
MARIODAGGER: A Time and Space Efficient Autonomous Driver

Farzad Kamrani†, Andreas Elers‡, Mika Cohen†, Amir H. Payberah‡
†FOI - Swedish Defence Research Agency, Sweden
‡KTH Royal Institute of Technology, Sweden

†{farzad.kamrani,mika.cohen}@foi.se ‡{elers,payberah}@kth.se

Abstract—Imitation learning is a promising approach for
training autonomous vehicles, where a set of state-action pairs
from human demonstrated driving is used as training data in
a supervised learning manner. Dataset Aggregation (DAGGER)
is a common imitation learning algorithm, in which models are
trained by iteratively collecting new data, aggregating it with old
data, and retraining the model on the entire collected dataset.
Data aggregation and retraining, however, lead to two main
problems: (i) large memory consumption, and (ii) long training
time. In this work, we present a fast and memory-efficient
algorithm, called MARIODAGGER, that improves DAGGER by
resolving the aforementioned problems. Unlike DAGGER that
requires a collection of old and new data to train the models,
MARIODAGGER uses only the new data and a few samples
from the old data stored in a rehearsal buffer, which is updated
iteratively using reservoir sampling. To prevent forgetting old
knowledge, MARIODAGGER uses a recent regularization tech-
nique Elastic Weight Consolidation. We evaluate and compare
MARIODAGGER with SAFEDAGGER, a recent variant of DAG-
GER that MARIODAGGER builds upon, in the context of au-
tonomous vehicles, and show that MARIODAGGER achieves the
same performance as SAFEDAGGER in half as many iterations,
using significantly less memory space.

Index Terms—Imitation Learning, DAgger, SafeDAgger, Catas-
trophic Forgetting, Elastic Weight Consolidation, Continual
Learning

I. INTRODUCTION

Autonomous Vehicles (AV) have received considerable at-
tention lately within the Machine Learning (ML) community.
According to the Autonomous Vehicle Outlook report [1], the
global AV market is projected to reach $556.67 billion by
2026. However, training AVs is still challenging and there is
a lot of research in progress to improve it [2].

Early attempts to train AVs are mainly based on supervised
learning [3], [4]. In this approach, the training data is a set of
state-action pairs, where each state represents the information
available to the AV in a given moment (e.g., images recorded
by a camera ahead of the vehicle), and the corresponding
action is the expert driver’s response (e.g., the steering wheel
angles). The actions, then, are used as the labels for the states
(camera images) and learned by using a supervised learning
method.

In supervised learning, it is assumed that the data samples
are independent and identically distributed (i.i.d.), that is, both
training and testing data are drawn independently from the
same distribution. However, such an assumption is not valid
in AVs scenarios, where under testing, each state is dependent
on prior actions (i.e., predictions of the model). Any predictor
inevitably introduces errors and these compounding errors

change the distribution of future inputs, breaking the train-
test i.i.d. assumption [5]. For instance, if the model predicts
steering slightly left in a right turn, then, the next action should
be a sharp right to prevent the vehicle from going off-road.
However, such an action may be rare (or non-existing) in the
training data, as the training data is generated by an expert.
These compounding errors lead to an increasing deviation
between the distribution of the training data (expert’s behavior)
and test data (model’s behavior), lowering the performance of
the model [5].

Imitation Learning (IL) is a promising solution to re-
solve the aforementioned problem of compounding errors in
AVs [6], [7], [8], [9]. IL is built upon supervised learning
methods and its goal is to learn the behavior of an expert
from demonstrations (e.g., by training a model using a set of
recorded state-action pairs generated by a human driver) [10].
However, unlike supervised learning, IL does not assume
the input data samples are i.i.d.. In many IL algorithms,
building a model is not a one-shot procedure. To resolve
differences in the train and test distributions, the training
data is augmented in an interactive manner to meet the test
distribution and as new data is acquired, the model is retrained.
However, retraining a model using new data usually overwrites
already learned parameters, which is known as catastrophic
forgetting [11], [12]. To mitigate this problem, the model
is retrained on a collection of both newly acquired and the
original data.

Dataset Aggregation (DAGGER) [13] is a well-known IL
algorithm that uses data aggregation and model retraining to
reduce the problem of compounding errors. DAGGER starts by
training an initial model using a supervised learning method
and thereafter lets the model control the AV while generating
new labels (e.g., steering angle) under oversight/control of the
expert. This creates new data that contain information about
how to recover from the errors of the model. The model
is trained on the aggregated data (union of the initial data
together with the newly generated data). This process can be
performed iteratively until the desired behavior is reached.
Nonetheless, DAGGER suffers from two problems: (i) storing
both old and new data requires a large memory space, and (ii)
retraining a model using the aggregated data takes much time.

Continual Learning (CL) [14] is another approach to avoid
catastrophic forgetting that enables models to handle shifts in
data samples distribution and to learn new tasks incrementally,
without forgetting earlier tasks. Elastic Weight Consolidation
(EWC) [15] is a CL algorithm that uses a regularization
technique to protect parameters that are important for a task.

To the best of our knowledge none of the existing solutions
for training AVs consider the implicit connection between CL
and learning on aggregated data. If we consider the problem
of training a model on a different distribution as a new task,
the problem can conveniently be viewed as an instance of CL,
whereby its techniques can be used to relax the need for access
to previously gathered data.

