
out the evaluations of the classification methods on two diverse
datasets, namely ComFaSyn, containing mental health patients’
diary entries, and DBpedia, containing structured information
extracted from Wikipedia, we observed that our methods, without
any form of fine-tuning and few-shot examples, achieve com-
parable results to flat classification and existing methods from
literature with minimal increases in the prompts and processing
time.

Index Terms—Hierarchical text classification, Large Language
Models (LLMs), zero-shot classification

I. INTRODUCTION

Text classification is essential in natural language process-
ing, enabling efficient organization of unstructured data and
enhancing information retrieval. As digital content grows, au-
tomated classification becomes vital for optimizing workflows
in healthcare, finance, and customer service, where timely and
accurate categorization is crucial.

Conventional text classification often ignores the hierarchi-
cal structures present in many datasets. Our work is motivated
by the fact that many classification tasks rely on taxonomies,
where each level provides greater specificity. Hierarchical text
classification (HTC) produces a structured set of labels from
different taxonomy levels, offering a more granular under-
standing of the text’s content. These labels capture hierarchical
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relationships, classifying the text at increasing levels of detail.
For example, the model could first categorize a city as a Place,
then as a NaturalPlace, and finally as a City.

We explore text classification methods that leverage the
hierarchical nature of class structures, building on existing
research on HTC using LLMs by [1]. HTC becomes highly
relevant to multiple inheritance taxonomies, where it is not
always clear which parent a class belongs to, requiring so-
phisticated methods to disambiguate relationships and opti-
mize classification performance. In addition to the existing
approach, (i) naı̈ve hierarchical [1], where a LLM predicts
classes at each level and narrows down the search space iter-
atively, we introduce two methods: (ii) single-path, where the
LLM generates entire paths through the taxonomy in a single
response, and (iii) path-traversal, which models the entire
hierarchical exploration in a single response. These methods
facilitate accurate classification, maintain interpretability by
providing insights into the hierarchical reasoning process, and
improve computational efficiency.

We demonstrate the effectiveness of our methods by ex-
tensively testing them over two diverse datasets, namely (i)
ComFaSyn, which contains synthetic mental health patients’
diary entries, and (ii) DBpedia, which contains structured in-
formation extracted from Wikipedia. We benchmark the mod-
els with two types of text classification models: discriminative
(e.g., BERT and RoBERTa) and generative language models
(e.g., GPT) and compare them to state-of-the-art methods.

Our empirical findings reveal competitive performance com-
pared to state-of-the-art approaches, such as SBERT embed-
dings with SVM and BERT, particularly on datasets like
DBpedia and ComFaSyn. On the ComFaSyn dataset, the flat
classification achieved a perfect precision score of 1.0 and
an F1 score of 0.9815, while the single-path model achieved
a precision of 0.9762 and an F1 score of 0.9653. The path-
traversal model performed similarly, with a precision of 0.9722
and an F1 score of 0.9564. On DBpedia, the BERT model
achieved the highest accuracy at 0.993, whereas our single-
path method reached 0.967 without fine-tuning or few-shot
examples. Furthermore, single-path and path-traversal require
approximately one-third of the computations of naı̈ve hierar-



chical methods.
To summarize, this paper makes the following contributions.
• The creation of the taxonomy of common factors, which

are the effective elements of treatment shared among var-
ious types of psychotherapy, and the ComFaSyn training
dataset of synthetic mental health patient diary entries,
designed explicitly for evaluating hierarchical classifica-
tion methods.

• The definition and implementation of novel approaches
for HTC using LLMs.

• A comprehensive empirical evaluation of these proposed
hierarchical methods to assess their effectiveness.

II. BACKGROUND AND RELATED WORK

Text classification is the task of categorizing a textual
input into pre-defined classes [2]. Examples include senti-
ment analysis [3], spam detection [4], topic labeling [5], and
toxicity detection [6]. Hierarchical text classification [7]–[9],
contrarily to flat classification, utilizes the inherent hierarchical
structure of the classes. In its simplest form, HTC is repeated
flat classification. HTC is especially advantageous when pro-
cessing a large class space [9] because the classification tasks
can be decomposed into multiple smaller problems.

Traditionally, discriminative models such as BERT [10]
and RoBERTa [11] have shown strong performance in text
classification tasks [12], [13], but they typically require large
amounts of training data. In contrast, LLM have demonstrated
impressive few-shot learning capabilities across various tasks
[14]. With few-shot learning, LLMs can perform tasks with
minimal examples in the input prompts, showcasing their
ability to understand task structures and logic [15]. This makes
LLMs a promising approach for text classification, especially
when combined with advanced prompting techniques. One
such prompting technique is Chain-of-Thought (CoT) [16],
which improves reasoning by breaking tasks down into in-
termediate steps. Tree-of-Thoughts (ToT) [17] extends this
concept by introducing a branching reasoning process that
explores multiple reasoning paths. This structured reasoning
approach aligns well with hierarchical classification and is part
of our core method.

