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Abstract. Zero-shot relation extraction (RE) presents the challenge
of identifying entity relationships from text without training on those
specific relations. Despite significant advancements in natural language
processing by applying large language models (LLMs), their application
to zero-shot RE remains less effective compared to traditional models
that fine-tune smaller pre-trained language models. This limitation is at-
tributed to insufficient prompting strategies that fail to leverage the full
capabilities of LLMs for zero-shot RE, considering the intrinsic complex-
ities of the RE task. A compelling question is whether LLMs can address
complex tasks, such as RE, by decomposing them into more straight-
forward, distinct tasks that are easier to manage and solve individually.
We propose the Refine-Estimate-Answer (REA) approach to answer this
question. This multi-stage prompting strategy of REA decomposes the
RE task into more manageable subtasks and applies iterative refinement
to guide LLMs through the complex reasoning required for accurate RE.
Our research validates the effectiveness of REA through comprehensive
testing across multiple public RE datasets, demonstrating marked im-
provements over existing LLM-based frameworks. Experimental results
on the FewRel, Wiki-ZSL, and TACRED datasets show that our pro-
posed approach significantly boosts the vanilla prompting F1 scores by
31.57, 19.52, and 15.39, respectively, thereby outperforming the perfor-
mance of state-of-the-art LLM-based methods.

Keywords: Relation Extraction · Large Language Models · Prompting
Strategy.

1 Introduction

Relation Extraction (RE) aims to identify and classify semantic relationships
between entities in unstructured text [3]. RE has received significant attention
in natural language processing (NLP) due to its pivotal role across various down-
stream tasks, including information retrieval [12], question-answering [22], and
knowledge graph construction [24]. Despite extensive research, state-of-the-art
solutions still face challenges, such as adaptability to new domains and general-
ization to unseen relations due to their reliance on annotated data. This reliance
makes these solutions impractical for scenarios where data is scarce or costly
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to obtain. Therefore, zero-shot RE [33], where no annotated data for unseen
relations is available, has become a crucial yet complex problem to address [4].

Recent advancements in NLP, particularly the emergence of large language
models (LLMs) like GPT-3 [2], have further revolutionized the landscape of
NLP tasks, such as RE. Trained on vast amounts of diverse textual data, LLMs
exhibit remarkable capabilities in understanding text and generating human-like
responses. As a result, generative zero-shot RE, where LLMs are prompted to
directly extract and generate relationships between entities from text without
fine-tuning, has gained significant attention [36]. It is crucial to note that the
design of the prompt plays a vital role in the performance of LLMs. Varied
prompts for the same tasks can lead to considerable discrepancies in model
outputs [1].

Several strategies for prompting LLMs in generative zero-shot RE exist, such
as vanilla prompting, which we use to denote the simplest and most direct
form of prompting, in-context learning [2], and Chain-of-Thought (CoT) [34].
Despite their utility, these strategies exhibit certain limitations. For instance,
vanilla prompting is considered ineffective despite its simplicity as it necessitates
LLMs to perform non-trivial reasoning processes within a single step [18]. In-
context learning, while promising, heavily relies on the careful selection and
variation of in-context examples and prompt templates [20]. CoT prompting,
aimed at providing additional context through intermediate reasoning steps,
frequently struggles to generalize and solve problems more challenging than the
in-context CoT examples, limiting its utility in scenarios such as zero-shot RE,
which demands robust generalization capabilities [42].

A recent body of work exhibited remarkable progress on generative zero-
shot RE by employing LLMs. For instance, QA4RE [39] reformulates RE as a
multiple-choice question-answering (QA) task to align the RE with QA tasks.
SUMASK [18] integrates a CoT approach and proposes summarize-to-ask prompt-
ing with an uncertainty estimator component to tackle the challenge of ensuring
the reliability of LLM responses. Nonetheless, when measured against state-of-
the-art zero-shot RE methods that leverage fine-tuning on smaller pre-trained
language models (PLMs), these approaches tend to underperform. [6].

The inherent complexity of RE stems from the need to understand the se-
mantics of entities, identify their types, capture the semantics embedded within
relation labels, and align these semantics properly [3]. Consequently, we hypoth-
esize that the current limitations in existing generative zero-shot RE frameworks
might be attributed to the insufficiently sophisticated prompting strategies that
fail to capture these complexities. These limitations hinder their ability to ef-
fectively guide LLMs through the essential reasoning processes required for RE
tasks. This observation motivates us to investigate whether decomposing RE
into more manageable subtasks, each aligned with the core complexities of RE,
can enhance performance.