In this work, we present MARIODAGGER, a novel IL
algorithm based on DAGGER that makes use of EWC to
overcome catastrophic forgetting. MARIODAGGER does not
need to preserve the entire training data to solve forgetting: the
learning is only based on new data, and a few samples from
the old data stored in a rehearsal buffer, which is updated
iteratively using reservoir sampling [16]. MARIODAGGER
will provide more flexibility and the possibility to extend a
model to handle additional tasks or skewed input distributions
different from the data that the model has been trained on. It
is also more scalable and memory-efficient than the original
DAGGER method, since it allows preceding large datasets to
be discarded.

We evaluated and compared MARIODAGGER with
SAFEDAGGER [17] that MARIODAGGER builds upon.
SAFEDAGGER is a recent variant of DAGGER that collects
data more efficiently, and only retrains models with data that
is deemed difficult. Through experiments, we showed that
MARIODAGGER outperforms SAFEDAGGER by reaching
the same performance in half as many iterations, and uses
significantly less memory space.

II. BACKGROUND

In this section, we briefly recall some basic concepts from
IL, describe two prominent IL algorithms, DAGGER and
SAFEDAGGER, and, finally, explain EWC as a CL solution
for catastrophic forgetting.

A. Preliminaries

To train AVs, learning algorithms should make a sequence
of predictions over time, based on the AVs environment. The
environment is a set of states S, such that in each state, a
number of actions A(S) are feasible. A state s ∈ S of an
AV generally includes the vehicle’s position, direction angle,
velocity, acceleration, etc., and an action a ∈ A(S) that
demonstrates how the AV’s driver acts in response to the state
to maintain the vehicle in a safe state. In this work, we apply an
end-to-end learning approach, in which states are represented
by images taken by a camera ahead of the AV, and actions are
measured only by the steering wheel angle. At each point in
time t = 1, 2, · · · , T , the learning algorithm receives a state-
action pair (st, at) as a training sample.

A policy π is a function π : S → A(S) that maps each
state st to an action at. Any selected action at at a state st
by a policy π leads the AV to the next state st+1. The loss
value lt shows how inaccurate an AV is at time t based on an
action at. The loss value will be zero if the AV drives well;
otherwise, it will be larger values (e.g., if it deviates from
its lane or crashes). If we consider a trajectory τ as a set of

triples τ = {(s1, a1, l1), (s2, a2, l2), · · · , (sT , aT , lT)}, then,
our goal is to find the best policy, denoted by π̂, such that it
minimizes the expected loss over all states in τ :

π̂ = argmin
π

Eτ∼π[
T∑
t=1

lt]. (1)

We use neural networks to implement the policies, thus
finding a policy means finding the network’s parameters.

B. Supervised Learning

Assume there is an expert who knows how to drive, and
the expert policy π∗ is the policy used by the expert to choose
actions in different states. One approach to satisfy Equation 1
is to model the problem as a supervised regression, inferring
a policy model from the observed behavior of the expert. If
we have n trajectories τ1, τ2, · · · , τn generated by the expert
policy π∗, then, we can define the training set Dπ∗ as follows:
Dπ∗ = {(s, a) : ∀n, ∀(s, a, l) ∈ τn}.

The set of states in Dπ∗ are called reachable states by
π∗ and is denoted by Sπ∗ . To build a regression model, we
define the loss function L as the Mean Squared Error (MSE)
of the selected actions by π and π∗ in each state si (Equation
2). Hence, the MSE is the squared difference between the
predicted steering wheel angle π(si) and the ground truth
given by expert π∗(si). If m = |Dπ∗ | is the total number
of samples in the training set Dπ∗ , we have:

LDπ∗ (π, π
∗) =

1

m

m∑
i=1

(π(si)− π∗(si))2. (2)

Considering this loss function, we can rewrite Equation 1
and define the best policy π̂ as below:

π̂ = argmin
π
LDπ∗ (π, π

∗). (3)

The supervised learning approach assumes that the training
and test data samples are i.i.d., but this assumption can be
violated in AV settings, since the training data is generated by
the expert policy π∗ and the test data is generated by a learned
policy π, so they are (in general) sampled from different
distributions. It may happen that due to an action taken by
π, the AV is led to a state s′, which has not been visited by
the expert (i.e., s′ /∈ Sπ∗). The behavior of the learned model
π, in the subsequent states that are not necessarily among the
reachable states by Sπ∗ , is then generally unpredictable [18].
Therefore, applying standard supervised learning methods to
train AVs often leads to poor performance.

C. Dataset Aggregation

Imitation Learning (IL) is one way to address the aforemen-
tioned problems. In IL, we try to learn a policy π by mimicking
the expert policy π∗. DAGGER [13] is a well-established IL
algorithm that iteratively collects new data, appends it to the
previous data, and then retrains the model from scratch on all
the data.