Additionally, LLMs have been used for data augmentation
in HTC [18], [19]. [19] build a pipeline to enrich the taxonomy
and classify documents using a matching network [20]. More
recently, [1] performed HTC with few-shot learning by retriev-
ing the most relevant demonstrations using similarity search.
The retrieval model fetches demonstrations iteratively from a
retrieval database at each layer, reducing candidate label sets
layer by layer. Our approach differs as we classify the whole
path along the taxonomy in a single pass.

III. PROBLEM FORMULATION

Text classification aims to classify the textual input x
into corresponding class label yi ∈ Y , where Y =
{y1, y2, . . . , yn}. In this study, we leverage LLM, denoted as
M, as text classifiers that map input text to a distinct class
label, M : x→ yi.

HTC leverages a hierarchy in the classes, also known as
taxonomies. We consider taxonomies with single inheritance,
such as the taxonomy in Figure 1 consisting of a single
root and two main branches: Place and Animal, representing
the two primary categories. The structure forms a tree-like
diagram, with each node representing a class or category and
arrows indicating IS A relationships between them.

Formally, we can define the taxonomy in the following way.
Let V = {r, y1,1, y1,2, . . . , y1,m1

, . . . , yn,1, yn,2, . . . yn,mn
}

represent a hierarchy of class labels descending from the root
r, where n ≥ 2 indicates the number of levels in the taxonomy,
and mi denotes the maximum number of classes at that level.
Then, a class yi,j signifies the class j at level i. Furthermore,
let V (i) be the classes at the i-th level, e.g., in Figure 1,
V (1) = {Place,Animal}. We formulate the taxonomy as a
directed acyclic graph G = (V, E , r), where

• V = {r, y1,1, y1,2, . . . , y1,m1
, . . . , yn,1, yn,2, . . . , yn,mn

}
is the set of vertices representing the classes;

• E ⊆ {(u, v) ∈ V × V ∧ u ̸= v} is a set of edges where
(u, v) indicates that u is the superclass of v;

• r ∈ V is the root vertex from which all classes descend.
The root has no superclass, hence no incoming edges.

Introducing the taxonomy shifts the classification objective
by decomposing the classification into n intermediate classi-
fications. We modify the classifier function as M : x → v,
where v is a subset of V , such that v = (y1,a, y2,b, . . . , yn,z)
is a path from the first level class y1,a to the leaf class yn,z
in the taxonomy.

IV. FLAT AND HIERARCHICAL CLASSIFICATION METHODS

In this section, we present our three hierarchical classifica-
tion methods, (i) hierarchical, (ii) single-path, and (iii) hier-
archical one-prompt, to traverse a taxonomy and classify the
input using any conversational LLM. Each method approaches
the HTC task with subtle variations, though they all build on
the same underlying principle. Rather than flat classification,
these methods decompose the task into subtasks aligned with
the levels in the hierarchy, aiming to predict a sequence of
class labels v̂ = (y1,a, y2,b, . . . , yn,z) that represents a path
from the root to a leaf node within the taxonomy.

Algorithm 1 details the steps in a naı̈ve hierarchical clas-
sification. The hierarchical process necessitates an input x,
an LLM M, the number of levels n, the classes V , the
demonstrations D. A demonstration d ∈ D is an example of an
input text for the candidate classes to guide the model in the
classification process. For instance, at the first level (i = 1), the
candidate classes comprise {Place,Animal}, and a sample
in d1 might be ”Geese are migrating for hundreds of miles.”
which belongs to the class Animal. The LLMM classifies the
input data at the first level, given the candidate classes and
demonstrations, producing the predictions ẑi and optionally
an explanation that explains why the model predicted zi.
A scoring function ϕ(·) → R ∈ [0, 1] takes zi as input
to quantify confidence in each class at that level producing
the likeliest class ŷi. There are several techniques to score
the predictions, including uncertainty estimation [21]. We



prompt M to elicit confidence similar to [22], but seamlessly
integrating other techniques is also possible. This process is
repeated for the n levels. In each iteration, the predictions
from the previous level are evaluated and used to refine the
candidate classes for the next level by pruning unlikely classes
based on the scores of the predictions.