Moreover, recent research has highlighted the benefits of enabling LLMs to
refine their initial responses through self-critique [23], leading to enhanced rea-
soning capabilities [7, 26]. Inspired by this, our proposed approach incorporates
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a similar concept via confidence elicitation, examining the impact of iterative
refinement on model performance. Confidence elicitation allows the model to
express its certainty in its predictions, providing valuable feedback for further
refinement [14].

Drawing on these insights, we introduce Refine-Estimate-Answer (REA), a
multi-stage prompting strategy that merges decomposition with iterative refine-
ment. This approach aims to significantly elevate the performance of generative
zero-shot RE by exploiting LLMs capabilities without relying on external knowl-
edge or additional components. This paper delves into the detailed methodology
of REA prompting and explores its effectiveness in enhancing generative zero-
shot RE tasks. Our key contributions are as follows:

– Development of REA, a novel multi-stage prompting approach designed to
enhance generative zero-shot RE tasks.

– Comprehensive experiments and evaluations conducted on three publicly
available RE datasets to assess the effectiveness of REA. The results demon-
strate REA’s superiority over existing generative zero-shot RE frameworks,
outperforming vanilla prompting performance by 5.88 - 39.47 in the F1-score.

– Demonstrating that decomposing RE into manageable subtasks, aligned with
the core complexities of RE, significantly improves the performance of gen-
erative zero-shot RE models. This finding suggests that the REA decompo-
sition approach effectively addresses the inherent challenges of RE, leading
to more accurate results.

– Exhibiting that allows LLMs to assess and refine their initial responses using
confidence elicitation iteratively, REA achieves a measurable improvement
in accuracy.

2 Related Work
Zero-Shot Relation Extraction Significant advancements in RE have been
achieved through the use of PLMs, which leverage transformer-based models
to identify relationships between entities [8, 15]. Specifically, RE-Matching [41]
introduces a fine-grained semantic matching technique that refines using PLMs
for zero-shot RE by distinctively handling entity and context correlations. Sub-
sequently, the paradigm of prompt-tuning PLMs emerged as a solution to bridge
the gap between pre-training and fine-tuning objectives to enhance the perfor-
mance of PLMs in low-resource tasks [21]. In this regard, RelationPrompt [5]
prompts PLMs to generate synthetic training examples, articulating specific re-
lations. This generated dataset subsequently trains another PLM to perform
zero-shot RE. Despite these advancements, fine-tuning and prompt-tuning PLMs
often face challenges in generalization, necessitating additional tuning on anno-
tated datasets to predict unseen relations in zero-shot settings accurately.

LLMs for Generative Relation Extraction Adopting LLMs demonstrating
proficiency in various downstream tasks without necessitating any form of train-
ing or fine-tuning emerged as an effective strategy. Specifically, QA4RE [39] intro-
duced a framework for zero-shot RE by adapting RE tasks into a multiple-choice
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question-answering problem. Similarly, ChatIE [35] employs ChatGPT [25] for
zero-shot information extraction, transforming the task into a multi-step question-
answering process. Moreover, SUMASK [18] presents a multi-stage zero-shot
RE framework, integrating LLMs with a natural language inference module
for uncertainty estimation. Despite outperforming other LLM-based methods,
SUMASK complexity arises from generating multiple summaries, questions, and
answers for each relation label. Additionally, its dependency on an external mod-
ule for uncertainty estimation poses integration challenges in real-world scenar-
ios.

Decomposing Approaches in LLMs Recent research, inspired by CoT prompt-
ing [34], has shown that LLMs can handle complex problems better by breaking
them down into intermediate steps [13,37]. This decomposition facilitates LLMs
to clarify their reasoning by prompting them to generate intermediate rationales
for their solutions [30, 42]. The power of decomposition extends beyond CoT,
proving valuable in addressing various challenges associated with LLMs [7,10,38].
For instance, least-to-most prompting [42] breaks down a complex task into a se-
ries of simpler subtasks and then solves them sequentially. Chain-of-Verification
(CoV) [10] adopts a step-wise breakdown in question answering tasks, which
involves generating initial answers, formulating and answering verification ques-
tions, and refining the original answers. This method mitigates hallucination,
prevents factual errors, and ultimately enhances accuracy. In the context of RE,
the SUMASK [18] framework also leverages a decomposition strategy to enhance
performance through an external uncertainty estimation component. This high-
lights the untapped potential of decomposition approaches in further advancing
generative RE with LLMs.