Algorithm 1 shows how DAGGER works. The initial train-
ing data Dπ∗ is generated by the expert, i.e., by running the

expert policy π∗, and based on it, the first policy π̂0 is trained
using standard supervised learning (Equation 3). Then, in each
iteration i, a new policy πi is created based on the policy from
the previous iteration π̂i−1, and expert policy π∗ (Line 6). In
Lines 7 and 8, a new dataset is generated using the new policy
πi, and appended to the old data. Finally, the policy of each
iteration i is trained according to Equation 3 (Line 9). M in
Line 5 is the number of iterations to train the policies, and β
in Line 6 defines how much the expert is allowed to control
the vehicle and correct the trajectory.

Algorithm 1 DAGGER
1: procedure DAGGER(π∗)
2: Collect Dπ∗ using π∗

3: D0 = Dπ∗
4: π̂0 = argminπ LD0

(π, π∗)
5: for i=1...M do
6: πi = βiπ

∗ + (1− βi)π̂i−1

7: Collect D′ using πi
8: Di ← D′ ∪Di−1

9: π̂i = argminπ LDi (π, π
∗)

10: return π̂M

DAGGER is an expensive algorithm because it queries the
expert (calls the expert policy π∗) in all the collected states in
each iteration i (Line 6 in Algorithm 1). SAFEDAGGER [17]
is a variant of DAGGER that minimizes the number of queries
to the expert policy. SAFEDAGGER uses a policy π̂ that drives
the vehicle as in DAGGER, but it uses a safety classifier csafe
to determine if a prediction by π̂i in state si is good enough.
If csafe(π̂i, si) = 1, then the prediction is classified as good
enough, and the policy π̂i controls the vehicle, otherwise, the
action returned by the expert policy π∗ is used. In this way,
it is assumed, SAFEDAGGER collects additional data only for
difficult states that cause the model to fail at its task, e.g., a
sharp turn that causes a trained model to drive off the road.

The pseudocode for SAFEDAGGER is shown in Algorithm
2. Lines 1-6 use the expert policy π∗ to collect the initial
training data Dπ∗ along with the safe data Dsafe, and also
to train an initial policy π̂0 as well as an initial safety
model csafe,0. The safety strategy at Line 8 is the process
of giving control to the expert policy π∗ when the control
model π̂i cannot drive safely, and Line 9 reduces the number
of queries to the expert policy. Lines 10-12 aggregate data
and update policies π̂i and csafe,i by retraining them on the
aggregated data. For more details about SAFEDAGGER please
refer to [17].

Algorithm 2 SAFEDAGGER
1: procedure SAFEDAGGER(π∗)
2: Collect Dπ∗ using π∗

3: Collect Dsafe using π∗

4: D0 = Dπ∗
5: π̂0 = argminπ LD0

(π, π∗)
6: csafe,0 = argmincsafe LD0∪Dsafe (π̂0, π

∗, csafe)

7: for i=1...M do
8: Collect D′ using safe strategy π̂i−1 and csafe,i−1

9: Subset selection: D′ ← {(s, π∗(s)) ∈ D′|csafe,i−1(π̂i−1, s) = 0}
10: Di ← D′ ∪Di−1

11: π̂i = argminπ LDi (π, π
∗).

12: csafe,i = argminccafe LDi∪Dsafe (π̂i, π
∗, csafe)

13: return π̂M and csafe,M

D. Elastic Weight Consolidation

Neural networks that incrementally learn multiple tasks face
the challenge of catastrophic forgetting: learning a new task
can completely erase the previously learned knowledge [11],
[19], or drastically reduces the performance of the model
on previously learned tasks [11]. This is mainly due to the
use of a single set of parameters θ in the network to learn
mappings from input to output. As a consequence, a preceding
task’s mapping will suffer as the parameters are tuned for
a succeeding task’s mapping. This issue is generalized by
the stability-plasticity dilemma [20], i.e., when learning new
tasks, parameters should be stable enough to retain previous
knowledge, but also plastic enough to learn new knowledge.

Continual Learning (CL) is a field within ML that aims
at addressing the catastrophic forgetting problem using dif-
ferent techniques. Elastic Weight Consolidation (EWC) is
a recent CL algorithm that has shown promising results in
learning tasks incrementally without encountering catastrophic
forgetting [15]. EWC is essentially a regularization technique
that protects important parameters for each task by reducing
their plasticity, ensuring that predominantly non-important
parameters are modified during training. EWC assumes that
for each task there are multiple parameter configurations for
neural networks that deliver good performance.

Figure 1 illustrates schematically the intuition behind the
EWC. The green and blue areas illustrate low error regions for
tasks A and B, respectively, in a two-dimensional parameter
space. Training a neural network on a task A, in practice
means finding point θ∗A (adjusting the network parameters
successively to reach this point). If a network that is trained on
task A is trained on a new task B, the optimization algorithm
moves the parameters in the direction of the red arrow to point
θ∗B , which is optimized for task B at the cost of forgetting
task A. The EWC algorithm tries to keep the parameter in a
safe trajectory by penalizing movements in unsafe directions
(by using Fisher information matrix [21]), and guides the
optimization algorithm to move along the green arrow and
toward point θA,B , which is located in the intersection of areas
with low error for both tasks A and B.

EWC uses the Fisher information matrix to measure pa-
rameters’ importance for each learned task [21]. By saving
the network’s parameters after each training, it is possible to
measure the deviation of the network’s new parameters from
the previous values. EWC calculates the Fisher information
matrix by using a set of samples from previous tasks.