Algorithm 1 Naı̈ve hierarchical classification

Input: input x,LLM M, levels n, classes V,
demonstrations D

Output: v̂ the predicted sequence of classes
(y1,a, y2,b, . . . , yn,z)

1: Let v̂ be the empty sequence ▷ Initialize the sequence
2: for i← 1 to n do
3: di ← SAMPLE(D,V(i), k) ▷ Sample k demonstrations
4: ẑi ←M(x,V(i), di) ▷ Classify input
5: ŷi ← argmaxẑi∈V ϕ(ẑi) ▷ Get the top-scoring class
6: V ← PRUNING(x, ẑi) ▷ Prune the irrelevant classes
7: Append ŷi to v̂ ▷ Add to class sequence
8: end for
9: return v̂ ▷ Final classification at level n

Figure 1 (top) shows an example of a taxonomy with two
levels represented as a graph. There are two classes at the
first level, Place and Animal, and five subclasses at the second
level. For instance, Building is a subclass of the Place super-
class. We assume that each class has only one superclass and
each input belongs to exactly one class. Ultimately, the aim is
to classify input into leaf classes at the last level. For example,
given an input ”The Grand Central Terminal is located in
Midtown Manhattan.”, the flat classification model M should
return Station. The hierarchical classification methods should
result in a fully qualified class name that contains all classes
on the path from the root to the leaf class in the taxonomy,
e.g., (Place, Station). With multi-class classification, the most
likely option, Station out of the possible options, is returned.

HTC methods offer several advantages. They enhance
traceability for debugging, allowing effective error analysis
throughout the classification process. By decomposing the
problem into manageable sub-problems, these methods align
with the CoT and ToT paradigms [16], [17]. Additionally, they
allow for assessing prediction and explanation quality at each
stage, providing a comprehensive performance evaluation.
Unlike naı̈ve multi-step approaches, our HC paradigm runs
in a single pass—using one prompt and response—saving
computational resources while maintaining the benefits of
hierarchical classification. Below, we highlight the differences
between flat and our three HTC methods: hierarchical, single-
path, and path-traversal.

a) Flat classification.: Traditional multi-class text classi-
fication, commonly referred to as flat classification (as depicted
in Figure 1a), is the prevalent method for categorizing textual
content [23]. In this approach, the classifier modelM receives
an input text x and generates a prediction ŷ, representing, for
instance, the sentiment of a paragraph or the topical category
of a news article. Effectively, flat classification disregards any

information on the class topology, i.e., Building is a Place
and not an Animal, and directly classifies the leaf class yn.
In this study, flat classification is one of the baselines in the
experimental analysis.

b) Naı̈ve hierarchical classification.: To leverage the in-
formation inherent in the taxonomy, we consider a hierarchical
approach, also used by [1], to classify the input. Algorithm 1
and Figure 1b) illustrate the approach. This method is the naive
implementation of Algorithm 1. At each level, we prompt the
model to generate the top three classes in JSON format, similar
to a beam search, and prune irrelevant classes and sub-classes
before moving to the next level.

c) Single-path classification.: The hierarchical approach
queries the LLM at each layer. To improve efficiency, we
introduce single-pass prompting techniques. Aligned with the
CoT approach [16], our single-path classification leverages
a step-by-step reasoning paradigm, deconstructing complex
problems into manageable intermediate steps. This strategy
has been further adapted by [15] for text classification, wherein
tasks such as sentiment classification are dissected into a series
of incremental steps. A single-path is the sequence of classes
(y1,a, yj,b, . . . , yn,z), a path through the taxonomy from root to
leaf classes. We prompt the model to generate this path in one
response, significantly reducing the total token length while
preserving the step-by-step thinking process. For instance,
the model receives the input ”The Grand Central Terminal
is located in Midtown Manhattan.” and should generate the
sequence (Place, Building).

d) Path-traversal classification.: The path-traversal
method aligns with the ToT approach [17] and follows
the same principle as the hierarchical method. The aim is
to explore multiple paths down the taxonomy. However,
instead of having a multi-turn conversation by querying
the model n times, i.e., the number of levels, the LLM is
queried just once. We prompt the LLM to generate p paths
through the taxonomy and assign confidence scores to each
path, simulating the hierarchical exploration process in the
response. For instance, given the input ”The Grand Central
Terminal is located in Midtown Manhattan.”, the model
explores the paths (Place, Building), (Place, Station), and
(Place, Sports facility). Assuming the scoring function ϕ(·)
ranks these paths in that order, the final prediction will be
ŷ = (Place, Building).

V. EXPERIMENTAL SETUP

We evaluate the hierarchical classification methods in zero-
shot and fine-tuned scenarios on ComFaSyn and DBpedia,
using flat, naı̈ve hierarchical and discriminative models as
baselines. Performance is measured by accuracy and time ef-
ficiency. The following section details the experimental setup,
including models, datasets, metrics, and results. Hardware
configuration is in Appendix C.