3 Background
Relation Extraction (RE) aims to identify and classify the relationships between
head and tail entities in a sentence (Figure 1(a)). Typically, examples in RE
datasets are represented as pairs (X,Y), where X = {x1, x2, · · · , xh, · · · , xt, · · · , xn}
denotes the input sentence with n tokens and xh and xt represent the head
and tail entities, respectively, and Y denotes the corresponding relation label
between the entity pair (xh, xt). Notably, Y belongs to a pre-defined set of
labels L that include relation labels, such as occupant, lives in, and head
of government. For example, given X = {Claude Malhuret is the mayor of
Vichy, France.}, xh = {Claude Malhuret}, and xt = {Vichy}, the relation
label Y would be {head of government}.

In the context of zero-shot RE, we aim to predict the relation label Y be-
tween the entity pair (xh, xt) without explicit training data or demonstration
for this specific relation label [33]. Leveraging LLMs is a recent approach that
has garnered attention for addressing zero-shot RE tasks, mainly when a user
submits a prompt to an LLM that has not been specifically trained for the RE
task described by the prompt [18, 35, 39]. In the domain of zero-shot RE with
LLMs, known as generative zero-shot RE, the task involves presenting an in-
put sentence X alongside a prompt containing task instruction I and examples.
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The goal is to generate a relation label Y = {y1, y2, · · · , ym} consisting of m
tokens, representing the relationship between the head (xh) and tail (xt) entities
mentioned in the input sentence.

It is worth noting that since LLMs are generative, they may generate a rela-
tion label Y consisting of several tokens, whereas, in the other traditional super-
vised methods excluding generative ones, we mainly consider the relation label
as one token. For example, consider the input sentence X = {Claude Malhuret
is the mayor of Vichy, France.}. In this case, the task instruction I might
instruct the LLM to identify the relation between xh = {Claude Malhuret}
and xt = {Vichy} and generate a relation label. The LLM, after processing the
prompt consisting I, X, xh, and xt might generate Y as {head of government},
indicating that the head entity is the director of tail entity.

Vanilla Prompting. Vanilla prompting, also known as zero-shot prompting,
represents the most straightforward prompt strategy. It involves direct instruc-
tion to LLMs to extract relation labels from input sentences without prior ex-
amples. As depicted in Fig. 1 (b), a prompt containing task instructions I, the
input sentence X, head entity xh, head entity xt, and a pre-defined list of rela-
tions L are provided as input to the LLM. The LLM then generates the relation
label Y (shown in green text).

(𝑿) Input Sentence: Claude Malhuret is 
the mayor of Vichy, France.
(𝒙𝒉) Head Entity: Claude Malhuret
(𝒙") Tail Entity: Vichy
(𝑳) List of Relations: [occupant,, head 
of government, lives in, member of]

(𝒀) Relation: head of government

Given the input sentence, subject entity, object entity, 
and a list of relations, classify the relation between the 
subject and object from the provided list of relations.
Input Sentence: Claude Malhuret is the mayor of Vichy, 
France.
Head Entity: Claude Malhuret
Tail Entity: Vichy
List of Relations: [occupant,, head of government, lives 
in, member of]

Relation: head of government

b) Vanilla Prompting for Relation Extractiona) Relation Extraction task

(I)

(𝒙𝒉, 𝒙")

(𝑿) 

(𝑳) 

(𝒀) 

Fig. 1: Illustration of relation extraction task. Panel (a) outlines the task of relation
extraction, including the identification of head and tail entities within a given input
sentence and the classification of their relation from a predefined list. Panel (b) demon-
strates the application of vanilla prompting techniques for relation extraction.

4 Methodology

In this section, we propose the Refine-Estimate-Answer (REA) prompting ap-
proach, addressing the complexities of relation extraction (RE) as discussed in
Section 1. REA systematically break down the complex task of RE into four dis-
tinct stages. Each stage simplifies the process, considering the LLM’s refinement
of their responses by integrating prior iterations. The overall strategy of REA
comprises the following four main stages:

1. Stage1 (contextual enrichment): Given an input sentence X, head entity xh,
and tail entity xt, LLM determines the types of head and tail entities.
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Input sentence: Claude Malhuret is the mayor of Vichy, France.
Head entity: Claude Malhuret
Tail entity: Vichy

Claude Malhuret is a 
person, and Vichy is a city.Stage1

Given the below input sentence, head entity, and tail entity, your task is to categorize the entity type of the head and 
tail entities.

