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Abstract

Solving complex long-horizon tasks through Reinforcement
Learning (RL) from scratch presents challenges related to ef-
ficient exploration. Two common approaches to reduce com-
plexity and enhance exploration efficiency are (i) integrat-
ing learning-from-demonstration techniques with online RL,
where the prior knowledge acquired from demonstrations is
used to guide exploration, refine representations, or tailor
reward functions, and (ii) using representation learning to
facilitate state abstraction. In this study, we present Skill-
Conditioned Online REinforcement Learning (SCORE), a
novel approach that leverages these two strategies and utilizes
skills acquired from an unstructured demonstrations dataset
in a policy gradient RL algorithm. This integration enriches
the algorithm with informative input representations, improv-
ing downstream task learning and exploration efficiency. We
evaluate our method on long-horizon robotic and navigation
tasks and game environments, demonstrating enhancements
in online RL performance compared to the baselines. Further-
more, we show our approach’s generalization capabilities and
analyze its effectiveness through an ablation study.

Introduction
Reinforcement Learning (RL) systems have demonstrated
remarkable success in tackling tasks across various domains,
such as games, robotics, and autonomous driving (Souch-
leris, Sidiropoulos, and Papakostas 2023; Singh, Kumar, and
Singh 2022; Elallid et al. 2022). However, solving complex
tasks using RL faces several challenges, such as (i) the need
to collect large amounts of samples from the environment
by exploring the task space, which is costly or impractical in
some domains, and (ii) the lack of expressive state represen-
tations, which is essential for learning an effective policy.
These challenges are especially relevant to the gaming in-
dustry, where RL is applied for gameplay testing in games
with complex state representations.

One approach to mitigate the first obstacle (i.e., collect-
ing large amounts of samples) is to implement a guided ex-
ploration strategy for RL. Such strategies enhance sample
efficiency, accelerate learning, and improve overall perfor-
mance (Ladosz et al. 2022). Previous studies have employed
unstructured datasets (i.e., consisting of sequences of states
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and actions excluding the reward corresponding to each pair)
to acquire skills applicable in solving various downstream
tasks (Ajay et al. 2021; Hausman et al. 2018; Lynch et al.
2020; Merel et al. 2018, 2020; Pertsch, Lee, and Lim 2021;
Shankar et al. 2019; Sharma et al. 2019). These skills are
temporally-extended actions representing a specific behav-
ior in that environment. These approaches have used pre-
trained skill priors to guide an RL policy trained in the space
of these skills. Moreover, they have demonstrated leverag-
ing these prior experiences in RL can enhance robustness in
generalization to new downstream tasks.

To tackle the second challenge (i.e., lack of expressive
state representations), recent studies inspired by the human
brain have learned compact representations of tasks, facili-
tating accelerated learning in subsequent experiences. This
state representation learning process focuses on identifying
the most important aspects of experiences (Radulescu, Shin,
and Niv 2021). In the realm of RL applied to complex and
large-scale tasks with high-dimensional state spaces, mas-
tering effective representations enhances both the sample
efficiency and computational effectiveness of the RL pro-
cess (Stooke et al. 2021; Uehara, Zhang, and Sun 2022).

This work aims to tackle the above challenges within
environments of varying complexity by offering robust
representations for effectively guiding exploration. We
present Skill-Conditioned Online REinforcement Learning
(SCORE), a novel method that integrates skill priors ex-
tracted from unstructured data into policy gradient online
RL, enriching it with informative representations. These
skills provide an input representation that guides exploration
and facilitates effective policy learning. Our approach pro-
vides a fresh perspective on the concept of skill atoms (De-
terding 2015) in game design, which are the fundamental
building blocks of player skills that can be combined to ex-
ecute complex tasks within a game. Our work proposes a
novel way to utilize these learned skills, offering a new di-
rection for enhancing gameplay through skill-informed RL.

To implement SCORE, we develop a variational autoen-
coder model, inspired by OPAL (Ajay et al. 2021), that cap-
tures a continuous representation of skills and their under-
lying distribution from unstructured data. To evaluate our
method, we conduct experiments on long-horizon robotic
and navigation tasks and game environments, and our results
show that policy learning conditioned on learned skills en-



ables more efficient exploration, sample efficiency, and en-
hanced performance 1.
In summary, our contributions are three-fold:
1. Extension of policy gradient RL to incorporate learned

skills as input representations for downstream tasks. We
conduct an ablation study to analyze the impact of var-
ious components in our proposed solution, thus demon-
strating its effectiveness.

