Node Context Selection in Transformer-Based
Graph Representation Learning Models

Tianze Wang
KTH Royal Institute of Technology
Stockholm, Sweden
tianzew @kth.se

Abstract—Transformer models have great potential in Graph
Representation Learning (GRL) for efficiently scaling the learn-
ing process on large datasets and solving many challenges
presented in Graph Neural Networks, e.g., oversmoothing and
suspended animation. To represent each node of a graph,
Transformer models as input usually take a node together
with the node context, i.e., a set of other nodes that serve as
learning context for the target node. However, current GRL
Transformer models mainly consider the graph topology when
selecting the node context for each target node. In this work,
we demonstrate the important role of node features in selecting
the node context. Specifically, we propose a hybrid approach for
selecting node context that considers both the graph topology
and the semantic similarities between node features. Through the
empirical evaluations, we show the advantages of our hybrid node
context selection method for a downstream classification task on
various datasets compared to selection methods that only consider
graph topology or semantic similarities. The best classification
accuracy improvements of our proposed hybrid methods over the
baseline methods on each dataset range from 0.77% to 6.05%.

Index Terms—Graph Representation Learning, Transformer
Models, Node Context Selection, Graph-Bert

I. INTRODUCTION

Graphs are data structures that model a set of entities
(represented as graph nodes) and relationships between the
entities (represented as graph edges). Graphs provide unified
representations of complex data in many domains, such as
social networks [1], molecule graphs [2], and knowledge
graphs [3]. In Graph Representation Learning (GRL) [4]-[6],
we need to create fix-sized low-dimensional vectors (graph
embeddings) to represent the key information of the graph,
e.g., node features and edge connections (Figure 1a and 1b).

The learned graph embeddings can be used in various
downstream Machine Learning (ML) and Deep Learning (DL)
tasks (Figure 1c), such as knowledge graph completion [7],
link prediction [8], and node classification [9]. However, graph
data are generally from a non-Euclidean space (e.g., a node can
be connected to an arbitrary number of neighboring nodes);
thus, the majority of ML/DL models cannot be directly used
to create graph embeddings as they require input data from
Euclidean space (e.g., a grid-like structure).

Graph Neural Networks (GNNs) [10] are common ap-
proaches to tackle the above problem. GNNs are state-of-
the-art methods in GRL to create low-dimensional vectorized
representation for nodes, edges, or the whole graph (Figure 1).

Amir H. Payberah
KTH Royal Institute of Technology
Stockholm, Sweden
payberah@kth.se

Vladimir Vlassov
KTH Royal Institute of Technology
Stockholm, Sweden
vladv @kth.se

Original graph
(2

Representation of node v;

DACRE I s S
x; : d-dimensional node
embedding

(a) In GRL, we want to learn fix-sized low-dimension vector embed-
dings to represent certain aspects of a graph, e.g., nodes, edges, or
the entire graph. In most cases, embeddings are learned on the node
level to represent the structure and feature information of each node.

. X;

.
Objective: minimize the different between embedding
similarity(v;, v;) and similarity(x;, x;). Space

(b) We want a GRL encoder to learn node embeddings so that two
nodes v; and v; that are similar in the original graph would have
embeddings z; and z; close to each other in the embedding space.

Predictions for
downstream tasks

Functional
Component

Xi

(c) The learned node embeddings can then be used in downstream
tasks, e.g., node classification.

Fig. 1: Graph Representation Learning.

GNNss typically employ a neighborhood aggregation method
through message passing between neighbor nodes [11]. In
this view, the representation of each node is generated
by iteratively collecting and aggregating information from
its neighbors. While the neighborhood aggregation schema
achieves state-of-the-art performance in many graph-related
tasks [5], [12], some challenges come along with this way
of creating representations. For example, over-smoothing [13]
occurs when a GNN has too many layers, leading to very
similar representations for every node in the graph, which
usually leads to inferior performance for downstream tasks.



The suspended animation problem [14] occurs when we use a
deep GNN with many layers, and the GNN stops responding
to the input.

One way to overcome the above challenges is to employ
Transformer models [15]-[20] for GRL. Transformers [21] are
DL models that adopt self-attention mechanisms and learn to
weigh the importance of different input parts when generating
the output. They can capture long-range dependencies [22]
and can be easily adapted for parallel training. Moreover, the
scalable aspect of Transformer models can help tackle the
challenges of learning over large graphs, e.g., social networks.
Transformers have succeeded in many domains, including text
generation [23], natural language understanding [24], image
classification [25], and source code clustering [26].

One approach of using Transformers to create node rep-
resentations is to pass a farget node (the node we want to
create representation for) together with its farget node context
to Transformer that generates a low-dimensional embedding
as the representation for that target node. In general, the
context for a target is its surrounding objects or entities that
can provide and highlight appropriate interpretations for the
meaning of the target entity. For example, the context of a
pixel in an image is its surrounding pixels, and the context of
a word in a sentence is its preceding and succeeding words. In
a graph, the target node context serves as a learning context to
create embeddings for the target node. The context contains the
nodes (usually the target node’s nearby neighbors) typically
selected based on some relative proximity measurement on
the topology of the graph, such as PageRank proximity [27].
For example, Graph-Bert [16], which is a state-of-the-
art Transformer-based graph embedding model, selects target
nodes’ context using a method that mainly considers the input
graph topology, i.e., the structure of the graph. However, such
methods might be suboptimal as they do not consider the
semantic features that come with each node.

In this work, we study the impact of node context selection
for Transformer models on learning graph representations.
Specifically, we propose different node context selection meth-
ods and empirically compare their impact on the performance
of node classification that utilizes the learned graph represen-
tations. Our contribution can be formulated as follows.

1) We compare the performance of node context selection
methods that only consider the graph topology with
methods that only consider the semantic similarity of
the node features.

2) We propose a novel two-step approach for node context
selection combining the topological structure of the
graph and the semantic meaning of nodes in the graph.