Entity types:

𝑌!"𝑓!"

Analyze input sentence, head, tail, and entity types to identify top three relevant relations from the list of relations.

Entity types: [Entity types]
List of relations: [occupant, participant, head of government, employs, lives in]
Relation label candidates:

Stage2
1. head of government
2. lives in
3. participant

𝑌##$𝑓##$

For input sentence, head, tail, and relation candidates, determine the relationship confidence score for each of the three 
refined relation labels in the form of:
[head Entity] [head type] [RELATIONSHIP] [tail Entity] [tail type] with confidence [CONFIDENCE].

Relation label candidates: [relation label candidates]
Relation confidence scores:

1. Person Claude Malhuret is the head of 
government in the city Vichy with a confidence 
level of 100%.
2. Person Claude lives in city Vichy with a 
confidence level of 40%.
3. Person Claude Malhuret is a participant of 
city Vichy with a confidence level of 20%.

LLM

LLM

LLM

𝑋

𝑥!
𝑥"

Given the input sentence, head entity, tail entity, relation labels candidates, and relationship confidence scores, 
determine the most appropriate relationship between the head entity and tail entities.

Relation label candidates: [relation label candidates]
Relation confidence scores: [relation confidence scores]
Most appropriate relation:

LLM head of government

𝐼##$

𝐼!"

𝐼!"$

𝐼#"

𝑓!"$

𝑓#"
Stage4

Stage3

𝑌!"$

𝑌#"

Fig. 2: REA Prompting Overview: The approach comprises four stages, with each
stage’s response serving as a component within the input to the subsequent stage.

2. Stage2 (refinement of relation labels): LLM refines the list of relation labels
based on the extracted entity types from the previous stage.

3. Stage3 (confidence elicitation): LLM generates sentences with head and tail
entities for each refined relation label candidate, assigning a confidence per-
centage to each sentence.

4. Stage4 (generate final relation label): Utilizing the generated sentences and
confidence percentages, the LLM determines the predicted relation label,
thus finalizing the output.

As shown in Figure 2, each step above involves prompting the LLM in a zero-
shot manner to achieve the desired response. The subsequent section provides a
detailed description of each stage.

4.1 Stage1: Contextual Enrichment

Studies have demonstrated that enriching RE models with contextual infor-
mation such as typed entity markers can significantly improve their perfor-
mance [43]. Considering entity types, knowing whether an entity is a person,
an organization, or a location can offer valuable clues about its potential rela-
tionship. For instance, encountering a person as the head entity and a city as the
tail entity strongly suggests a "born in" relationship rather than the less likely
"employs". Therefore, in our approach, we leverage contextual enrichment as the
first step of our prompting approach to provide the model with additional in-
formation about entity types. Specifically, given the input sentence, head entity,
tail entity, and a pre-defined list of possible entity types, the LLM is prompted
to generate the types of entities. The generated entity types are utilized to refine
relation labels. This step can be represented as:

YCE = fCE(ICE ,X, xh, xt) (1)
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The function fCE represents the process of contextual enrichment, where the
provided task instruction ICE , input sentence X, head entity xh, and tail en-
tity xt are used as prompt to generate the entity types YCE . As illustrated
in Figure 2, with the task instruction ICE for entity type categorization, con-
sidering X as {Claude Malhuret is the mayor of Vichy, France.}, xh =
{Claude Malhuret}, and xt = {Vichy}, the resulting YCE from the LLM
response would be {Claude Malhuret is a person, and Vichy is a city}.
This process enriches the context with helpful entity information.

4.2 Stage2: Refinement of Relation Labels

Following the generation of entity types through contextual enrichment at Stage1,
the subsequent step focuses on refining the relation labels based on these entity
types. This refinement process ensures that the selected relation labels align
appropriately with the identified entity types. During this stage, the LLM is
prompted to choose the three most relevant relations, considering the input sen-
tence, head entity, tail entity, a pre-defined list of relation labels, and generated
entity types. The pre-defined list of relation labels encompasses all relation labels
present in the dataset. The choice of three candidates for refining relation labels
is grounded in empirical experiments, which revealed optimal performance at
this level of consideration. This balance ensures both computational efficiency
and accurate predictions. This stage can be expressed as:

YRRL = fRRL(IRRL,X, xh, xt,YCE ,L) (2)

The function fRRL refines the relation labels based on the prompt com-
prised of task instruction IRRL, input sentence X, head entity xh, tail entity xt,
pre-defined list of labels L, and generated entity types from the previous step
YCE . As depicted in Figure 2, the task instruction IRRL demonstrating refine-
ment of relation labels L = {occupant, participant, head of government,
employs, lives in}, with X as {Claude Malhuret is the mayor of Vichy,
France.}, xh = {Claude Malhuret}, xt = {Vichy}, and YCE = {Claude
Malhuret is a person, and Vichy is a city} used to generate relation la-
bel candidates YRRL = {1. head of government 2. lives in 3. participant}.