2. Comparison of SCORE with Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017), a policy gradient
method, and Soft Actor-Critic (SAC) (Haarnoja et al.
2018), an off-policy method, showcasing the superior
performance of our method on environments of varying
complexity.

3. Providing insights into the generalization capability of
our approach, showcasing its adaptability to new envi-
ronments.

Preliminary
In this section, we first provide details of the concepts essen-
tial for defining our problem. We then explain the construc-
tion of continuous skill embedding and skill prior model re-
quired for our method, SCORE.

Reinforcement Learning
To address the problem at hand, we employ a Markov De-
cision Process (MDP) framework, characterized by the 5-
tuple {S,A, P,R, γ}, where S represents the set of possible
states within the environment, A denotes the action space,
P is the transition probabilities that govern the dynamics of
moving from one state to another following an action, R is
the reward function that assigns immediate rewards for ac-
tions taken in states, and γ represents the discount factor,
influencing the significance of future rewards. The objective
is to discover a policy πθ(a|s), parameterized by θ, where
a ∈ A and s ∈ S, that maximizes the expected sum of dis-
counted rewards, defined as J(θ) = Eπ[

∑T−1
t=0 γtrt], where

T represents the finite horizon of an episode and r ∈ R.
This formulation enables a principled approach to learning
the optimal policies in complex environments.

In this work, we use the policy gradient algorithms (Sut-
ton and Barto 2018), a family of RL algorithms that collect
samples by interacting with the environment using the latest
policy (known as policy rollout phase) and then directly op-
timize policies by ascending gradients of expected rewards
(known as policy update phase). More specifically, we em-
ploy PPO (Schulman et al. 2017) as a policy gradient algo-
rithm with the following objective function:

J(θ) = Et [min (rt(θ)At(s, a), clip(rt(θ), 1− ϵ, 1 + ϵ).

At(s, a))] (1)

where rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability ratio of the pol-
icy after gradient updates to the policy before gradient up-
dates, At(s, a) is the advantage function at time t estimating

1Our implementations are publicly available on Github:
https : //github.com/sarakarimi/SCORE

Figure 1: Overview of the autoencoder model designed for
the simultaneous learning of skill embeddings and skill pri-
ors.

how good an action a is compared to all possible actions in
state s, clip(x, y, z) is a function that clips the value x to
the range [y, z], and ϵ is a hyperparameter that controls the
clipping threshold.

Skill Embedding With Learnable Skill Prior
This section explains the method for learning skills,
temporally-extended actions representing a specific behav-
ior in the environment. To build a skill embedding model
from offline data, we need a dataset D := {τi}Ni=1 com-
posed of N pre-recorded state-action trajectories τi =
{(s0, a0), . . . , (sT , aT )} of fixed length T . Such offline
data can be collected from various sources, including other
agents trained on diverse tasks, autonomous exploration by
agents in real-world environments, and human teleopera-
tion. The key aspect of this data collection approach is its
reliance on unstructured data, which is sequences of state
and action pairs without any reward information. This ap-
proach fosters adaptability in real-world settings. Notably,
this method does not assume the presence of complete task
solutions within the training data. Instead, it concentrates on
extracting generalizable skills that improve the adaptability
and efficiency of the learning process.

To train a model for extracting skills z from dataset D,
we adopt the approach introduced in (Ajay et al. 2021),
which employs a simple autoencoder with three learnable
components: (i) skill encoder, (ii) skill decoder, and (iii)
skill prior, as illustrated in Fig. 1. The skill encoder with
parameters ϕ, denoted as qϕ(z|τ), gets a trajectory τ from
the dataset D as input and converts its sequence of states-
actions into a posterior distribution on latent skill embed-
dings. Subsequently, the skill decoder with parameters ψ,
denoted as πψ(ai|z, si), reconstructs the sequence of actions
conditioned on the states and a sample z drawn from the skill



distribution. Concurrently, the skill prior with parameters ω,
denoted as pω(z|s0), learned alongside the autoencoder, es-
tablishes a prior distribution over the skills based on the ini-
tial state s0 of the trajectory τ . So, when trained, the skill
prior provides a skill based on the current state of the envi-
ronment, and that skill is unrolled using the decoder for T
steps before extracting another skill from the prior.