A. Datasets
We used two datasets for multi-class classification: Com-

FaSyn, a dataset of mental health patient diary entries, and DB-
pedia, which contains structured information extracted from
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Fig. 1: Flat and Hierarchical Classification Methods

Wikipedia. ComFaSyn comprises two levels, and DBpedia has
three levels of classes. ComFaSyn and DBpedia taxonomies
are presented in Appendix A and Appendix B, respectively.
We distinguish between training and test data. The training
data is used for (i) in-context learning demonstrations and (ii)
fine-tuning an LLM, while the test data is for evaluation. The
differences are detailed below.

a) Common-factors-synthetic (ComFaSyn): We devel-
oped a taxonomy of common factors in psychotherapy and
created the ComFaSyn training dataset, which contains mental
health patient diary entries. Common factors represent the ef-
fective elements shared across various forms of psychotherapy
[24] and can be organized hierarchically, as broad concepts
like therapeutic alliance include specific elements such as col-
laboration. Unlike the general knowledge domain of DBpedia,
ComFaSyn focuses on a specialized health domain, making it
a valuable dataset for testing classification methods in real-
world, domain-specific contexts.

To create the dataset, we manually annotated five one-
sentence examples per class from literature sources. This
resulted in 65 samples across seven first-level and 12 second-
level classes, with an average of 5.42 samples per second-level
class. A synthetic test dataset was generated, containing five
diary entries per class (60 total), where the model produces text
reflecting on a user’s therapy experience focused on a specific
common factor. The prompt dynamically inserts factor-specific
details to ensure personalized, contextually relevant entries.

The entries were generated using the gpt-3.5-turbo model

via the OpenAI API, with a temperature of 1.2, max tokens
of 1024, and a frequency penalty of 0.1. Further details about
the taxonomy are in Appendix A.

b) DBpedia: We use a subset of DBpedia [25], a vast
knowledge base extracted from Wikipedia. We randomly select
ten samples from each first-level class of the validation set
for evaluation purposes and sample the corresponding classes
from the test set to serve as examples. By leveraging this
diverse repository of structured information, we aim to eval-
uate the performance of our proposed methodology across a
broad spectrum of domains and topics. This selection strategy
ensures the inclusion of varied entities, relationships, and at-
tributes, thereby enhancing the robustness and generalizability
of our findings. The training dataset consists of 440 rows,
with an average of 10 rows per class, spanning nine first-level
classes and 33 second-level classes, for a total of 44 third-
level classes. The test dataset contains a total of 90 samples
distributed across 44 third-level classes (9 first-level and 33
second-level classes), with an average of 2.05 samples per
class. Details on the DBpedia taxonomy are in Appendix B.

B. Discriminative Language Models

BERT [10] and RoBERTa [11] are transformer-based dis-
criminative language models designed for various natural
language processing tasks. BERT pre-trains deep bidirectional
representations by jointly conditioning on both left and right
context in all layers, making it effective for tasks like sentence
classification and token-level predictions. RoBERTa builds on



BERT by training with larger batches and longer sequences
and removing the next sentence prediction task to further
improve performance. Both models are widely adopted as
benchmarks in text classification due to their strong ability
to capture contextual information and consistent performance
across various classification tasks.

C. Generative Large Language Models

We create prompt templates for the flat and hierarchical
classification methods (Algorithm 1 and Figure 1). The prompt
includes the instruction, examples, and input to classify. The
instruction describes the classification task and lists the pos-
sible classes and, in the case of hierarchical classification,
their hierarchy in the taxonomy. Examples include the input,
corresponding class, and, optionally, an explanation of why
that input belongs to that class. Each example is separated
by ”###” to distinguish between individual instances. Lastly,
the inputs to classify are procured for the model, either
individually or collectively. We predominantly use the latter
approach to optimize efficiency.

To constrict the output generation, we employ a JSON
schema. This is essential because generative LLMs are non-
deterministic by design. Through experiments with several
LLMs, we encountered different degrees of faithfulness to the
desired output format when only specified via the prompt.
The extraction of the classes is crucial in a task such as
classification. The JSON schema enforces consistent output
in the desired format, including the predicted class and an
explanation. The detailed prompt templates and JSON schema
can be found in Appendix D.

D. Metrics

We assess both the classification performance and execu-
tion efficiency. For classification performance, we evaluate
precision, recall, and F1-score. Efficiency metrics include
execution time, token length per sample, and API costs ($).
This evaluation explores the trade-off between model size,
prompt length, query volume, and associated time/costs, which
is particularly important in industrial contexts where cost-
saving measures are crucial.