3) We empirically evaluate different node context selection
approaches and analyze the results.

II. PRELIMINARIES

In this section, we present the preliminaries of our work.
We start with definitions of GRL, then discuss node context
selection and an overview of Graph-Bert.

A. Graph Representation Learning

Let G(V, E) be a graph, where v; € V is a node in the
graph, and e;; = (v;,v;) € E is an edge that represents a
connection between two nodes v; and v;. In GRL, we aim
to find a function f that, for the given graph G, creates d-
dimension embeddings x € R%(d € N) representing certain
aspects of the given graph G. For example, x could represent
a node, an edge, or even the entire graph. Such d-dimensional
embeddings can later be used as input to other functions to
accomplish specific tasks, such as node classification, link
prediction, and graph clustering.

There are different approaches for f to create embeddings.
Traditional methods such as node2vec [28] and struc2vec [29]
work based on random walks on the original graph to create
representations such that the distances of two representations
x; and x; in the embedding space reflect the similarity of two
nodes v; and v; in the original graph G (Figure 1b). However,
state-of-the-art methods in GRL use GNNs, such as Graph
Convolutional Networks (GCN) [12] and GraphSAGE [5].
To create a node embedding for a node v; in the graph, a
GNN defines a neural network based on the neighborhood
structure that collects and aggregates information from all the
neighbor nodes of v; within certain distances, e.g., within 2-
hop neighbors.

B. Node Context Selection

To create a representation x; for a target node v;, we need to
define a set of nodes C,,, i.e., the node context of the target
node v;, that serves as the learning context for creating X;.
One of the simplest and most common ways to define node
context is to select nodes that are the direct neighbors of the
target node v;. One can also extend the node context by adding
neighbors that are further away from v;. The majority of GNN
models [5], [11], [30] create =; for a target node v; through
message passing by collecting and aggregating information
from the local neighborhood of v;.

Another way to define node context is through top-k inti-
macy sampling based on an intimacy matrix S € R™*" where
n is the number of nodes in the graph G. Each entry s;; € S
is a scalar value that measures the similarity of node v; and v;.
The similarity here can come from different perspectives, and
we show more details about different similarity measurements
and node context in Section III. A larger value of s;; represents
that nodes v; and v; are more similar. In this way, the node
context C,, is a set of k nodes (v; not included) that are most
similar to node v; according to the intimacy matrix S.

For example, personalized PageRank algorithms can de-
fine the intimacy matrix as below:

S=a-(I-(1-a)-A)", (1)
where « is a value between O and 1 that represents the prob-
ability of restart (teleport) during the random walk process.
I € R™" is an identity matrix, and A is the normalized
adjacency matrix. A = AD™! for a directed graph and
A = D 2AD"Z for an undirected graph where A denotes



the adjacency matrix of graph G and D is the degree matrix
of graph G.

C. GraphBert

One of the state-of-the-art methods for applying Trans-
former models on graphs is Graph-Bert [16], where the
neural network used is solely based on the attention mecha-
nism without any graph convolution or aggregation. Figure 2
shows a quick summary of Graph-Bert.

As we see in Figure 2, to create a d-dimensional repre-
sentation for a target node v; using Graph-Bert, we first
need to define a surrounding node context, which is a set
of nodes v; € C,,. Graph-Bert uses a top-k intimacy
sampling approach based on the intimacy matrix .S defined in
equation 1 capturing the influence between two nodes based on
PageRank algorithms. Although nodes in the local neighbor-
hood of the target node usually have a higher influence score
under such metric, nodes that strongly influence the target node
may be far away.

After defining the node context for the target node, we need
to prepare the input vectors for the Transformer-based encoder
containing: (1) raw node feature vector, (2) Weisfeiler-Lehman
absolute role vector, (3) intimacy-based relative positional
vector, and (4) hop based relative distance vector. These four
vectors capture different information about each node and are
aggregated using vector summation. The aggregated vector
is then passed to the Transformer-based encoder to get the
representation of the target node. The learned representation
for the target node is then combined with functional compo-
nents, e.g., an ML classifier, to optimize the training objective
of downstream tasks, e.g., classifying papers into different
research areas.

III. NODE CONTEXT SELECTION

In this section, we start by motivating the importance of
node context, and then we introduce different methods for
node context selection.

A. We Shall Know A Node By The Company It Keeps

Representations of nodes using adjacency matrices sit in a
high dimensional space (probably non-Euclidean), which may
cause many problems as the dimension can vary quite a bit for
graphs with different numbers of nodes. In GRL, we would
like to create a fix dimensional embeddings to represent the
graph. For example, in node classification tasks, we want to
generate node embedding for each node in the graph and use
it for downstream classification tasks.

To achieve a good classification task performance, nodes
should be optimized to be located in the embedding space
according to their class labels. That is, nodes with similar
classification labels in the original graph are expected to be
close to each other in the embedding space, while nodes with
different labels would be further away from each other. How-
ever, such an objective might be challenging to achieve as the
node label distributions for different classification tasks might
vary greatly even for the same input graph. This implies the

distribution of node embedding in the embedding space might
need to vary significantly for different tasks. Furthermore, even
if we could create embeddings with such desired properties,
they may have poor generalizability for other downstream
tasks since the node embedding space is heavily optimized
for a specific downstream task (e.g., binary classification of
whether a preprint manuscript is accepted or rejected vs. a
multi-class classification on which area a paper belongs to).
Nevertheless, we can still work on the general notion of
optimizing the embedding space not from the downstream task
perspective but on the similarities presented in the input graph.

One of the most straightforward ways of defining similarity
in a graph is by the edge connection. In this view, we can
consider two directly connected nodes as the most similar.
A pair of nodes whose shortest path among them is 2-hop
are generally considered more similar than another pair of
nodes that are further, e.g., 5-hop away. There are different
ways to measure similarities using graph connection apart
from counting the shortest path length between two nodes in
a graph. Personalized PageRank [27] is a way to measure
the influence of all the other nodes in the graph on a specific
target node. In general, this view of similarity captures the
information stored in the graph topology, i.e., how nodes are
connected to each other in a graph.