Equation 4 shows the EWC loss function of a model, which
is trained on two tasks A and B, sequentially,

LEWC(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)2, (4)

where LB(θ) is the regular loss for task B (Equation 2). The
hyperparameter λ signifies how important the old task A is
compared to the new task B. F is the Fisher information
matrix, θi is the network’s current parameters, and θ∗A,i is the
set of parameters extracted previously by training the network

Fig. 1. The intuition behind EWC’s imposed constraints. The green and
blue areas illustrate low error regions for tasks A and B, respectively, in
a parameter space. Training a network that is optimized on task A, with
parameters at θ∗A, on a new task B, moves the parameters in the direction of
the red arrow to point θ∗B and forgetting task A. EWC guides the optimization
algorithm to move in a safe direction along the green arrow and toward point
θA,B .

on task A (i.e., parameters that minimize loss function LA(θ)).

III. OUR ALGORITHM (MARIODAGGER)
As explained in Section II, DAGGER is an IL algorithm that

iteratively collects data, and trains the model using the entire
dataset (newly collected, as well as old data). SAFEDAGGER
offers a way of reducing the amount of collected data in
each iteration. Although SAFEDAGGER collects less data than
DAGGER, it still needs to incrementally add data, and train the
model using the entire dataset. To overcome this problem, we
propose MARIODAGGER, that similar to SAFEDAGGER, uses
the idea of the safety model, but instead of training a model
over all gathered data, it trains the model only on the latest
collected data in each iteration, and a few samples of old data
stored in the rehearsal buffer.

The rehearsal buffer is a small buffer that keeps a few
random samples from all the previous iterations and is updated
in every iteration. We use reservoir sampling [16] to update
the rehearsal buffer. For a buffer with size k, the reservoir
sampling simply stores the first k samples in the buffer. When
the buffer is full, and the n-th sample arrives, the sample is
stored in the buffer with the probability k/n. If a new sample
is added to a full buffer, then, an item, uniformly selected at
random, is evicted from the buffer.

Since MARIODAGGER uses only a small part of the old
data to train the model, it relies on EWC to protect the model
against catastrophic forgetting. We define a task as driving on a
track, and define the task boundary as driving along the entire
track once. We use the task boundaries in EWC to compute the
Fisher information matrix for tasks and to copy the model’s
parameters from previous ones. EWC uses this information
to measure the deviation from the saved parameters for tasks
thus far, and their importance to constrain the learning of new
ones, and also to find a set of parameters similar to previous
tasks’ parameters.

It should be noted that although we keep a set of sam-
ples from previous tasks to calculate the Fisher information
matrix, we do not use these samples while training the

models. The changes between MARIODAGGER compared to
SAFEDAGGER are motivated by the fact that EWC enables
a model to learn shifts in input distributions yet remain
performant on previous input distributions. Thus, applying
EWC to SAFEDAGGER is suitable to remove the need of
saving previous data, lowering training time and memory
requirements.

Algorithm 3 illustrates how MARIODAGGER works. The
initial dataset is collected to train the first policy π̂0, in Line 7
the Fisher matrix for the initial iteration is calculated, and
in Line 8 the model parameters are stored. Moreover, the
rehearsal buffer is initiated with a few samples of the first
round using reservoir sampling in Line 10. Afterward, the
policy is deployed over iterations, and in each iteration, it
collects additional data where it fails (Lines 12-13). As seen
in Line 14, the training data Di of iteration i consists of new
data collected in this iteration and the samples in the rehearsal
buffer. It is a significant difference compared to both DAGGER
and SAFEDAGGER.

The model, then, is retrained in Line 15 to make it succeed
in states where it has previously failed. At this stage, we use
EWC to prevent the model from forgetting previous knowl-
edge. Line 17 shows where the Fisher information matrix for
the new task is calculated. Line 18 is where the parameters
of the model are saved after training. These values are used
in the EWC constraint during succeeding training iterations.
Both Fisher information matrices and the saved parameters
are stored in lists and the new results are appended to the
corresponding lists. At the end of the iteration (Line 19), the
rehearsal buffer is updated using reservoir sampling with a few
samples collected in this iteration.

Algorithm 3 MARIODAGGER
1: procedure MARIODAGGER(π∗)
2: Collect Dπ∗ using π∗

3: Collect Dsafe using π∗

4: D0 = Dπ∗
5: π̂0 = argminπ LD0

(π, π∗)
6: csafe,0 = argmincsafe LD0∪Dsafe (π̂0, π

∗, csafe)

7: F = calculate Fisher information matrix from D0

8: θ∗ = parameters of π̂0

9: R← ∅
10: R← reservoirSampling(R,D0)
11: for i=1...M do
12: Collect D′ using safe strategy π̂i−1 and csafe,i−1

13: Subset selection: D′′ ← {(s, π∗(s)) ∈ D′|csafe,i−1(π̂i−1, s) = 0}
14: Di ← D′′ ∪ R
15: π̂i = argminπ LEWC

Di
(π, π∗, F, θ∗)

16: csafe,i = argminccafe LDi∪Dsafe (π̂i, π
∗, csafe)

17: F = calculate Fisher information matrix with data saved from Di−1, and
append the result to list of Fisher matrices

18: θ∗ = append parameters of π̂i to list of parameters
19: R← reservoirSampling(R,D′′)

20: return π̂M and csafe,M

IV. EXPERIMENTS

We deploy our models in the VBS3 simulator [22], a virtual
training environment that facilitates collecting data, extracting
metrics, and evaluating trained models. We define two metrics
to evaluate the models:

(a) Training track 1. (b) Training track 2. (c) Test track.