VI. RESULTS

The results in Table I highlight the performance of var-
ious classification methods on the ComFaSyn and DBpedia
datasets, evaluated using precision, recall, and F1 score. On the
DBpedia dataset, BERT models perform exceptionally well,
with BERT-large-cased achieving an F1 score of 0.9810 and
BERT-base-cased close behind at 0.9746. RoBERTa models,
however, show a slightly lower performance than BERT,
with RoBERTa-large achieving an F1 score of 0.9788 and
RoBERTa-base scoring 0.9697. On the ComFaSyn dataset,
both BERT models and RoBERTa models struggle, with
BERT-large-cased barely achieving an F1 score of 0.0152
and RoBERTa-large scoring 0.3783. Flat classification shows
the strongest performance overall, with F1 scores of 0.9815
on ComFaSyn and 0.9696 on DBpedia. The single-path and

flat naïve hierarchical single-path path-traversal
Prompting method
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Fig. 2: Token lengths for methods (plain: raw input, hatched:
response (top) and instruction (bottom))

path-traversal methods also demonstrate competitive results,
particularly on DBpedia, where the path-traversal method
achieves an F1 score of 0.9592. On ComFaSyn, the single-
path method performs slightly below flat classification, with
an F1 score of 0.9653. The naı̈ve hierarchical method shows
weaker performance, especially on DBpedia, with an F1 score
of only 0.4513.

Table II compares the results with existing literature. Flat
classification achieved an accuracy of 0.978, while the single-
path and path-traversal models both reached 0.967. SBERT
with SVM attained 0.987, and the char-CNN and BERT mod-
els reported by [13] achieved 0.983 and 0.993, respectively.
Importantly, these methods were trained on the full DBpedia
dataset (560K samples), making our results highly competitive
based on a smaller dataset.

VII. DISCUSSION

We focus the discussion on two key findings: the perfor-
mance of hierarchical classification methods, highlighting their
pros and cons, and the efficiency trade-offs between time, cost,
and performance.

A. Evaluation of Hierarchical vs. Flat Classification Methods

Hierarchical classification methods perform comparably to
flat approaches but offer greater interpretability. Their hier-
archical structure breaks down the classification task, pro-
viding finer granularity and more precise explanations for
misclassifications. In contrast, flat classification lacks this
depth, offering fewer insights into the causes of errors. Naı̈ve
hierarchical classification is significantly more expensive than
our single-path and path-traversal methods, as it requires n
queries. Its performance is also worse, as errors at earlier
layers are irrecoverable due to the pruning unless the correct
classification is within the top-3 predictions. This approach
increases the chance of mistakes at each level, and due to
pruning, there is no opportunity to recover. For instance, the
F1-scores dropped from 0.9541 at the first level to 0.6574 at
the second and down to 0.4513 at the third level in DBpedia.

A significant challenge in earlier classification methods
was the accurate extraction of relevant classes, which was



TABLE I: Classification performance on ComFaSyn and DBpedia

Model ComFaSyn DBpedia

Precision Recall F1 Precision Recall F1
Discriminative Models

bert-base-cased 0 0 0 0.9772 0.9750 0.9746
bert-large-cased 0.0139 0.0167 0.0152 0.9866 0.9818 0.9810
roberta-base 0.3625 0.3333 0.2718 0.9756 0.9705 0.9697
roberta-large 0.4906 0.4333 0.3783 0.9842 0.9795 0.9788

Generative Models (GPT-4o)

flat 1.0 0.9667 0.9815 0.9648 0.9777 0.9696
naı̈ve hierarchical 0.9630 0.8833 0.8905 0.5204 0.4444 0.4513
single-path 0.9762 0.9667 0.9653 0.9481 0.9667 0.9548
path-traversal 0.9722 0.9500 0.9564 0.9611 0.9667 0.9592

Fine-tuned Generative Models (GPT-3.5)

respective dataset
flat 0.9584.008 0.9278.010 0.9150.010 0.9197.008 0.9296.006 0.9164.002

single-path 0.9576.010 0.9111.010 0.9055.010 0.8964.013 0.8926.006 0.8858.009

path-traversal 0.8853.060 0.8667.050 0.8537.065 0.8686.003 0.8629.032 0.8546.023

both datasets
flat 0.9504.012 0.9111.019 0.9003.018 0.9392.019 0.9481.017 0.9396.018

single-path 0.9537.008 0.9222.010 0.9094.010 0.9227.014 0.9445.019 0.9295.019

path-traversal 0.9456.006 0.9167.000 0.9060.004 0.9140.020 0.9407.013 0.9234.017

TABLE II: Comparison with related work. Results marked
with * were obtained by [13]

Model Accuracy

flat 0.978
single-path 0.967
path-traversal 0.967

Gated CNN [26] 0.950
SBERT + SVM [27] 0.987
char-CNN* [28] 0.983
BERT* [10] 0.993

particularly problematic before the availability of structured
outputs. When fine-tuned for hierarchical classification or
zero-shot, generative models have greatly benefited from the
use of structured outputs, as these ensure that the classification
is aligned with the underlying taxonomy.

The path-traversal method resulted in a marginal improve-
ment over the single-path technique. While both approaches
performed similarly overall, the path-traversal method cor-
rected misclassified instances more effectively by considering
all classification options and weighing them carefully before
making a final prediction. This method of selecting a final
prediction based on a holistic evaluation of multiple possible
classes proved beneficial in scenarios where other methods
struggled.