4.3 Stage3: Confidence Elicitation

The next stage involves confidence elicitation, where the certainty levels asso-
ciated with the relation label candidates generated by the LLM are estimated.
Confidence elicitation involves estimating the certainty levels related to the re-
sponses generated by LLMs without relying on accessing specific architectural
details or adjusting the model through pre-training or fine-tuning [14]. Tian
et al. [31] proposed that LLMs trained with reinforcement learning with hu-
man feedback (RLHF), such as GPT-3.5 [25], generally exhibit better-calibrated
verbalized confidences emitted as output tokens compared to the model’s con-
ditional probabilities. Similarly, our approach integrates verbalized confidence
elicitation in our prompting methodology.
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In this stage, prompt construction follows a structured format (see Figure 2).
Leveraging elements such as head entity, tail entity, and relation label candidates
generated in the preceding step, the LLM is prompted to generate sentences in
the following form:

[head entity type] [head entity] [relation label candidate] [tail entity type] [tail
entity] with a confidence level of [confidence]%.

Here, the goal is to determine the confidence level for each relation label can-
didate. The prompt guides the LLM in replacing the placeholders with actual
entities and their respective types alongside each relation candidate. It subse-
quently generates a confidence score based on the knowledge acquired during
the pre-training stage. The confidence elicitation step can be represented as:

YCEL = fCEL(ICEL,X, xh, xt,YRRL,YCE) (3)

The function fCEL estimates confidence levels based on the prompt giving
instruction ICEL regarding the task, input sentence X, head entity xh, tail entity
xt, generated entity types YCE , and relation label candidates YRRL. As shown
in Figure 2, considering X as {Claude Malhuret is the mayor of Vichy,
France.}, xh = {Claude Malhuret}, xt = {Vichy}, YCE = {Claude Malhuret
is a person, and Vichy is a city.}, and relation label candidates YRRL =
{1. head of government 2. lives in 3. participant} the expected gen-
erated confidence sentences YCEL would be:

1. Person Claude Malhuret is the head of government in the city Vichy with a confidence level of
100%.
2. Person Claude Malhuret lives in city Vichy with a confidence level of 40%.
3. Person Claude Malhuret is a participant of city Vichy with a confidence level of 20%.

4.4 Stage4: Generate Final Relation Label

The ultimate stage determines the most suitable relationship between the pro-
vided head and tail entities. This decision relies on the input text X, head entity
xh, tail entity xt, relation label candidates YRRL, and the confidence scores
associated with each candidate YCEL:

YRE = fRE(IRE ,X, xh, xt,YRRL,YCEL) (4)

The function fRE signifies the procedure by which the LLM generates the
final relation label YRE by processing the task instruction IRE and the ele-
ments mentioned earlier. Figure 2 illustrates that the LLM determined {head
of government} as the most appropriate label based on the answers provided
in previous stages.

5 Experiments
This section outlines our experimental methodology, evaluating the effectiveness
of REA prompting in RE tasks under zero-shot scenarios.
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5.1 Datasets and Implementation Details

We conducted our experiments using three English RE datasets: FewRel [9],
Wiki-ZSL [4], and TACRED [40]. FewRel is a few-shot RE benchmark dataset
sourced from Wikipedia, including 80 relations. The Wiki-ZSL dataset comprises
113 relations generated from Wikipedia articles and the Wikidata knowledge
base by distant supervision. The TACRED contains 42 relations extracted from
news articles. In line with previous studies [4,18], our experiments on the FewRel
and Wiki-ZSL datasets involved varying sizes (m) of relation label sets to evalu-
ate method performance. Here, m denotes the number of unique relation labels,
with values chosen from {5, 10, 15}. To ensure robustness against experimental
variability, we repeated the label selection process five times using different ran-
dom seeds, resulting in distinct test sets. Regarding TACRED, in accordance
with previous studies [18, 39], to manage OpenAI costs, we randomly selected
1000 examples from the test set. We measured performance with precision, recall,
and macro-F1 for FewRel and Wiki-ZSL, and micro-F1 was used for TACRED,
excluding the none-of-the-above (NoTA) relation.