Apart from the edge connection between two nodes, each
node might also come with a set of features. For example, in
a paper citation network, each node represents a paper, and
edges represent the citation between papers. One node might
also have some features describing the paper that it represents,
e.g., year of publication, venue, and a word2vec vector that
represents the paper’s content. Such vectors can be used to
measure the similarity between two nodes. In this view, two
vectors describing two data mining papers would probably be
closer to each other in the vector space than two vectors,
one describing a data mining paper and another describing
a computational biology paper.

In this work, we aim to study if we can use the notion of
similarity between nodes and graph topology to generate node
embeddings to improve the performance of downstream node
classification tasks.

B. Node Context Selection Methods

To generate an embedding for a target node in a graph,
Graph-Bert uses the encoder of a Transformer model by
taking the target node and a surrounding node context (a set
of nodes of predefined size) as input. This subsection gives an
overview of the different methods for selecting node context.

1) Topological context: Graph-Bert explores a top-k
intimacy sampling and implements the intimacy score based
on the personalized PageRank method. In the end, the node
context of a target node includes k nodes that have the highest
influence on the target node according to the personalized
PageRank method. We shall refer to this method of sampling
the node context for a target node as topological hereafter,
as the node context selection mainly considers the topology



Prepare input
Target @_ vector for each
node node
,@_ * raw node feature
vector
+  Weisfeiler-Lehman [—
Node @— absolute role encoder
context vector
Cy,of N o intimacy-based
sizle k . relative positional
] vector
* hop based relative
@_ distance vector
~

Transformer-based

Functional

— X; —>| component for
Node downstream tasks
embedding
of target
node v;

— Prediction

Fig. 2: Graph-Bert creates low dimensional representations for target node v; solely based on Transformer and attention
mechanism without graph convolution. Graph-Bert learns to generate representation x; for the target node v; using both

the target node and a node context C.,, = {v;,,vj,," -
ML tasks, e.g., node classification.

in the graph. Figure 3a shows how topological context
works.

2) Semantic context: While topological context uses
graph topology as a proxy for node similarity, another way
to measure node similarity is based on node features, usually
composed of a fixed dimension vector for each node. How
these feature vectors are generated depends on what each node
in a graph represents. For example, if each node represents an
image, such features vector could be the features generated
by some pre-trained Computer Vision (CV) models, or if each
node has some raw text associated with it, e.g., descriptions of
a product, title, and abstract of a paper, such feature vectors
could be anything that can represent the semantic meaning of
those raw texts. It could be as simple as zero-one vectors that
indicate if each word in a given vocabulary has appeared in
the raw text or not, or it could be feature vectors generated
by word2vec [31] or Bert [24] models.

Depending on the type of feature vector used, there are
different metrics we can use to measure the similarity between
semantic features. In this work, we use either Jaccard or cosine
similarity as our similarity measurement. For example, we
could use Jaccard similarity to measure the distance between
zero-one vectors and cosine similarity to measure the distance
between vectors generated by word2vec [31] or Bert [24]
models. We will refer to the method that selects node context
based on the similarity between semantic features of nodes
as semantic since it captures how similar nodes are with
each other based on what each node describes, as shown in
Figure 3b.

3) Hybrid context: In addition to creating node context
for a target node using only graph topology or only node
features, we propose to combine the topological context with
the semantic context. We call this combination a hybrid
context. We study if such a hybrid approach could lead
the Graph-Bert to generate node embeddings that can
improve the node classification accuracy in the downstream
classification task. Figure 3c shows how to use hybrid to

,vj,. } and the learned representations can later be used for downstream

define a node context. Specifically, to create a node context of
size k, we first use topological similarity to preselect a larger
set of nodes of size m x k and then use semantic similarity
to select the top k£ nodes from the preselected m x k, which
serve as the final node context of the target node. Here, m is a
predefined hyperparameter on how far away we search during
preselection. We will refer to the hybrid method as hybrid
hereafter.

The task of the hybrid method can be simplified as
defining a node context by finding the most similar neighbors
of the target node. There are two aspects that we need to
consider: (a) neighbor: the nodes in the node context should
reflect graph structure, and (b) similar: the nodes in the node
context should also be similar in terms of the semantic node
features compared to the target node. In other words, nodes
that are far away from each other in the graph and have quite
different feature vectors should not appear in each other’s node
context, as they are probably not able to efficiently learn from
each other, at least when not explicitly made clear to GRL
models that they are kind of counterexamples to each other.

IV. EVALUATION

In this section, we present the empirical evaluation of differ-
ent node context selection methods. We start by introducing
the datasets, tasks, and experiment setup. Then, we present
and analyze the experiment results. In the end, we discuss the
differences between the node context selected using different
selection methods.

A. Datasets and Tasks

We conduct our empirical evaluation on four datasets
Cora, CiteSeer, PubMed as in Graph-Bert, and
ogbn—-arxiv, a larger dataset than the first three datasets.
Table I provides the statistics for all four datasets. All four
datasets are paper citation datasets where each node represents
a paper and each edge represents a citation between two
papers. We consider node classification as the downstream
task where we would like to classify a node into one of



Target node

®» 0000000

Node context selected

Nodes sorted in decreasing order of PageRank proximity
A

(a) topological node context with k = 3. The final selected node
context are the ones that are most similar to the target node v; in
terms of PageRank proximity.

Target node

® 0000000

Node context selected

Nodes sorted in decreasing order}ef semantic similarity

(b) semantic node context with kK = 3. Nodes selected in the final
node context are the most similar ones to the target node v; in terms
of semantic similarity, e.g., cosine similarity between node features.