Flat classification methods occasionally skipped classifying
specific samples, which led to what would have been signif-
icant performance decreases. This issue was mitigated only
when the models were prompted to generate the input along-
side the classification and explanation. Hierarchical classifica-
tion methods were less prone to this issue, as their structure

inherently reduced the likelihood of skipping classifications.
The quality of the taxonomy used for classification is an-

other critical factor. Many misclassifications stem from ambi-
guities within the taxonomy. A clear, well-structured taxonomy
is essential for accurate predictions, even for advanced models.

Finally, discriminative models performed well on general
classification tasks such as DBpedia, where sufficient data
was available for fine-tuning. However, these models struggled
on specialized datasets like ComFaSyn, where data was more
limited. In such cases, generative models proved more effec-
tive, particularly those fine-tuned with structured outputs. This
suggests that generative models may be preferable in scenarios
with limited data availability due to their ability to generate
more contextually appropriate predictions with less reliance
on large amounts of labeled data.

B. Efficiency trade-off
While hierarchical classification methods offer several ad-

vantages, they also introduce efficiency trade-offs. A naı̈ve
implementation of hierarchical classification is often inefficient
because it requires the model to be queried at every level of the
hierarchy. This increases the number of model queries, making
the process computationally expensive. To address this, we
introduced modified single-pass prompts, which mitigate the
inefficiency by querying the model only once compared to n
queries in the naı̈ve hierarchical method. The single single-
pass prompts approach maintains many advantages of hierar-
chical classification, such as interpretability, without incurring
the overhead of multiple queries.

However, despite the efficiency improvements, hierarchical
classification methods still result in longer token lengths
for both input and output (Figure 2). This is because the



hierarchical structure requires the model to process additional
layers of information for each input, leading to increased
token counts. The higher token count directly translates into
greater computational cost, as most LLMs calculate processing
costs based on the number of tokens. This makes hierarchical
methods potentially more expensive than flat classification,
mainly when operating at scale.

Another fundamental trade-off is the cost of building a
robust taxonomy, which requires time and domain expertise.
We argue that this investment is worthwhile in critical fields
like healthcare, finance, and law. A detailed taxonomy offers
a clear view of the classification structure, helps identify
gaps, and enables more informed and traceable classifications,
ultimately enhancing trust and transparency.

Ultimately, while hierarchical methods bring about addi-
tional costs regarding token usage and taxonomy construc-
tion, these costs are justified in domains where accuracy,
interpretability, and accountability are paramount. In such
cases, the ability to offer more detailed insights into the
classification process and reduce ambiguities far outweighs
the added computational and developmental effort.

VIII. CONCLUSION

We have explored the potential of leveraging LLMs for
HTC, introducing a novel approach that capitalizes on the
structure of taxonomies. We implemented three algorithmic
variations—hierarchical, single-path, and path-traversal—to
demonstrate the effectiveness of breaking down complex clas-
sification tasks into smaller, more manageable subtasks that
align with the hierarchical structure of class categories.

Hierarchical classification methods offer improved inter-
pretability and more detailed insights into misclassifications
but come with efficiency trade-offs, including longer token
lengths and higher computational costs. Modified single-
pass prompts help mitigate inefficiencies, though building
a robust taxonomy remains resource-intensive. However, in
critical domains like healthcare and finance, investing in a
well-structured taxonomy is worthwhile for ensuring accurate,
transparent, and trustworthy classifications.

IX. LIMITATIONS AND FUTURE WORK

Our approach relies on OpenAI’s GPT because it produces
structured outputs, which is critical for our methodology.
Other models, such as LLaMA3, were explored but ultimately
abandoned due to inconsistent output formatting, limiting the
flexibility of our model choices. This restriction to a single
model could limit generalizability and applicability to other
model architectures.

Regarding scalability, while our method does not require
a large sample size for training, it is constrained by the
relatively small subset of the DBpedia dataset we used. This
small sample size allowed us to focus on precision. Still,
our approach’s scalability, particularly in inference through-
put, remains limited, making it less feasible for large-scale
applications.