To train the skill prior to mimic the distribution learned by
the skill encoder while only taking s0 as input, the Kullback-
Leibler (KL) divergence (Csiszar 1975) between the skill
prior and skill encoder is calculated, and added as regular-
ization to the autoencoding loss as below:

J(ψ, ϕ, ω) = Êτ∼D,z∼qϕ(z|τ)

[
−

T∑
t=0

log πψ(at|z, st)

]
−

βDKL(qϕ(z|τ)||pω(z|s0)) (2)

where DKL(q||p) measures the KL divergence between dis-
tributions q and p, and β is a hyperparameter adjusting the
weight of the KL regularization term.

Method
This section describes our method for combining the skill
embedding model with RL. This integration aims to improve
the policy gradient RL algorithm by providing richer input
representations. This, in turn, helps make better use of avail-
able samples and learn more effective exploration policies.

In our approach, named Skill-Conditioned Online
REinforcement Learning (SCORE), we integrate a pre-
trained skill embedding model (described in the previous
section) into a policy-gradient RL algorithm. More specifi-
cally, in the policy rollout phase of the policy-gradient algo-
rithm, where the agent collects samples by interacting with
the environment using the latest policy, we augment the state
observations from the environment with the corresponding
skill embedding obtained from the pre-trained skill prior. In
other words, alongside the state observations from the envi-
ronment, we provide the RL model with the representation
of skills applicable in each state.

To successfully integrate these skills into online RL,
we apply the following three steps: (i) skill conditioning
and multi-step rollouts, (ii) using KL penalty between the
decoder distribution πψ and policy distribution πθ (Fig. 2)
to provide stability in learning, (iii) stabilizing training
through policy initialization and dynamic weighting of the
KL regularization term. Below, we explain each of these
steps.

Step 1 - Skill Conditioning: In the first step, as described
in the previous section, the skill prior pω from the skill
embedding model is trained to provide a skill embedding
based on the first state s0 in the trajectory sequence τ
of size T . Consequently, when integrating the prior with
policy gradient RL, we take a skill embedding sample from
the skill prior model every T step. This means that the
extracted skill embedding sample zi is concatenated to the

environment observations (si+t)Ti=0 for T consecutive steps
before sampling the next skill embedding sample. This
process is shown in Fig. 2 under policy rollout. Intuitively,
the policy network in our RL agent learns to decode a skill
into primitive actions given the state of the environment.

Step 2 - Using KL Penalty Between πψ And πθ: Using a
pre-trained fixed prior with the RL policy could lead to un-
stable learning due to policy distribution changes. Therefore,
to mitigate this problem and maintain policy alignment with
the data distribution, in the second step, we introduce a KL
penalty into the policy loss in the following form:

Ĵθ = Jθ − αDKL(πψ(a|z, s)||πθ(a|z, s) (3)

where Jθ is the policy loss of the RL algorithm (in our
case, policy loss of PPO shown in Equ. 1), and α is a
variable coefficient used for adjusting the weight of the
KL regularization term in the loss. This KL regularization
step is depicted in Fig. 2 in the policy update phase (where
the policy receives gradient updates based on the collected
samples).

Step 3 - Policy Initialization And Dynamic Weighting:
During the early training steps, the KL divergence between
the initially random policy and the decoder’s distribution
might be too large, potentially leading to an unstable learn-
ing process. Moreover, optimizing the divergence between
the decoder distribution πψ and policy distribution πθ may
not be effective in states that the decoder has not encoun-
tered during training. To address these issues, in the third
step, we adopt two key strategies: (i) initializing the pol-
icy πθ weights with those from the pre-trained decoder πψ
and (ii) dynamically adjusting the regularization weights
based on the confidence of the decoder in its predictions for
new states. Specifically, we set the KL-regularization weight
α (Equ. 3) based on the decoder’s confidence. The decoder
provides a probability distribution over possible actions
given a state. We sample actions from this distribution and
use the sample probabilities as a measure of the decoder’s
confidence, represented by α. This approach encourages the
policy πθ to closely align with the decoder’s distribution πψ
for states that are represented in the offline dataset. Our em-
pirical findings demonstrate that these methods—skill con-
ditioning, strategic initialization, targeted regularization, and
uncertainty-adjusted regularization—are crucial to the suc-
cess of our method in learning downstream tasks.