Step 1/2:
Nodes sorted in decreasing order of PageRank proximity

0000000

Preselected node context of sizem X k =2x3 =6
Step 2/2:
Preselected nodes sorted}i\n decreasing order of semantic similarity

O0000O0

Node context selected

Target node

O,

(¢) hybrid node context with k = 3 and m = 2. This approach first
uses topological to preselect nodes and then uses semantic
to select the final node context from the preselected ones. The output
node context contains nodes that are similar to the target node v;
considering both graph structure and node features.

Fig. 3: Demonstration of how different node context selection
methods work. The semantic similarity of a node is calculated
relative to the target node.

the predefined classes that represent the area that the paper
belongs.

TABLE I: Dataset statistics.

Dataset #Nodes #Edges node feature #Classes
Cora 2,708 5,429 0-1 7
CiteSeer 3,312 4,715 0-1 6
PubMed 19,717 44,338 TF/IDF 3
ogbn-arxiv 169,343 1,166,243 skipgram 40

The Cora dataset contains a citation graph of ML pa-
pers where each node represents one paper, and each edge
represents a citation between two papers. Each node in the
Cora dataset has a 0/1-valued word vector indicating whether
or not a node contains the corresponding word in the given
vocabulary. The vocabulary contains 1433 unique words. Each
node in the Cora dataset belongs to one of the following seven
categories: “Case Based”, “Genetic Algorithms”, “Neural Net-

works”, “Probabilistic Methods”, ‘“Reinforcement Learning”,
“Rule Learning”, and “Theory”.

The CiteSeer dataset contains a citation graph of sci-
entific publications. Each node represents a paper and has a
0/1-valued word vector similar to the ones in the Cora dataset,
except that the vocabulary contains 3703 unique words. Each
node in the CiteSeer dataset belongs to one of the following
six categories: “Agents”, “Al”, “DB”, “IR”, “ML”, and “HCI”.

The PubMed dataset is a citation graph of scientific pub-
lications. Each node represents a paper and has a TF/IDF
weighted word vector [32] with a vocabulary size of 500. Each
paper in the PubMed dataset belongs to one of the following
three categories: “Diabetes Mellitus, Experimenta”, “Diabetes
Mellitus Type 17, and “Diabetes Mellitus Type 2”.

The ogbn-arxiv dataset is a citation graph between
Computer Science (CS) arXiv' papers. Each node represents a
paper and has a 128-dimensional feature vector that is obtained
by averaging word embeddings in the title and abstract of the
paper. Each word embedding is generated using the skip-gram
model [33]. Apart from the feature vector, the ogbn-arxiv
dataset also includes the raw text of titles and abstracts for
each paper. We use pretrained Sentence-BERT (SBERT) [34]
to generate a second 768-dimensional feature vector for each
paper from a single sentence that is based on the raw text of
its title and abstract. Each paper in the ogbn-arxiv dataset
belongs to one of the 40 categories> within CS papers in arXiv,
e.g., cs.Al - Artificial Intelligence.

B. Experiment Setup

We implement different ways of constructing node context
and test the impact of node context selection on the final node
classification accuracy with different node context size k. For
hybrid, we also test different multiples m. The experiment
code can be accessed from here .

For the Cora, CiteSeer, and PubMed datasets, we
repeat each experiment configuration 50 times to minimize
the impact of randomness and stochastic on the result. For the
ogbn-arxiv dataset, since each individual experiment takes
much longer to run than the first three datasets, we repeat 10
times due to the time limit. We used the same train, validation,
and test split as Graph—-Bert for Cora, CiteSeer, and
PubMed and used the recommended splits by ogbn for the
ogbn-arxiv dataset.

We conducted experiments on the Cora, CiteSeer, and
PubMed dataset on a local workstation with AMD Ryzen
Threadripper 2920x 12-Core Processor, 128 GB of RAM, and
NVIDIA GeForce RTX 2070 Super GPUs. For the experi-
ments on ogbn—-arxiv, we use SNIC clusters to satisfy the
GPU memory requirements. For each repeated run, we give
the Graph-Bert model with different context 200 epochs of
training and report the test accuracy of the model at the time
when it reaches the highest validation accuracy. The final test

Uhttps://arxiv.org/
Zhttps://arxiv.org/archive/cs
3https://github.com/bwhub/ncgt



accuracy reported is an average across repeated runs for the
given configuration.

C. Results and Analysis

Table II shows the result on the Cora dataset. We test
two different variants for measuring semantic similarity, i.e.,
Jaccard and cosine similarities, since the node features in the
Cora dataset are zero-one vectors indicating if a word appears
in the given vocabulary. For hybrid context, we also tested
different values of k£ and m, i.e., k = 5,7,10,20, 30, 50, and
m = 2,5,7,10,20 to show the effect of the size of node
context and preselection neighborhood on the final classifi-
cation accuracy. We reported the average test accuracy and
standard deviations over 50 repeated runs for each experiment
configuration.

Table II shows that semantic is performing worse than
topological regardless of the similarity of the measure-
ment used, i.e., cosine or Jaccard. This could be partially
explained by the fact that semantic context performs a
selection of node context for a target node only based on
similarity measurements over all the nodes in the entire graph.
Such a global view would let the Graph-Bert model lose
focus on the connection between nodes in the local neigh-
borhood of the target node, meaning that the Graph-Bert
model will not learn much about the structure information in
the graph represented in the edge and the final representation
of a node is mostly related to the feature it has.

The topological context, on the other hand, does not
suffer from a loss of structure information by selecting the
node context of a target node respecting the connections within
the local neighborhood. The hybrid context selects node
context for a target node considering both the structure of
the local neighborhood and the semantic similarities between
node features. Thus, the better selection of node context
lead to better classification performance in general when
comparing to semantic and topological, e.g., 0.8424
versus 0.8115 when comparing hybrid, Jaccard, m = 5 and
topological for k = 10.