Fig. 2. Bird’s eye view of the training tracks (a) and (b), and the test track (c). Roads are the red lines, and the used roads are highlighted in yellow.

(a) Original image, 800x600 pixels. (b) After cropping, 800x300 pixels. (c) Downsampled to 200x66 pixels.

Fig. 3. (a) and (b) are the image before and after cropping, and (c) is the image after downsampling to a lower resolution.

1) The driven distance until the AV leaves its lane. This
metric shows how far and how well an AV drives.

2) A true/false value indicating whether an AV manages to
finish a track or not. Through this metric, we can also
study if a model based on a policy π is monotonically
improving or deteriorating, e.g., it finishes a training
track in one iteration, but fails on the same track during
the next iterations.

We studied the performance of four models in the experi-
ments:

1) Naive model: the model is trained only on new data
(i.e., the samples collected by the AV during the latest
iteration).

2) SAFEDAGGER: the model is trained on both old and new
data, which is cumulatively collected over iterations.

3) MARIODAGGER without a rehearsal buffer: similar to
SAFEDAGGER, but instead of training the model over
all recorded data in different iterations, it is trained only
on the new data collected during the latest iteration.
However, it uses EWC to protect against catastrophic
forgetting.

4) MARIODAGGER: it uses the new data and a few random
samples of the old data, stored in the rehearsal buffer,
for training. It also uses EWC to prevent forgetting.

In the rest of this section, we first explain how we collect
data to train the models, then briefly present the implementa-
tion, and finally, we show the results.

A. Data

The data is collected by driving a vehicle on roads in the
VBS3 simulator with a fixed velocity of 20km/h. The speed
limit is imposed to enable the human expert to provide good
labels. The weather is sunny, all roads are paved, and the view
is unobstructed. The frames are recorded at a rate of 5Hz with
800×600 resolution and are saved alongside the corresponding

angle of the steering wheel. We use two tracks for training, and
one track for testing. The first training track is 1925 meters,
and the second one is 1448 meters, and the test track is 1939
meters. Figure 2 depicts these tracks.

The initial dataset to train the models is collected by manu-
ally driving a vehicle (i.e., using the expert policy π∗) through
the first training track (Figure 2(a)). This dataset consists of
901 samples in the form of (image, steering angle), where
the image represents the features, and the steering angle is
the outcome variable. We use this data to train the initial
policies in all the models (i.e., π̂0 in Algorithms 2 and 3).
From the second iteration, we use the data collected by each
model separately over iterations to train them. The number
of collected samples for each iteration varies between 418 to
491 samples, which depends on how far the AV drives to
finish the tracks. The test track is only used for testing the
trained models, and we do not collect any data for training
from this track. We evaluate the models until they either finish
all tracks, or they exceed the maximum number of iterations
(10 iterations in our experiments).

We encounter two situations during the data collection,
either: (i) a model fails on one or both training tracks, or (ii)
a model finishes both training tracks, but not the test track. In
the first situation (i), we deploy the failed model on the track
it fails, and a human expert provides correcting actions. We,
then, record the data accordingly. In the second situation (ii),
we do not use any correcting actions, and instead, we record
data from environments in the training tracks that are very
similar to failing environments in the test track. The recorded
data in both cases represent difficult situations as the models
fail. A state is difficult if a model encounters a state that it has
barely or not at all been trained on such as a position where the
vehicle is drifting into the other lane, something the human
expert would never do. For each iteration, each model runs
three times per track to evaluate the performance. Multiple

runs are necessary as the results vary slightly. Three runs per
track are chosen as a trade-off between statistical validity and
time cost. A model is allowed to drive until it either reaches
the target, goes off road, or veers into the opposite lane.

B. Implementation

Before feeding the data into the models, we preprocess them
in two steps to remove redundant information, and to reduce
the training time. The collected images are first cropped to
remove unnecessary sections and then downsampled to a lower
resolution. As the road is the only important section in each
image, cropping away everything slightly above the horizon
creates images without redundant information. Downsampling
the images to a lower resolution of 200 × 66 pixels further
decreases the computational cost of training on the dataset.
Figure 3 shows how different data preprocessing steps affect
an example image from the dataset.

To process the collected images of the tracks, we imple-
mented our policy as a convolutional neural network (CNN)
based on an altered version of Nvidia’s architecture for
AVs [23], however, any other appropriate architecture can be
used here. Figure 4 depicts the architecture of the implemented
CNN. The neural network consists of four convolutional lay-
ers, three fully connected layers, and a single output giving the
steering angle. To prevent overfitting, we use dropout between
each of the fully connected layers. We also use l2 regulariza-
tion to improve the model generalization. The models are given
images of 200 × 66 pixels as input, and predict the steering
angle as its output. Table I shows more details about the neural
network configuration and the models’ hyperparameters. The
models were developed using TensorFlow [24].