Evaluation
In this section, we provide the details of the experiments
conducted on the selected environments, present the results,
and analyze the findings. We have chosen two robotic and
navigation tasks in maze-like environments, AntMaze and
Maze2D, from the D4RL benchmark (Fu et al. 2021). Ad-
ditionally, we test our proposed method on a platformer
game environment, CoinRun, from the Procgen bench-
mark (Cobbe et al. 2020). We organize the findings into
three main categories: (i) a comparison of the training per-
formance of our approach with the baselines, (ii) an abla-
tion study investigating the impact of specific components,



Figure 2: Overview of the training process of SCORE. In the policy rollout phase, the agent performs rollouts on the policy net
for T steps using the same skill Zi before extracting a new skill from the prior model. In the policy update phase, the policy net
is updated and regularized by the KL divergence between the policy and decoder distribution. Both the prior and decoder are
pre-trained and kept frozen in this process.

including the initialization of decoder weights, decoder reg-
ularization, and the application of uncertainty-based adjust-
ments to the regularization term, and (iii) an evaluation of
our models’ capacity to adapt to a new, larger environment
when trained on smaller environment settings.

Experiment Settings
Environments: In this study, we leverage three environ-
ments and their associated datasets. We select two en-
vironments from the D4RL benchmark (Fu et al. 2021),
specifically the Maze2D and AntMaze environments, and
CoinRun, a platformer game from the Procgen bench-
mark (Cobbe et al. 2020). In the Maze2D environment, the
challenge involves navigating a ball toward a target location
along the X and Y axes. The observation space consists of
4-dimensional arrays capturing the ball’s coordinates (x, y)
and velocities, and the action space is of size two, repre-
senting the linear force exerted on the ball in the X and
Y directions. The AntMaze environment simulates an ant
quadruped robot (from the OpenAI Gym MuJoCo bench-
mark (Todorov, Erez, and Tassa 2012)) tasked with maze
navigation. Here, goal-oriented observations comprise 29 di-
mensions detailing the positional and velocity metrics of the
ant’s body segments, and the action space is of size eight,
representing the torques applied at the hinge joints. The core
aim is to tackle a navigation problem, guiding the agent from
one maze corner to another.

In both D4RL environments, success is originally mea-
sured by a binary completion reward (0 and 1) upon reaching
the goal. However, our experiments employ a dense reward
strategy, computing rewards in AntMaze as the negative Eu-
clidean distance of the agent’s current location to the goal,

Figure 3: Example of an easy and a hard level in Coin-
Run (Cobbe et al. 2019).

and in Maze2D, the exponentiated value of this reward is
used. Both environments provide two different maps of vary-
ing sizes, i.e., Medium and Large. On AntMaze, we have
created one extra custom map called AntMaze XL, which
expands the configuration of the Large map to four times
its original size, offering a significantly more complex chal-
lenge to solve. (see Fig. 4 for Medium, Large, and XL maps).

The CoinRun environment (Cobbe et al. 2020) is a side-
scrolling platformer game where an agent navigates through
a platform filled with obstacles, such as gaps, enemies,
and traps, to collect a coin at the far right of the platform.
The state space is represented by Red-Green-Blue (RGB)
images of size (64 × 64 × 3) capturing the game screen,
showing the agent’s position, obstacles, enemies, and goal.
The action space consists of discrete actions: move left,
move right, and jump. CoinRun levels are procedurally
generated, providing a near-infinite set of randomized levels
with varying features such as platform layouts, game assets
and backgrounds, and positions of in-game objects (Fig. 3).
CoinRun levels can be generated with two difficulty levels:



Figure 4: Medium, Large, and XL maze maps from
AntMaze environment. Maze2D Medium and Large envi-
ronments use the same maze maps.

easy and hard. In CoinRun, the agent receives a completion
reward of 10 upon collecting the coin at the end of the level,
and zero if the agent dies due to collision with obstacles
or if it fails to collect the coin within the defined timestep,
which is 1000 by default. In this work, we selected the first
64 difficult levels as the training levels, and to evaluate the
trained models, we selected a distinct set of levels not being
used during the training.