For the commercialized LLM, we used gpt-3.5-turbo [25] accessed through
the OpenAI API. With gpt-3.5-turbo, no post-processing is necessary since the
model generates a relation label directly. As for the open-source LLM, we chose
Mixtral-8 × 7B [11], a pre-trained generative Sparse Mixture of Experts model
available on the Hugging Face model hub 1. We selected Mixtral-8 × 7B due
to its innovative architecture that combines the efficiency of sparse activation
with the robustness of a large-scale model, making it particularly well-suited for
extracting complex relation labels where diverse expert knowledge is beneficial.
For Mixtral-8 × 7B, we extracted the relation label from the model responses,
as it sometimes did not provide a relation label alone. All reported scores are
averages from five experiments to ensure robustness. Our code and datasets are
available at GitHub 2.

5.2 Baselines

We compare REA against existing zero-shot RE frameworks, dividing them
into two groups: (1) traditional supervised methods and (2) generative LLM-
based methods. Traditional supervised methods, primarily utilizing PLMs, are
designed to leverage labeled RE datasets for training and subsequently generalize
to unseen RE datasets, particularly for relation labels. In contrast, generative
LLM-based methods use pre-training knowledge to predict relations without
fine-tuning on labeled data. The frameworks included in each category are as
follows:

– Traditional supervised methods: (1) ESIM [16], a traditional approach using
BiLSTM for reading comprehension-based RE; (2) ZS-BERT [4], a super-
vised method employing BERT for encoding sentences and relation descrip-

1 https://huggingface.co/models
2 https://github.com/AmirLayegh/REA_Prompting
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Table 1: Main results on FewRel and Wiki-ZSL datasets with m ∈ {5, 10, 15} unique
relations. The approaches are divided into traditional supervised and LLM-based mod-
els.

Dataset FewRel

m=5 m=10 m=15
P R F1 P R F1 P R F1

ESIM 56.27 58.44 57.33 42.79 44.17 43.52 29.15 31.59 30.32
ZS-BERT 76.96 78.86 77.90 56.92 57.59 57.25 35.54 38.19 36.82

TGM 39.40 38.91 39.15 30.18 29.77 29.97 25.43 24.94 25.19
RelationPrompt 90.15 88.50 89.30 80.33 79.62 79.96 74.33 72.51 73.40
RE-Matching 90.52 90.56 90.54 82.12 81.55 81.83 73.80 73.52 73.66

Vanilla 67.41 72.97 70.08 42.48 46.26 44.29 25.71 27.77 26.70
SUMASK 78.27 72.55 75.30 64.77 60.94 62.80 44.76 41.13 42.87

REA (Mixtral) 76.19 81.2 78.62 63.18 66.70 64.89 61.23 80.80 69.67
REA (GPT-3.5) 92.57 84.7 88.46 82.26 79.47 80.85 64.34 68.68 66.44

Dataset Wiki-ZSL

m=5 m=10 m=15
P R F1 P R F1 P R F1

ESIM 48.58 47.74 48.16 44.12 45.46 44.78 27.31 29.62 28.42
ZS-BERT 71.54 72.39 71.96 60.51 60.98 60.74 34.12 34.38 34.25

TGM 40.67 33.42 36.56 26.09 21.84 23.73 22.10 18.27 19.99
RelationPrompt 70.66 83.75 76.63 68.51 74.76 71.50 63.69 67.93 65.74
RE-Matching 78.19 78.41 78.30 74.39 73.54 73.96 67.31 67.33 67.32

Vanilla 64.47 70.83 67.50 41.83 46.22 43.92 23.17 27.82 25.28
SUMASK 75.64 70.96 73.23 62.31 61.08 61.69 43.55 40.27 41.85

REA (Mixtral) 69.46 50.4 58.41 58.72 53.59 56.04 54.19 48.12 50.97
REA (GPT-3.5) 78.88 68.6 73.38 73.15 61.2 66.64 58.2 52.6 55.25

tions to classify and predict relations; (3) TGM [19], a generative meta-
learning RE framework training T5-base [28] for learning and extracting
unseen relations; (4) RelationPrompt [5], a supervised RE framework which
uses GPT-2 [27] and BART [17] for generating and extracting relations from
synthetic data; (5) RE-Matching [41], a supervised RE framework, decou-
ples encoding and matching using Sentence-BERT [29] and BERT [32] for
relation extraction and feature distillation.