Additionally, the ComFaSyn dataset introduces potential
biases. The training examples, derived from literature, were
selected by a single expert, which may introduce bias in data
selection. Moreover, the synthetic test dataset generated by the
language model could carry biases inherent in the model itself,
potentially skewing the evaluation results. Future work should
address these limitations by expanding the dataset, introducing
more rigorous bias mitigation techniques, and incorporating
a dynamic parameter to determine the number of paths to
explore at each layer.
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APPENDIX

A. Taxonomy of ComFaSyn

Common factors are postulated underlying mechanisms
of symptom change in patients that can be found in all
forms of psychotherapy [29]–[33]. Our taxonomy serves as
a knowledge representation to encapsulate a collection of
positive and negative common factors impacting treatment
outcomes and to delineate the relationships between these
factors. Therefore, our taxonomy encompasses (1) classes,
subclasses, and instances of common factors as categories of
entities; (2) descriptions of classes, subclasses, and entities;
and (3) examples representing typical statements if the factor
is present. Numerous common factor models have emerged
in psychotherapy research over time and typically encom-
pass specific therapeutic change processes (e.g., corrective
experiencing), therapist characteristics (e.g., positive regard),
treatment structure (e.g., provision of an explanatory scheme),
therapeutic relationship characteristics (e.g., goal consensus),
and client factors (e.g., positive outcome expectations) [34],
[35]. We have based our taxonomy on these models. However,
this paper focused on factors unrelated to the therapist because
no therapist training data was available, and the paper empha-
sized methodological aspects. We included critical external
factors impacting the therapy process, such as stressful life
events or low platform usability, to test their aptness for later
inclusion into patient risk monitoring functionality. In general,
we differentiated between factors with a positive versus a
negative impact on symptom development. Our taxonomy
contains ten classes and 36 instances (12 negative, 24 positive
instances). For example, the factor ”Self-efficacy” is positively
represented in the patient as ’High self-efficacy expectation’
and ’Mastery experience’, and negatively represented as ’Self-
depreciation’. The taxonomy includes a definition and sample
sentences for each instance to be included in the prompt.

B. Taxonomy of DBpedia

DBpedia [25] comprises structured data that is extracted
from Wikipedia. Figure 4 shows an excerpt of the taxonomy.
DBpedia consists of a train (n = 240942), validation (n =
36003), and test dataset (n = 60794). We sample 10 instances
from each first layer class from the validation set to evaluate
the model performance and the corresponding classes from the



Positive and negative factors impacting treatment outcome

Self-Efficacy

Mastery 
experiences

Therapeutic 
Alliance

Self-depreciation

Context factors1st level response

2nd level response High self-efficacy 
expectation

Fig. 3: ComFaSyn Taxonomy Excerpt

root

SportsSeason

FootballLeagueSeason

Event Species1st level response

2nd level response SportsTeamSeason

NationalFootballLeague
Season SoccerClubSeason NCAATeamSeason3rd level response

Fig. 4: DBpedia Taxonomy Excerpt

test set to create the examples. More information about the
taxonomy of DBpedia is available at the DBpedia webpage1.

C. Hardware Configuration

Finetuning experiments for the discriminative models were
conducted using a cluster equipped with an AMD EPYC 7742
64-Core Processor CPU, featuring 128 cores and a base clock
speed of 2250 MHz. The GPU was an NVIDIA A100-SXM4-
80GB with 80GB of GDDR6 VRAM and CUDA version
12.2. System memory was comprised of 2TB RAM. Storage
was managed through four AI400X and two AI400X2 all
NVMe SSD storage servers. The computational environment
was standardized on Rocky Linux 8.9 (Green Obsidian) with
Huggingface transformer 4.39.3 and PyTorch 2.1.2+cu121 for
machine learning experiments.

D. Classification prompts

This appendix presents three prompt templates used for
different classification tasks. The first template in Listing 2
facilitates flat classification, where the input is directly as-
signed to one of the predefined classes without considering
any hierarchical structure. The second template in Listing 3
describes the single-path classification method, which involves
a step-by-step process, classifying inputs through multiple
layers of a taxonomy. Each input is progressively refined,
starting from a general class and moving down to more specific
subclasses. The third template in Listing 4 is designed for path-
traversal classification, where the model predicts the top three

1https://www.dbpedia.org/resources/ontology/

Listing 1: JSON schema for the hierarchical classification
1 {
2 ”name” : ” h i e r a r c h i c a l c l a s s i f i c a t i o n ” ,
3 ” s t r i c t ” : t r u e ,
4 ” schema ” : {
5 ” t y p e ” : ” o b j e c t ” ,
6 ” p r o p e r t i e s ” : {
7 ” l a y e r c l a s s i f i c a t i o n s p e r i n p u t ” : {
8 ” t y p e ” : ” a r r a y ” ,
9 ” i t e m s ” : {