Datasets: We use diverse datasets from the D4RL envi-
ronments to train the skill embedding model, including
trajectories generated by navigating the point or ant to
random goal locations in the maze. To collect trajectory
datasets for the Maze2D environments, we use a waypoint
planner that outputs a trajectory of points that the agent
can follow to reach the goal. For this purpose, Q-Value
Iteration (Watkins and Dayan 1992) is used. However, for
the AntMaze environments, the ant agent utilizes a goal-
reaching expert policy, trained using the SAC algorithm,
which then follows a set of waypoints generated by the
planner. For the CoinRun, we use a PPO model trained on
500 easy levels to collect trajectories. To simulate the mixed
quality of data often encountered in real-world applications,
we introduce random, suboptimal actions with a ratio of
0.2. This creates a dataset of trajectories with varying
quality. Typically, when applied to real-world applications,
the generated datasets in this work could be replaced with
datasets collected from human teleoperations.

Baselines: As baselines, apart from vanilla PPO, we
also compare to SAC (Haarnoja et al. 2018), which is an
off-policy, actor-critic RL algorithm based in the maximum
entropy framework, where the actor aims to maximize
expected reward alongside entropy, aiming to perform
well while maintaining as much randomness in actions as
possible. We selected SAC as a baseline due to its reported
superior performance over PPO in some continuous control
tasks, as detailed in the original SAC paper (Haarnoja et al.

2018).

Metrics: We evaluate the following metrics in our experi-
ments:

• Episodic Return: This is our primary metric for com-
paring the performance of different agents. It represents
the sum of rewards accumulated over an episode. In the
AntMaze environments, the reward is based on the nega-
tive Euclidean distance from the goal, meaning a shorter
distance to the goal results in a higher (less negative) re-
ward. For the Maze2D environments, the reward is ex-
ponentiated, with higher values indicating better perfor-
mance. In the CoinRun environments, the reward is bi-
nary, with either +10 or 0 awarded, making +10 the high-
est possible episodic return.

• Success Rate: To complement the episodic return, we
consider the success rate, which indicates the episodic
frequency at which the agents reach their goals.

• Episodic Length: We also assess the episodic length,
measuring the duration of episodes throughout the train-
ing as an indicator of exploration efficiency. All environ-
ments have a maximum episode length of 1000 steps. If
the agent does not reach the goal within this limit, the
episode terminates. A shorter episode length indicates
that the agent has reached the goal more efficiently.

Implementations: In this work, we use PPO as the RL
method in SCORE, such that the policy update and policy
roll-out in Fig. 2 are performed by a modified PPO agent.
However, any off-the-shelf continuous action RL method
could be employed. So, in the rest of the paper, we will refer
to our method as SCORE-PPO, indicating the use of PPO
in SCORE. In our implementation of PPO for the D4RL en-
vironments, we adopt the details and hyperparameters out-
lined in (Huang et al. 2022a), and the SAC agent for the
D4RL environments and PPO agent for the CoinRun envi-
ronments adopt their implementation and hyperparameters
from (Huang et al. 2022b).

The configuration and hyperparameters for the skill
embedding and prior model remain consistent with those
specified by (Ajay et al. 2021) with trajectory length set to
10 for D4RL and five for CoinRun, and skill length T set
to eight. Regarding downstream tasks, models underwent
training for 3.5 million steps in Medium-sized environ-
ments, 17.5 million steps in Larger-size environments on
D4RL, and 7.5 million steps on CoinRun (details reported
in Table 4 in Appendix). Despite the embedding model
being trained on trajectories featuring a wide range of
starting and goal positions, we maintain fixed start and goal
locations for the agent during downstream task learning,
ensuring a controlled learning environment. Similarly, in
CoinRun, the embedding model trained on various easy
levels is used to train a SCORE model on 64 difficult levels.
All experiments are repeated with five seeds; the average
and standard deviation values are reported in this paper.



Figure 5: Average episodic return of SCORE-PPO, PPO, and SAC trained on AntMaze and Maze2D environments and CoinRun
(the first 64 hard levels).

Figure 6: From left to right: (first) map of AntMaze Medium, visualization of state visitation for policies learned using (second)
SCORE-PPO and (third) PPO, and (fourth) episodic length of the policy rollouts during training.