The size of node context, i.e., k, also plays an important
role in the performance of the Graph-Bert model on
node classification. We generally observe a trend of better
performance when using a larger k& for topological and
hybrid context. This could be explained by the fact that
a larger node context allows the Graph-Bert model to
have more comparisons of the nodes within a given node
context. Thus, the Graph-Bert model can create node
embeddings where similar nodes (both in structure and feature
semantic similarities) can sit close to each other in the latent
representation space. For example, increasing k£ from 5 to 7
boosts the accuracy of hybrid, cosine, m = 7 from 0.8187
to 0.8398.

The size of the preselection node context (m x k) also im-
pacts the final classification accuracy. Increasing m increases
the size of the preselection neighborhood and usually leads
to better classification performance. For example, increasing
m from 2 to 5 increase the accuracy from 0.8341 to 0.8424

for hybrid, Jaccard when k£ = 10. Too large of a m, on
the other hand, can potentially decrease the performance as
too large of a preselection node context would fade out the
benefit of the preselection step. Such a node selection process
undermines the impact of graph structure on the selection
process, resulting in a node context that is similar to one
selected using only semantic context. For example, when
k = 50 increasing m from 10 to 20 decrease the classification
accuracy from 0.8284 to 0.8089 for hybrid context with
Jaccard as similarity measurement.

Table III follows the same schema as Table II and shows the
result on the CiteSeer dataset. Overall, experiment results
on CiteSeer are similar to those on Cora. This could
be because Cora and CiteSeer resemble each other in
many aspects, e.g., the number of nodes and edges in the
graph, node feature type, and the number of categories for
node classification. One interesting observation is that cosine
similarity seems to be slightly better than Jaccard similarity
most of the time. This could be an indication that similarity
measurements (e.g., Jaccard and cosine) and feature represen-
tations (e.g., zero-one vector) also affect the performance of
downstream classification tasks (see the results on PubMed
and ogbn-arxiv datasets).

Table IV shows the result on PubMed dataset. Overall,
Jaccard is a better similarity measurement of node features on
PubMed dataset. For example, semant ic context always has
better classification performance when using Jaccard similarity
compared to cosine similarity and would sometimes even out-
perform the topological context, e.g., & = 5,20, 30,50.
The advantages of Jaccard similarity also appear when using
hybrid context as the performance is generally better than
those using cosine similarity. This may indicate that the node
features (TF/IDF weighted word vectors) in PubMed dataset
are better suited with Jaccard similarity than cosine similarity
as a measurement of the distance between node features.

Table V shows the experiment results on ogbn-arxiv
dataset. We test the impact of node context selection for two
sets of features, skip-gram and SBERT [34]. Skip-gram rows
in Table V show the experiment results using the original node
feature that comes with the ogbn-arxiv dataset and the
SBERT rows show the results where we use features generated
by a pretrained SBERT model [34].

Overall, the trend is the same as previous results on Cora,
CiteSeer, and PubMed, where hybrid has the best perfor-
mance overall, and semantic is worse than topological.
However, compared to node features generated by skip-gram,
SBERT generates context-aware features for text summariza-
tion and usually performs better. Our experiment result shows
that using SBERT node features is better than using skip-
gram features for the hybrid model (Graph-Bert model
with hybrid context) as it can achieve higher accuracy with
the prior feature. This indicates that apart from node context
selection, the quality of node features that serve as input
to the hybrid model also plays an important role in the
model’s performance. The better the input node features are,
the higher the node classification accuracy we can reach with



TABLE II: Average accuracy and standard deviation of different node contexts on Cora dataset.

Node Context k=5 k=7 k=10 k=20 k=30 k=50
semantic, cosine  0.79174+0.0119  0.7908+0.0132  0.78754+0.0141  0.7886+0.0134  0.788640.0104  0.790440.0099
semantic, jaccard  0.7828+0.0152  0.7923+£0.0121  0.7895+0.0100  0.7848+0.0129  0.7852+0.0107  0.7896+0.0081
topological 0.8177£0.0081  0.8157+£0.0102  0.8115+0.0103  0.8286+£0.0099  0.8221+0.0108  0.8285+0.0119
hybrid, cosine, m=2  0.81094+0.0073  0.807240.0088  0.832240.0077  0.833940.0057  0.836140.0060  0.837040.0084
hybrid, cosine, m=5  0.81944+0.0079  0.835540.0064  0.842040.0072  0.833440.0100  0.840540.0091  0.8380+0.0054
hybrid, cosine, m=7  0.8187£0.0047  0.8398+0.0068 0.8365+0.0081  0.8409+0.0081  0.8403+0.0074  0.8360+0.0070
hybrid, cosine, m=10  0.82274+0.0071  0.826540.0077  0.828540.0076  0.8469+0.0067  0.8434+0.0077  0.828440.0056
hybrid, cosine, m=20  0.8203£0.0065  0.8264+0.0071  0.8270£0.0086  0.8326+£0.0079  0.8259£0.0072  0.8117£0.0067
hybrid, jaccard, m=2  0.804740.0091  0.805040.0085  0.8341+0.0068  0.8362+0.0049  0.8368+0.0066  0.8370+0.0072
hybrid, jaccard, m=5  0.8285+0.0062  0.8359+0.0045  0.8424+0.0043  0.8328+0.0100  0.8419+0.0064  0.8377+0.0063
hybrid, jaccard, m=7  0.82224+0.0053  0.8381+0.0048  0.8368+0.0056  0.8371£0.0074  0.8431£0.0055  0.8352£0.0065
hybrid, jaccard, m=10  0.82554+0.0073  0.830740.0078  0.82954+0.0070  0.844940.0085  0.841040.0071  0.82844-0.0062
hybrid, jaccard, m=20  0.8192+0.0073  0.8280+0.0082  0.8220+0.0088  0.8330+0.0071  0.8198+0.0076  0.8089+0.0072

TABLE III: Average accuracy and standard deviation of different node contexts on CiteSeer dataset.