– Generative LLM-based methods: (1) Vanilla, as discussed in Section 3, GPT-
3.5 model is prompted to extract relation labels from input sentences di-
rectly; (2) QA4RE [39], an LLM-based zero-shot RE framework that con-
verts RE tasks into multiple-choice question-answering, utilizing GPT-3.5
to provide answers; (3) SUMASK [18], a generative zero-shot RE framework
that combines GPT-3.5 with a natural language inference module to predict
relations.

5.3 Results

Table 1 presents a comparative analysis of zero-shot RE on the FewRel and
Wiki-ZSL datasets for both traditional supervised and LLM-based approaches.
Notable, the REA prompting approach, specifically when implemented with the
GPT-3.5 model (REA (GPT-3.5)), is distinguished by its superior performance
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Table 2: Zero-shot results of LLM-based methods on the TACRED dataset with NoTA
relation excluded.

Method P R F1

Vanilla 36.9 68.8 48.1
QA4RE 47.7 78.6 59.4

SUMASK 62.2 53.8 57.7
REA (Mixtral) 59.74 56.3 57.97
REA (GPT-3.5) 72.95 56.2 63.49

among other LLM-based methods across datasets. This achievement is particu-
larly significant when juxtaposed with SUMASK [18]. Despite SUMASK using
a decomposition strategy and an external module for uncertainty estimation,
REA outperforms it by directly utilizing the core capabilities of LLMs. Further-
more, REA’s resilience to the variation in the number of relations (m) contrasts
with other LLM-based methods, which show a marked decrease in performance
with an increase in m. REA, in its implementations with both GPT-3.5 and Mix-
tral, significantly enhances the Vanilla approach and surpasses other LLM-based
frameworks, evidencing the effectiveness of our approach.

Additionally, REA (Mixtral) delivers competitive results in both datasets;
particularly notable are the F1 score of 78.62% at m = 5 in FewRel and 58.41%
at m = 5 in Wiki-ZSL. However, REA (GPT-3.5) consistently outperforms these
results suggesting the GPT-3.5 model employed in REA (GPT-3.5) offers advan-
tages in zero-shot RE tasks.

An important observation is that while REA may not outperform all tra-
ditional supervised models, such as RE-Matching, its ability to operate effec-
tively without the need for fine-tuning on relation-specific data stands out as a
significant advantage over traditional supervised approaches. These traditional
methods typically depend on training with annotated data to predict unseen
relations. The inherent flexibility of REA, originating from its independence
from fine-tuning, substantially reduces the time and resources needed for model
deployment and adaptation. This benefit makes REA a desirable solution for
real-world applications where rapid or broad-scale implementation is necessary.
Through REA, we showcase the LLM’s capabilities in delivering competitive or
superior performance without the extensive training process, highlighting the
impact of strategic prompting in enhancing zero-shot RE performance.

Table 2 presents the zero-shot performance of LLM-based methods on the
TACRED dataset, explicitly excluding the NoTA (none of the above) relation.
This comparative evaluation highlights REA’s standout performance. Despite
using the same selection of 1000 randomly chosen test records to ensure a fair
comparison, REA outperforms other LLM-based models. Notably, REA achieves
this performance without relying on ground truth entity types used in QA4RE
and SUMASK. This highlights REA’s effective use of the contextual enrichment
phase (see Section 4.1), which can intuitively capture the nuances of entity types
from text alone. Beyond outperforming other LLM-based methods, REA demon-
strates consistency and effectiveness across different LLM architectures, includ-
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ing GPT-3.5 and Mixtral, showcasing its ability to improve upon the vanilla
prompting approach. Moreover, the notably high precision achieved by REA,
particularly with the GPT-3.5, signifies its ability to accurately identify rele-
vant relations without generating excessive false positives, a critical attribute
supporting high-quality relation extraction.

5.4 Analysis
In this section, we analyze the REA approach, focusing on its effectiveness and
the role of its components in zero-shot RE. Our analysis evaluates the impact
of unifying REA’s stages into fewer steps and investigates the contributions of
critical stages such as contextual enrichment and confidence elicitation. This ex-
ploration aims to highlight REA’s strengths, areas for improvement and insights
into developing effective prompting strategies for LLMs in zero-shot RE tasks.