Environment SCORE-PPO SAC PPO

AntMaze Medium 81.5 ± 4.8 0.0 ± 0.0 13.3 ± 5.2
AntMaze Large 70.6 ± 3.5 0.0 ± 0.0 0.0 ± 0.0
AntMaze XL 14.0 ± 5.6 0.0 ± 0.0 0.0 ± 0.0

Table 1: Average success rate (%) of SCORE-PPO, PPO,
and SAC on AntMaze Medium, Large, and XL.

Comparison with Baselines
In this section, we provide empirical evidence showing the
enhanced performance of SCORE-PPO compared to vanilla
PPO and SAC. The results illustrated in Fig. 5 show im-
proved episodic return using SCORE-PPO, highlighting its
strength in learning better exploration policies than the base-
lines. Also, looking at the state visitations of the agents on

AntMaze at Fig. 6, SCORE-PPO demonstrates a more ef-
ficient policy than PPO. Furthermore, the plots of episodic
length, as illustrated in Fig. 6, demonstrate SCORE-PPO’s
superior sample efficiency relative to PPO.

The analysis of performance improvements across vari-
ous environments reveals that, although SCORE-PPO offers
small gains over PPO in simpler settings such as Maze2D, its
advantages become more pronounced in environments with
larger state space, such as AntMaze and CoinRun. Addition-
ally, the results of success rate (reported in Table 1) on the
more complex D4RL tasks, AntMaze Large and XL show
that while SAC and PPO policies fail to reach the goal during
training, SCORE-PPO successfully learns a goal-reaching
policy. Moreover, although SCORE-PPO is not significantly
superior to PPO in terms of episodic return, the success
rates indicate a significant distinction in its overall success
in reaching the goal. Additionally, the training plots of Coin-



Environment SCORE-M SCORE-L SCORE-XL PPO-M PPO-L

AntMaze large -29228 ± 522 -27668 ± 5794 - -34607 ± 4609 -
AntMaze XL -71193 ± 1634 -65072 ± 525 -75573 ± 579 - -80846 ± 295

Table 2: Average episodic return for generalization experiment. Evaluating the model trained on the Medium environment
(SCORE-M and PPO-M), the Large environment (SCORE-L, PPO-L), and the XL environment (SCORE-XL) on the Large
and XL environments. Models were evaluated for 1e5 steps and using five different seeds.

Environment SCORE-PPO PPO

64 unseen levels 5.32 ± 0.00 1.63 ± 0.03

Table 3: Average episodic return for generalization experi-
ment. Evaluating the SCORE-PPO and PPO models trained
on the 64 hard training levels on 64 hard new levels. Models
were evaluated for 1e5 steps and using five different seeds.

Run reveal that while vanilla PPO struggles to make any sig-
nificant progress on hard levels, SCORE-PPO demonstrates
superior performance on those levels. These results support
our initial proposition that offering online RL concise and
informative representations is essential for enhanced learn-
ing in environments with large or complex state spaces.

Generalization
We assess the generalization of our approach in navigat-
ing new environments by evaluating the performance of
SCORE-PPO, which is trained in a Medium environment
when exposed to a larger environment. We compare these
results against the generalization performance of SCORE-
PPO trained directly on larger environments and a PPO
model trained on a Medium environment. In Table 2,
SCORE-M refers to the SCORE-PPO model trained on the
Medium, SCORE-L refers to the model trained in a Large
environment, SCORE-XL refers to the SCORE trained in an
XL environment, and PPO-M and PPO-L refer to the PPO
model trained in a Medium and Large environments respec-
tively.

Table 2 shows that SCORE-M demonstrates generaliza-
tion capabilities comparable with SCORE-L when applied
to the AntMaze Large environment. On the AntMaze XL
task, models trained on smaller environments (SCORE-M
and SCORE-L) outperform the model trained directly on the
XL environment. These results suggest that SCORE models
trained in smaller (simpler) environments retain efficacy in
bigger (more complex) settings without retraining.

In the CoinRun environment, we assess the generalization
capabilities of the SCORE-PPO and PPO trained on the first
64 difficult levels in CoinRun, and we evaluate their perfor-
mance on 64 new difficult levels that were not part of the
training set. Table 3 shows that not only does SCORE-PPO
demonstrate superior performance on training levels, but it
can also retain the same performance level on unseen lev-
els. This robustness in generalization is attributed to the skill
representations’ universality, underscoring the model’s abil-
ity to adapt to varying environmental complexity levels and
unseen scenarios.