Node Context k=5 k=7 k=10 k=20 k=30 k=50
semantic, cosine  0.69911+0.0058  0.7008+0.0055  0.699140.0054  0.698440.0063  0.70324+0.0106  0.708340.0097
semantic, jaccard  0.6973£0.0048  0.6980+£0.0041  0.6990+0.0061  0.6980+0.0061  0.7008+0.0090  0.7063+0.0093
topological  0.69774+0.0049 0.69701+0.0046  0.696440.0045  0.695240.0045 0.696240.0055 0.698240.0073
hybrid, cosine, m=2  0.69614+0.0049  0.6968+0.0046  0.703440.0088  0.70614+0.0106  0.71384+0.0120  0.7158+0.0078
hybrid, cosine, m=5  0.7108£0.0063  0.7116£0.0083  0.7152+0.0077  0.7159+0.0065  0.7131£0.0090  0.7124+0.0071
hybrid, cosine, m=7  0.7058+0.0061  0.7099+0.0070  0.7082+0.0051  0.7182+0.0045  0.7199+0.0056  0.7155+0.0078
hybrid, cosine, m=10  0.71441+0.0064  0.70491+0.0060  0.70424+0.0051  0.707940.0058  0.715340.0073  0.711440.0078
hybrid, cosine, m=20  0.7040£0.0072  0.7039£0.0072  0.7091£0.0105  0.7102+0.0083  0.7077£0.0099  0.7088=+0.0114
hybrid, jaccard, m=2  0.698040.0049  0.697740.0046  0.7030+0.0086  0.7056£0.0105  0.7131£0.0119  0.7127£0.0106
hybrid, jaccard, m=5  0.7137£0.0073  0.7110£0.0061  0.7147+0.0095  0.7161+0.0069  0.7143+0.0085  0.7160+0.0062
hybrid, jaccard, m=7  0.704240.0061  0.7085+0.0076  0.7094£0.0049  0.7186+0.0052  0.7172+0.0084  0.7140=£0.0068
hybrid, jaccard, m=10  0.714040.0069  0.70534+0.0061  0.705940.0053  0.708140.0062  0.717040.0068  0.71004-0.0060
hybrid, jaccard, m=20  0.70491+0.0064  0.7038+0.0060  0.7056+0.0094  0.709040.0087  0.70924+0.0090  0.707240.0121

TABLE IV: Average accuracy and standard deviation of different node contexts on PubMed dataset.

Node Context k=5 k=7 k=10 k=20 k=30 k=50
semantic, cosine  0.6530£0.0117  0.6616+£0.0099 0.67614+0.0112  0.688340.0106  0.6908+0.0125  0.6928+0.0114
semantic, jaccard  0.7281£0.0127  0.7358+0.0084  0.7499+0.0036  0.7691£0.0038  0.7764+£0.0071  0.7572+0.0109
topological  0.69424+0.0089  0.73914+0.0097 0.7520+0.0111  0.7326+0.0104  0.7387+0.0095  0.7499+0.0078
hybrid, cosine, m=2  0.7359+0.0111  0.7492+0.0097  0.7428+0.0085  0.7701£0.0094  0.7915£0.0069  0.791540.0074
hybrid, cosine, m=5  0.6866+0.0079  0.7147+0.0095  0.7385+0.0078  0.7640+£0.0079  0.7734+0.0090  0.781440.0088
hybrid, cosine, m=7  0.7118+0.0077  0.7203+0.0078  0.7444+0.0100  0.7551£0.0084  0.7602+0.0071  0.765540.0100
hybrid, cosine, m=10  0.721940.0077  0.742940.0089  0.751440.0118  0.745940.0088  0.75334+0.0089  0.753140.0089
hybrid, cosine, m=20  0.7336£0.0067  0.728940.0069  0.723940.0057  0.74284+0.0109  0.739740.0084  0.7486+0.0085
hybrid, jaccard, m=2  0.7468+0.0085  0.7551+0.0088 0.751040.0071  0.778840.0080  0.789340.0061  0.798940.0078
hybrid, jaccard, m=5  0.7208+0.0120  0.7250%0.0094  0.7597+0.0075  0.7905+0.0057  0.7992+0.0052  0.8059+0.0070
hybrid, jaccard, m=7  0.70754+0.0079  0.745440.0100  0.7646+0.0084  0.7896+0.0065  0.7972+0.0076  0.8061+0.0067
hybrid, jaccard, m=10  0.708640.0105 0.75444+0.0070  0.7721+0.0056  0.7875+0.0043  0.7948+0.0043  0.8025+0.0076
hybrid, jaccard, m=20  0.7363+0.0073  0.7503£0.0058  0.7589+0.0088  0.7744£0.0099  0.7885+0.0060  0.8018=+0.0068

the hybrid model.

We also compare the hybrid model with some baseline
models: Multilayer Perceptron (MLP), GCN and GraphSAGE.
MLP is a fully connected neural network classifier that takes
node features as input and classifies each node feature into
different categories without considering graph structure. GCN
and GraphSAGE, on the other hand, represent baseline GNN
models that learn representations for graph nodes considering
graph structure and classify nodes into different categories.
All the baseline models have two layers of neural network,
32 hidden channel, and are trained for 200 epochs for a fair
comparison with the hybrid model.

Table VI shows the result of MLP, GCN, GraphSAGE,
and the hybrid model (the best accuracies in Table V)
on ogbn-arxiv dataset. MLP has the worst performance

compared to all the other models since it does not utilize
citation information between papers encoded on the edges
of a graph. GCN and GraphSAGE utilize such structural
information and achieve better classification performance than
MLP. The type of node features also plays an essential role in
the final classification accuracy. We can observe from Table VI
that all models achieve better classification accuracy when
using node features created by the SBERT model compared
to node features created by the skip-gram model.