Unified Steps Strategy Analysis: Our investigation explored the effective-
ness of integrating specific REA phases—contextual enrichment with relation la-
bel refinement and confidence elicitation with final relation label generation—into
unified steps. Our Objective was to assess how such a unified approach might
affect overall model performance, utilizing a singular prompt to integrate stages.
Table 3 compares the performance of the unified REA approach, which combines
stages 1 and 2, as well as stages 3 and 4, with the original REA method that
maintains distinct stages across various datasets.

The analysis reveals a prominent trend across the FewRel, Wiki-ZSL, and
TACRED datasets. The unified REA method, which merges the initial and fi-
nal stages of the process, consistently underperforms compared to the original,
stepwise REA approach. Specifically, in the FewRel dataset, the F1 scores for
the unified method range from 45.26 to 75.47 across different relation counts
(m = 5, 10, 15), whereas the original REA approach maintains higher scores,
peaking at 88.46. This pattern is mirrored in the Wiki-ZSL and TACRED
datasets, where the original REA method surpasses the unified version, achiev-
ing F1 scores up to 73.38 and 63.49, respectively. This uniform drop in per-
formance with the unified approach suggests that merging steps might obscure
crucial intermediate information or feedback loops inherent to the original REA
methodology. Each discrete stage in the original REA potentially offers a unique
opportunity for refinement and calibration based on specific aspects of the rela-
tion extraction task. By collapsing these stages, the unified method likely loses
the chance to iteratively adjust its strategy based on feedback from each phase,
thus limiting its ability to accurately capture and reflect the complexities of the
RE task. This insight underscores the value of discrete, focused steps in the REA
method, enabling a more effective arrangement with the challenges of zero-shot
RE.

Evaluating the Impact of Individual Stages in REA: In the comparison
depicted in Figure 3, we investigated the individual contributions of contextual
enrichment and confidence elicitation stages to the REA prompting approach.
We evaluated their respective impacts on the model’s overall performance by
selectively omitting these stages.
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Table 3: Comparison of F1 scores between Unified REA and Original REA approaches
across different datasets.

Dataset FewRel Wiki-ZSL TACRED
m=5 m=10 m=15 m=5 m=10 m=15 NoTA

Unified REA (GPT-3.5) 75.47 64.93 45.26 66.63 54.59 49.01 54.23
Original REA (GPT-3.5) 88.46 80.85 66.44 73.38 66.64 55.25 63.49

Including contextual enrichment consistently led to higher F1 scores across
the datasets, underscoring its pivotal role in aiding the LLM’s relation extraction
capabilities. Conversely, the absence of this stage resulted in a notable decrease
in performance, demonstrating the stage’s vital role in enhancing the model’s
contextual understanding and ability to determine relations within the text.

The necessity of confidence elicitation, however, varied with the complexity of
the task. Particularly in the Wiki-ZSL dataset with m = 5, the model performed
better without this stage, which may suggest that for simpler tasks with fewer
relations, the model can effectively deduce the most likely relations without
needing to evaluate its own confidence. Nevertheless, the significant decline in
F1 scores when confidence elicitation was removed in both datasets reveals its
importance. It contributes to accuracy by allowing the model to assess its own
certainty, refining its predictions.

These insights confirm that each stage in the REA method is critical in real-
izing high-performing zero-shot RE. Contextual enrichment lays the foundation
for accurate relation understanding, while confidence elicitation tunes the out-
put, contributing to an effective model for zero-shot RE.

Fig. 3: Comparison of F1 scores across different approaches using GPT-3.5 on Wiki-
ZSL and Few-Rel datasets with varying numbers of relations (m=5, m=10, m=15).

6 Conclusion

This paper has introduced the Refine-Estimate-Answer (REA) prompting ap-
proach that significantly enhances zero-shot RE by structurally decomposing
the task into manageable steps and using iterative refinement to improve per-
formance. Demonstrating superior performance across benchmarks, REA show-
cases the effectiveness of multi-stage prompting and self-refinement in leveraging
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LLMs for complex NLP tasks. The success of REA across various LLMs, includ-
ing open-source and commercialized models, vows its versatility and potential
for broader NLP tasks. Future work will explore optimizing these mechanisms
and extending REA’s methodology to other information extraction tasks facing
data scarcity. This study advances zero-shot RE and sets a new standard for
employing LLMs in NLP, highlighting the importance of structured prompting
strategies for maximal model performance.
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