10 ” t y p e ” : ” a r r a y ” ,
11 ” i t e m s ” : {
12 ” t y p e ” : ” o b j e c t ” ,
13 ” p r o p e r t i e s ” : {
14 ” e x p l a n a t i o n ” : {
15 ” t y p e ” : ” s t r i n g ” ,
16 ” d e s c r i p t i o n ” : ” E x p l a n a t i o n f o r

t h e c l a s s i f i c a t i o n . ”
17 } ,
18 ” o u t p u t ” : {
19 ” t y p e ” : ” s t r i n g ” ,
20 ” d e s c r i p t i o n ” : ” The c l a s s i f i c a t i o n

r e s u l t a t t h a t l a y e r . ”
21 }
22 } ,
23 ” r e q u i r e d ” : [
24 ” e x p l a n a t i o n ” ,
25 ” o u t p u t ”
26 ] ,
27 ” a d d i t i o n a l P r o p e r t i e s ” : f a l s e
28 }
29 }
30 } ,
31 ” f i n a l a n s w e r ” : {
32 ” t y p e ” : ” a r r a y ” ,
33 ” i t e m s ” : {
34 ” t y p e ” : ” s t r i n g ” ,
35 ” d e s c r i p t i o n ” : ” The f i n a l r e s u l t . ”
36 }
37 }
38 } ,
39 ” r e q u i r e d ” : [
40 ” l a y e r c l a s s i f i c a t i o n s p e r i n p u t ” ,
41 ” f i n a l a n s w e r ”
42 ] ,
43 ” a d d i t i o n a l P r o p e r t i e s ” : f a l s e
44 }
45 }

distinct classes at each layer, repeating the process until a final
classification is made. These templates leverage the taxonomy
and emphasize structured, step-by-step reasoning to enhance
classification accuracy.

E. Response templates

Listing 1 defines the JSON schema used to structure the
output of hierarchical classification responses. The schema
organizes classification results across multiple layers for each
input, where each layer contains an explanation and the
corresponding classification result.



Classify the input into one of the following classes: NationalFootballLeagueSeason, GolfTournament, SoccerLeague, OlympicEvent,
NCAATeamSeason, CultivatedVariety, Lighthouse, AutomobileEngine, Election, MusicGenre, Museum, OfficeHolder, TennisPlayer, Play,
WomensTennisAssociationTournament, SupremeCourtOfTheUnitedStatesCase, Grape, President, MountainPass, Magazine, Bird,
Racecourse, Economist, RaceHorse, ArtistDiscography, RailwayLine, GrandPrix, Dam, HockeyTeam, Mollusca, Stadium, Amphibian,
Planet, Insect, AmericanFootballPlayer, PublicTransitSystem, Monarch, Single, Musical, SoccerClubSeason, RailwayStation,
MixedMartialArtsEvent, Journalist and BiologicalDatabase.

Input to classify: {{ input }}

Listing 2: The prompt template for flat classification

Classify the inputs based on the given class hierarchy below.

Class hierarchy:
Each subclass belongs to exactly one superclass. The subclasses for each superclass are shown below to give you a reference for
the class hierarchy:
{{ class_hierarchy }}

Hierarchical classification process:
To classify each input into the final layer class based on this hierarchy, you'll evaluate layer by layer: You'll start by
predicting the first layer class of the input. Once you've predicted the first layer classes, you'll move on to the next layer
and predict the subclass of the superclass. The process is repeated until the final layer is reached. The final answer is just
the last layer class. Repeat this approach for each input instance.

Examples:
Think step by step and print the thinking process. ALWAYS follow this process for any input and provide the final layer output.
For instance, see the following example of a valid path for a hierarchical classification:
Example 1:
first layer output: Agent, second layer output: Person, third layer output: OfficeHolder
Example 2:
Agent: Person: Journalist
first layer output: Agent, second layer output: Person, third layer output: Journalist
Example 3:
first layer output: Device, second layer output: Engine, third layer output: AutomobileEngine

Input to classify: {{ input }}

Listing 3: The prompt template for single-path classification

Classify the input based on the given class hierarchy you were provided with.

Class hierarchy:
Each subclass belongs to exactly one superclass. The subclasses for each superclass are shown below to give you a reference for
the class hierarchy:
{{ class_hierarchy }}

Hierarchical classification process:
To classify the input into the final layer class based on this hierarchy, you'll apply the following approach to evaluating
layer by layer: Predict the top three classes at each layer. Start by predicting the three most suitable DISTINCT first layer
classes. Once you've predicted the first layer classes, you'll move on to the next layer and predict the top three subclasses of
the superclasses. The process is repeated until the final layer is reached. The final predictions consist of just the last layer
class ranked at the top.

Example
Think step by step and output the thinking process. ALWAYS follow this process for any input and provide the final layer output.
For instance, see the following example of a valid multi-expert hierarchical classification:
Layer 1:
Highest ranked output: Agent, second highest ranked output: Place, third highest ranked output: Event
Layer 2:
Highest ranked output: Organisation, second highest ranked output: RouteOfTransportation, third highest ranked output: Station
Layer 3:
Highest ranked output: PublicTransitSystem, second highest ranked output: RailwayLine, third highest ranked output:
RailwayStation
Final answer:
PublicTransitSystem
Input to classify: {{ input }}

Listing 4: The prompt template for path-traversal classification