This confirms our hypothesis that the SBERT model can
create better node features than the skip-gram model. In our
view, there are the following potential reasons that lead to
features of better quality: (1) compared to the skip-gram
model, SBERT can create context-aware word embeddings that
can better summarize the semantic of each word in the given



TABLE V: Average accuracy and standard deviation of different node contexts on ogbn-arxiv dataset.

Node Context k=5 k=7 k=10 k=20 k=30
semantic, cosine, skipgram  0.66351+0.0033  0.66201+0.0039  0.6640+0.0034  0.664540.0056  0.663440.0039
semantic, cosine, SBERT  0.6967+£0.0027  0.6971£0.0026  0.6974£0.0024  0.6971+£0.0021  0.6962+0.0039
topological, skipgram  0.67094+0.0035  0.67214+0.0031  0.67414+0.0038  0.6844+0.0031  0.6884+0.0026
topological, SBERT  0.6967£0.0034  0.6983£0.0028  0.6974£0.0029  0.6985+0.0031  0.6993£0.0059
hybrid, cosine, m=2, skipgram  0.67204+0.0043  0.67474+0.0031  0.679140.0028  0.685540.0022  0.690040.0028
hybrid, cosine, m=2, SBERT  0.695440.0027  0.69714+0.0036  0.6969+0.0034  0.7009+0.0028  0.6994+0.0044
hybrid, cosine, m=7, skipgram  0.67454+0.0033  0.6798+0.0043  0.6807+0.0037  0.6827+0.0035  0.6858+0.0021
hybrid, cosine, m=7, SBERT  0.6985+0.0037  0.6992+0.0041  0.6987+0.0053  0.6989+0.0053  0.6984+0.0047
hybrid, cosine, m=10, skipgram  0.67424+0.0028  0.677440.0052  0.6798+0.0039  0.684440.0043  0.6853+0.0038
hybrid, cosine, m=10, SBERT  0.6990+£0.0016 0.6989+0.0035  0.6987+0.0035 0.7002+0.0023  0.7026+-0.0031

TABLE VI: Average accuracy and standard deviation of base-

line models on ogbn—-arxiv dataset.

Node Feature

Models skipgram SBERT

MLP  0.502140.0026  0.61344-0.0021

GCN  0.6863£0.0026  0.7098-:0.0027

GraphSAGE  0.6806£0.0037  0.7073£0.0042

hybrid  0.6900+£0.0028 0.7026+0.0031
106 - 5
7
— 10
10° — 20
— 30

10*
L]

Count (log scale)

i

l

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

16 17 18 19 20 21 22 23 24

Hop distances from target node.

Fig. 4:
ogbn-arxiv dataset.

raw text, (2) SBERT is pretrained on large-scale datasets and
has better generalizability, and (3) the node feature created
by SBERT has higher dimensionality than the features created
by the skip-gram (768 versus 128) and has potentially more

representative power.

topological hop distance distribution on

Count (log scale)
o
E)

— 5
— 10

— 20
— 30

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hop distances from target no

Fig. 5: semantic (SBERT, cosine) hop distance distribution

on ogbn-arxiv dataset.

16 17 18 19 20 21 22 23 24
de.

Count (log scale)

i3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hop distances from target node.

(a) m=2.

— 5
— 10

— 20
— 30

Count (log scale)
g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hop distances from target node.

bym="1.

— 5

— 10
— 20
— 30

Count (log scale)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hop distances from target node.

(c) m = 10.

Fig. 6: hybrid (SBERT, cosine) hop distance distribution on
ogbn-arxiv dataset.

D. The effect of node context selection

To further understand the potential reason for differ-
ences in node classification performances, we also com-
pare the differences between the node context defined using
topological, semantic, and hybrid.

Figures 4, 5, 6a, 6b, and 6¢ show the distance between
the target node and the nodes in its node context on the



ogbn-arxiv dataset using topological, semantic,
and hybrid. Overall, we can observe that most of the nodes
in the node context are a few hops neighbors of the target
node, and as we increase the size of node context k, more and
more nodes that are further away from the target node starts
to show in the node context.

One interesting observation is that semantic tends to
define node context that is further away from the target
node than topological. This could be a potential reason
why semantic context is getting worse performance than
topological as the Graph-Bert model might not be
able to efficiently learn the local neighborhood structure of
the target node when using semantic context. The hybrid
context, on the other hand, does not sample node context with
nodes that are too far away from the target node as it combines
topological and semantic context.

Another factor that might contribute to the worse per-
formance for semantic context could be that it tends to
oversample or undersample certain classes. Figure 7 shows
that semantic context, compared to the label distribution of
nodes in ogbn-arxiv dataset, oversamples certain classes,
e.g., arxiv_cd_lg and arxiv_cd_it and undersamples other
classes, e.g., arxiv_cs_cy and arxiv_cs_dl. Such an unbalanced
node context could lead the Graph—-Bert model to over
or under-emphasize the learning of certain node classes and
decrease node classification accuracy compared to hybrid
and topological contexts.

V. RELATED WORK

This section shows the related work for using Transformer
models for graph representation learning. We start with an
overview of recent studies of Transformer models on graphs,
and then we dive deeper into those more related to our work.

A. Transformer on homogeneous graphs

Several work studies on how to use Transformer models
to learn graph representations on homogeneous graphs where
there are only one type of nodes and one type of edges.
Graph Transformer (GT) [15] generalizes Transformer models
to homogeneous graphs with a focus on exploring the sparsity
and positional encodings using Laplacian eigenvectors. GT
also has an extended version that uses edge features in
its encoding pipeline. Graph-Bert [16] demonstrates the
possibility of learning graph representations only using the
attention mechanism without any neighborhood aggregation
and graph convolution. Furthermore, Graph-Bert shows
the possibility of pretraining on general graph representation
learning tasks and fine-tuning on domain-specific downstream
applications.