Fig. 4. The neural network architecture consisting of four convolutional layers, three
fully connected layers, and one output.

C. Results

We start the result section by showing the performance of
the naive approach, which is trained on new data without using
EWC. Table II shows that the naive approach cannot maintain
its performance after the initial training on the first track, and
its performance drops due to catastrophically forgetting earlier
knowledge. The model mainly fails; that is, the AV almost
instantly drives off the road (with some exceptions for the third

TABLE I
HYPERPARAMETERS

Optimizer = Adam
Learning rate = 0.0001
Batch size = 50
Dropout keep probability = 0.8
L2-regularization = 0.0001
λ in EWC (Equation 4) = 5000
Number of Fisher samples = 80
Rehearsal buffer size = 23

TABLE II
EMPIRICAL RESULTS OF NAIVE MODEL

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1927 yes 849.8 no 1462.4 no
Run 2 1926 yes 384.3 no 1458.7 no
Run 3 1929.1 yes 834 no 1455.8 no
Iteration 2
Run 1 8.8 no 11 no 12 no
Run 2 8.7 no 11 no 11.9 no
Run 3 8.8 no 11 no 12 no
Iteration 3
Run 1 16.8 no 308.2 no 181.3 no
Run 2 14.5 no 832.7 no 181.7 no
Run 3 15.6 no 823.8 no 181.6 no
Iteration 4
Run 1 9.3 no 12.1 no 13.4 no
Run 2 9.3 no 12.1 no 13.4 no
Run 3 9.3 no 12.1 no 13.2 no

iteration). The naive model is only tested for four iterations as
it is clear that it does not improve.

As Table III shows, SAFEDAGGER, which is trained on all
data, improves its performance in each iteration except for
the third iteration. In the third iteration, the model fails after
204 meters on the test track, which corresponds to a sharp
right turn. In the next iteration (fourth), the model manages
to finish all tracks. These results highlight that models trained
with SAFEDAGGER do not improve monotonically as iteration
two performs better than iteration three.

MARIODAGGER without the rehearsal buffer, which is
trained only on new data with EWC, shows that it can resist
catastrophic forgetting and improves its performance as the
number of iterations increases (Table IV). However, MARI-
ODAGGER without buffer requires more iterations compared
to SAFEDAGGER to complete the test track, and it only
manages to complete the test track in two out of three runs
(due to the lack of space, we only show the iterations 1,
2, 9, and 10 in Table IV). As comparison, SAFEDAGGER
requires four iterations before it completes all the test track
in all runs. Notably, the performance of the MARIODAGGER
without buffer seems to degrade severely between iterations
one and two, although the model regains its performance in the
following iterations. Nevertheless, it should be mentioned that
the amount of data we use to train MARIODAGGER without
buffer is much less than SAFEDAGGER, since the former uses
only the new data, while the latter uses the whole old and
new data. Therefore, although MARIODAGGER without buffer
needs more iterations to learn, it uses less memory. Hence,
it can be used in more memory-intensive cases, e.g., longer

TABLE III
EMPIRICAL RESULTS OF SAFEDAGGER

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1929.4 yes 1448.4 yes 502.7 no
Run 2 1929 yes 1448.1 yes 1888.1 no
Run 3 1930.2 yes 1448.1 yes 1472.9 no
Iteration 2
Run 1 1927.1 yes 1449.6 yes 1552.6 no
Run 2 1926.6 yes 1447.1 yes 1941.9 yes
Run 3 1927.8 yes 1449.6 yes 621.3 no
Iteration 3
Run 1 1927.3 yes 1448.1 yes 204.4 no
Run 2 1929.8 yes 1449.6 yes 204.5 no
Run 3 1928.4 yes 1449.2 yes 204.4 no
Iteration 4
Run 1 1928.4 yes 1446.5 yes 1941.6 yes
Run 2 1927.1 yes 1447.5 yes 1940.9 yes
Run 3 1926.8 yes 1448 yes 1939.9 yes

TABLE IV
EMPIRICAL RESULTS OF MARIODAGGER WITHOUT BUFFER

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 500.6 no 1448.3 yes 619.8 no
Run 2 501 no 1446.1 yes 620.3 no
Run 3 501.7 no 1446.9 yes 1259.6 no
Iteration 2
Run 1 38 no 49.7 no 192.4 no
Run 2 37.9 no 49.5 no 106.8 no
Run 3 37.7 no 51.5 no 183.7 no
Iterations 3, 4, ..., 8
Iteration 9
Run 1 1924.4 yes 1444.8 yes 617.3 no
Run 2 1924 yes 1447.2 yes 607 no
Run 3 1925.7 yes 1445.1 yes 1372.9 no
Iteration 10
Run 1 1923.9 yes 1446.8 yes 1938 yes
Run 2 1925.9 yes 1446.7 yes 1174.2 no
Run 3 1923.6 yes 1447.9 yes 1939 yes