B. Transformer on heterogeneous graphs

Some studies focus on GRL with Transformer models on
heterogeneous graphs that contain various types of nodes
and edges. Graph Transformer Network (GTN) [17] uses
Transformer to learn and generate multi-hops meta-path by
a soft selection of edge types. These meta-paths are then used

0.175 Node Context

= —— SBERT_semantic_k_5
SBERT _topological_k_5

—— SBERT_hybrid_m_2_k_5

—— SBERT_hybrid_m_7_k_5

0.125 —— SBERT_hybrid_m_10_k_5

—— ogbn-arxiv_dataset_label

0.150

0.100

ity

Dens|

0.075

0.050

0.025

0.000

iv_cs_cg

REE

(@) k=5.

0.175 Node Context
—— SBERT semantic_k_30
SBERT _topological_k_30

0.150 —— SBERT hybrid_m_2_k_30

—— SBERT hybrid_m_7_k_30
0.125 —— SBERT_hybrid_m_10_k_30
—— ogbn-arxiv_dataset_label

0.100

ity

Densi

0.075

0.050

- wﬁ
0.000

amxiv_cs_sy

(b) k& = 30.

Fig. 7: Node classification label distribution of different node
context.

by an ensemble of GCN models to create node representa-
tions for the input heterogeneous graph. Heterogeneous Graph
Transformer (HGT) [18] treats heterogeneous edges as meta
relations and maintains type-specific representations for nodes
and edges with heterogeneous attention mechanisms. Apart
from that, HGT also proposed its own mini-batch sampling
method for scalable training of HGT on heterogeneous graphs.

C. Encoding Graph Structure

Dwivedi et al. [35] discuss the idea of positional encoding
for GNN and introduce Learnable Structural and Positional
Encodings (LSPE) that can be combined with any message-
passing GNN. Graphormer [19] uses spatial, centrality, and
edge encoding to effectively encode structure information
that helps Transformer to better model graph data. Spectral
Attention Network (SAN) [20] explores learned positional
encoding that is later added to the input of Transformer
models. The learned positional encoding in SAN utilizes the
full Laplacian spectrum and can better represent node positions
in a graph.

VI. CONCLUSION

In this work, we study the impact of node context selec-
tion for Transformer models in graph representation learning.
Specifically, we study this problem using Graph-Bert, one



of the state-of-the-art methods of applying Transformer models
for graph representation learning. We empirically compare
different methods for selecting node context for a target node
and find that our proposed hybrid method, which considers
both (1) the topological information encoded in graph edges
and (2) the semantic similarity of node features, has the best
performance overall, with accuracy improvements of up to
6.05% on downstream classification tasks. We also show that
increasing the quality of node features, e.g., using SBERT
instead of skip-gram features, can increase the performance in
graph representation learning.

Potential extensions for future work include more efficient
methods for sampling nodes based on graph topology than
the PageRank method. The impact of node context selection
on the self-supervised pretraining of Transformer models for
graph representation learning. The combination of contrastive
learning and node context selection of Transformer models for
graph representation learning.

ACKNOWLEDGMENT

Special thanks to Vangjush Komini for the generous dis-
cussion throughout this work. The computations were partially
enabled by resources provided by the Swedish National Infras-
tructure for Computing (SNIC) at Chalmers Centre for Com-
putational Science and Engineering (C3SE) partially funded
by the Swedish Research Council through grant agreement
no. 2018-05973.

REFERENCES

[1

—

F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, “Fake
news detection on social media using geometric deep learning,” arXiv
preprint arXiv:1902.06673, 2019.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” Advances in neural information
processing systems, vol. 28, 2015.

S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on
knowledge graphs: Representation, acquisition, and applications,” I[EEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 2,
pp. 494-514, 2021.

D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE transactions on Big Data, vol. 6, no. 1, pp.
3-28, 2018.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 1025—
1035.

H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616-1637, 2018.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Advances
in neural information processing systems, vol. 26, 2013.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in neural information processing systems, vol. 31,
2018.

S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social network data analytics. Springer, 2011, pp.
115-148.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
Al Open, vol. 1, pp. 57-81, 2020.

[2]

[3]

[4

=

[5]

[6

=

[7

[8

[t}

[9

—

[10]

10

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263-1272.

M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in J. International Conference on Learning
Representations (ICLR 2017), 2016.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in Thirty-Second AAAI
conference on artificial intelligence, 2018.

J. Zhang and L. Meng, “Gresnet: Graph residual network for reviving
deep gnns from suspended animation,” arXiv preprint arXiv:1909.05729,
2019.

V. P. Dwivedi and X. Bresson, “A generalization of transformer networks
to graphs,” arXiv preprint arXiv:2012.09699, 2020.

J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert: Only at-
tention is needed for learning graph representations,” arXiv preprint
arXiv:2001.05140, 2020.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” Advances in neural information processing systems, vol. 32,
2019.

Z. Hu et al., “Heterogeneous graph transformer,” in Proceedings of The
Web Conference 2020, 2020, pp. 2704-2710.

C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu, “Do transformers really perform badly for graph representation?”
Advances in Neural Information Processing Systems, vol. 34, 2021.

D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou,
“Rethinking graph transformers with spectral attention,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

D. Bahdanau et al., “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10012-10022.

M. Hiégglund, F. J. Pena, S. Pashami, A. Al-Shishtawy, and A. H.
Payberah, “Coclubert: Clustering machine learning source code,” in
2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA). 1EEE, 2021, pp. 151-158.

J. Klicpera et al., “Predict then propagate: Combining neural networks
with personalized pagerank for classification on graphs,” in International
conference on learning representations, 2018.

A. Grover et al., “node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 855-864.

L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2017, pp. 385-394.

W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1-159,
2020.

T. Mikolov et al., “Efficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513-523, 1988.

T. Mikolov et al., “Distributed representations of words and phrases
and their compositionality,” Advances in neural information processing
systems, vol. 26, 2013.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson, “Graph
neural networks with learnable structural and positional representations,”
arXiv preprint arXiv:2110.07875, 2021.