TABLE V
EMPIRICAL RESULTS OF MARIODAGGER

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1929.2 yes 834.4 no 780.9 no
Run 2 1929 yes 834.2 no 1175.2 no
Run 3 1928.9 yes 832.9 no 1176.9 no
Iteration 2
Run 1 1928.7 yes 1445.6 yes 1939.9 yes
Run 2 1926.3 yes 1445.5 yes 1939.1 yes
Run 3 1927.2 yes 1445.5 yes 1938.1 yes

tracks, or more frequent image capturing of the roads.
In the last experiment, we test MARIODAGGER, where we

set the size of the rehearsal buffer to 23, which means that
we inject 23 extra samples into the training data compared
to MARIODAGGER without buffer. Table V shows that this
approach has the best performance. This model manages to
finish the test track in all three runs in iteration two. That is two
iterations less than the SAFEDAGGER and eight iterations less
than MARIODAGGER without buffer. It confirms that rehearsal
is a highly useful technique with low cost, as 23 data samples
correspond to approximately 5% of the training data used per
iteration (the number of data samples in each iteration varies
between 418 and 491). Interestingly, another study [25] also
noted that rehearsing on 5% of old data together with EWC

gives a significant increase in performance.

V. RELATED WORK

MARIODAGGER makes use of techniques from two rela-
tively separate avenues of research within ML, namely Im-
itation Learning (IL) and Continual Learning (CL), and is
naturally related to several works in these two areas.

The DAGGER algorithm [13] deals with the issue of
compounding errors in sequential predictions by iteratively
querying an expert for more data and retraining the model
on past and new data combined. The superiority of DAGGER
to other IL techniques such as SMILe [26] and SEARN [27]
has been shown for different tasks, Super Tux Cart, Super
Mario Bros [28] and handwriting recognition [13]. SAFEDAG-
GER [17] is an improvement upon DAGGER that aims to re-
duce the amount of correcting actions needed from the human
expert, thus making the method less costly. SAFEDAGGER is
evaluated via an autonomous driving scenario in TORCS [29],
where it is shown that SAFEDAGGER reduces the number of
actions needed by the human expert. Moreover, SAFEDAGGER
trains a model faster and with less data compared to DAGGER,
while achieving fewer crashes and less damage per driven lap.

To overcome catastrophic forgetting Kirkpatrick et al.
present the EWC algorithm [15] as a regularization technique
that protects tasks’ important parameters by reducing their
plasticity. EWC relies on there being multiple parameter
configurations for neural networks that give good perfor-
mance [30], [31], thus, it is possible to find a set of parameters
for a new task, where the old task’s important parameters
are largely unchanged. EWC is evaluated with the permuted
MNIST dataset [32], a common CL-benchmark in which
pixels are permuted while labels are kept unchanged. The
results show that a neural network can retain knowledge
and perform well on multiple tasks when trained on tasks
sequentially. However, the permuted MNIST test is criticized
for giving unrealistically good results [33].

Rebuffi et al. present iCaRL [34] for learning tasks incre-
mentally while recording a small set of examples for each
class. iCaRL uses these sets to classify new data through
nearest-mean-of-exemplars and to reduce catastrophic for-
getting through rehearsal. The representation is updated by
using a loss function combining classification and distillation
loss. The results show that iCaRL performs better than the
compared methods and that its accuracy is not biased towards
recently learned classes as other methods are [35].

This work differs from the related work in the following
ways. MARIODAGGER differs from DAGGER and SAFEDAG-
GER as it uses EWC to maintain previously learned knowledge
while training only on the latest collected data instead of
retraining on the union of old and new data. The work does
not alter EWC, but evaluates EWC in a more realistic context
of autonomous driving with shifting input distributions instead
of the criticized permuted MNIST data test. MARIODAGGER
takes the idea of a rehearsal buffer containing data from
earlier tasks to investigate whether it can give a significant
performance improvement with EWC.

VI. CONCLUSION

In this work, we present MARIODAGGER, a novel IL
algorithm that takes advantage of EWC, a CL algorithm, to
overcome some of the challenges of the existing IL solutions,
including (i) requiring large memory space to keep data (both
new and historical data), and (ii) slow training, as they use all
previously collected data to train the models. MARIODAGGER
only uses new data and a few random samples of the old data
(around 5% of the new data) to train the model, and uses
EWC to prevent forgetting the previous knowledge. In our
experiments, MARIODAGGER outperforms SAFEDAGGER, an
enhanced implementation of DAGGER by achieving the same
results in half as many iterations, and using significantly less
memory space.

Although the achieved results are promising, additional
research is needed to verify them in more detail as there are
multiple sources of uncertainty that may affect the outcome:
the models are trained on different data and even on slightly
different amounts of data and there may be varying degrees of
human error during data collection. Moreover, the results raise
further questions, such as the impact of the buffer size, and
the buffer eviction policies, e.g., first-in, first-out, or random.
These are left to future work.

ACKNOWLEDGMENTS

This paper is based on the Master’s thesis [36] of the second
author. The work was supported by the FOI research project
Synthetic Actors, which is funded by the R&D program of the
Swedish Armed Forces.

REFERENCES

[1] “Autonomous vehicle market outlook - 2026,” AV-
Market, accessed: 2020-04-30. [Online]. Available:
https://www.alliedmarketresearch.com/autonomous-vehicle-market

[2] S. Grigorescu et al., “A survey of deep learning techniques for au-
tonomous driving,” Journal of Field Robotics, 2019.

[3] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” in Advances in neural information processing systems, 1989, pp.
305–313.

[4] Z. Chen at al., “End-to-end learning for lane keeping of self-driving
cars,” in Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 1856–
1860.

[5] A. Venkatraman et al., “Improving multi-step prediction of learned time
series models,” in AAAI Conference on Artificial Intelligence. AAAI
Press, 2015, pp. 3024–3030.

[6] E. Rehder et al., “Driving like a human: Imitation learning for path plan-
ning using convolutional neural networks,” in International Conference
on Robotics and Automation Workshops, 2017.

[7] L. Sun et al., “A fast integrated planning and control framework for
autonomous driving via imitation learning,” in Dynamic Systems and
Control Conference, vol. 51913. American Society of Mechanical
Engineers, 2018, p. V003T37A012.

[8] S. Grigorescu et al., “Neurotrajectory: A neuroevolutionary approach to
local state trajectory learning for autonomous vehicles,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3441–3448, 2019.

[9] W. Schwarting et al., “Planning and decision-making for autonomous ve-
hicles,” Annual Review of Control, Robotics, and Autonomous Systems,
2018.

[10] I. Bratko et al., “Behavioural cloning: phenomena, results and problems,”
IFAC Proceedings Volumes, vol. 28, no. 21, pp. 143–149, 1995.

[11] M. McCloskey et al., “Catastrophic interference in connectionist net-
works: The sequential learning problem,” in Psychology of learning and
motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[12] R. French, “Catastrophic forgetting in connectionist networks,” Trends
in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[13] S. Ross et al., “A reduction of imitation learning and structured pre-
diction to no-regret online learning,” in International Conference on
Artificial Intelligence and Statistics, 2011, pp. 627–635.

[14] N. Dı́az-Rodrı́guez et al., “Don’t forget, there is more than forgetting:
new metrics for continual learning,” arXiv preprint arXiv:1810.13166,
2018.

[15] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” National Academy of Sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[16] K. Li, “Reservoir-sampling algorithms of time complexity o (n (1+ log
(n/n))),” ACM Transactions on Mathematical Software (TOMS), vol. 20,
no. 4, pp. 481–493, 1994.

[17] J. Zhang et al., “Query-efficient imitation learning for end-to-end sim-
ulated driving,” in AAAI Conference on Artificial Intelligence. AAAI
Press, 2017, pp. 2891–2897.

[18] K. Asadi et al., “Lipschitz continuity in model-based reinforcement
learning,” arXiv preprint arXiv:1804.07193, 2018.

[19] R. Ratcliff, “Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions.” Psychological review,
vol. 97, no. 2, p. 285, 1990.

[20] M. Mermillod et al., “The stability-plasticity dilemma: Investigating the
continuum from catastrophic forgetting to age-limited learning effects,”
Frontiers in psychology, vol. 4, p. 504, 2013.

[21] A. Ly et al., “A tutorial on fisher information,” Journal of Mathematical
Psychology, vol. 80, pp. 40–55, 2017.

[22] “VBS3,” Bohemia Interactive Simulations, accessed: 2020-05-11.
[Online]. Available: https://bisimulations.com/products/vbs3

[23] “End-to-end deep learning for self-driving cars,” Nvidia, accessed: 2020-
03-21. [Online]. Available: https://devblogs.nvidia.com/deep-learning-
self-driving-cars/

[24] “An end-to-end open source machine learning platform,” TensorFlow,
accessed: 2020-05-11. [Online]. Available: https://www.tensorflow.org

[25] F. Kamrani et al., “Lagom intelligenta datorgenererade styrkor,” FOI,
2018, FOI Memo 6587.

[26] S. Ross et al., “Efficient reductions for imitation learning,” in Inter-
national Conference on Artificial Intelligence and Statistics, 2010, pp.
661–668.

[27] H. Daumé et al., “Search-based structured prediction,” Machine learn-
ing, vol. 75, no. 3, pp. 297–325, 2009.

[28] S. Ross et al., “No-regret reductions for imitation learning and structured
prediction,” in In AISTATS. Citeseer, 2011.

[29] “The open racing car simulator,” TORCS, accessed: 2019-04-05.
[Online]. Available: http://torcs.sourceforge.net/

[30] R. Nielsen, “Theory of the backpropagation neural network,” Interna-
tional Joint Conference on Neural Networks, vol. volume I, p. pages
593–605, 1989.

[31] H. Sussmann, “Uniqueness of the weights for minimal feedforward nets
with a given input-output map,” Neural networks, vol. 5, no. 4, pp.
589–593, 1992.

[32] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[33] R. Kemker et al., “Measuring catastrophic forgetting in neural networks,”
in AAAI Conference on Artificial Intelligence, 2018.

[34] S. Rebuffi et al., “icarl: Incremental classifier and representation learn-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 2001–2010.

[35] Z. Li et al., “Learning without forgetting,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–2947, 2018.

[36] A. Elers, “Continual imitation learning: Enhancing safe data set aggre-
gation with elastic weight consolidation,” Master’s thesis, KTH Royal
Institute of Technology, 2019.