Ablation Study
We conducted an ablation experiment on different SCORE-
PPO components, showing their importance in the com-
plete model. For this purpose, we performed experiments
on the AntMaze Medium environment using the SCORE-
PPO models with and without (i) weight initialization θ from
the decoder weights ψ, (ii) decoder regularization (as shown
in Fig. 2 policy update phase), and (iii) uncertainty-based
weights α for the regularization term (as explained in the
Method section). Through this ablation study, we aim to test
the following hypotheses:
• Weight Initialization: During early training, the KL di-

vergence between the random policy and decoder’s dis-
tribution is large, causing instability. We hypothesize that
initializing the policy weights with those of the decoder
enhances initial stability.

• Decoder Regularization: Using a frozen prior model
alongside the RL policy can cause instability due to
changes in policy distribution. We hypothesize that regu-
larizing the learned policy with the frozen decoder helps
mitigate this distribution shift.

• Uncertainty-based Weights: Optimizing the divergence
between the decoder and policy distributions may be
less effective for unseen states. We hypothesize that dy-
namically adjusting the KL term will improve results by
closely aligning the policy with the decoder’s distribu-
tion for states present in the offline dataset while reduc-
ing alignment for new states.

The results presented in Fig. 7 show that ablating any of the
three components causes a drop in the average episodic re-
turn collected during training. These results indicate that all
three components are crucial to the final model’s success.
The most significant decline in performance occurs when
the model is initialized with random weights rather than with
weights derived from the decoder. This underscores the crit-
ical role of weight initialization in maintaining stability in
KL divergence at the onset of training.

Related Work
In this paper, we aim to address long-horizon tasks with
complex state representations by integrating concepts from
skill priors in RL and skill-conditioned RL, thereby enrich-
ing the input representations provided to the model. Below,
we review some of the related work.

State Abstraction in RL
State abstraction is particularly useful in addressing complex
observation spaces. The primary goal is to identify a latent



Figure 7: Ablation experiments showing the effect of different components of SCORE-PPO in AntMaze Medium environment.
From left to right: (i) weight initialization ablation, (ii) decoder regularization ablation, and (iii) uncertainty-based KL weights
vs constant weight.

representation of the state space that simplifies learning an
optimal policy. Mawhorter and Smith (Mawhorter and Smith
2023) present a method for improving automated game test-
ing by using a heuristic to make a simple abstraction of the
game states that can help guide the exploration. One limita-
tion of this approach is the need for game-specific formula-
tion. In another work, Du et al. (Du et al. 2019) introduce
a method for efficient exploration in RL by learning a de-
coding function that maps rich observations to latent states
using regression and clustering techniques. One limitation
of this approach is that the effectiveness of the method relies
on certain assumptions on the state space, which can limit
the application.

Temporally Extended Actions in RL
The formulation and application of temporal abstraction
in RL have been essential for solving complex reinforce-
ment learning challenges that span long durations. Sutton et
al. (Sutton, Precup, and Singh 1999) put forward the idea of
”options”, which are temporally extended actions simulta-
neously trained using intrinsic reward functions. After these
options are learned, a higher-level agent, which operates
within a space of these options, evaluates them based on
its own reward function. Following this research, Barreto et
al. (Barreto et al. 2019) introduce a method that combines
learned sequences of actions, known as skills, to create di-
verse behaviors. This method involves learning options as-
sociated with a set of pseudo-rewards and generating new
options through any linear combination of these pseudo-
rewards without requiring additional learning.

Skill Priors in RL
There are several works involving the use of unsupervised
objectives to discover skills that are subsequently applied
to various downstream tasks through both offline and on-
line RL methods. Notably, Ajay et al. (Ajay et al. 2021)
and Pertsch et al. (Pertsch, Lee, and Lim 2021) focus on
training an RL agent within a skill-defined space, utilizing a
fixed, previously learned prior for refining the RL objective.
This approach facilitates more informed exploration within
the RL paradigm. Similarly, in (Hakhamaneshi et al. 2022),

Hakhamaneshi et al. enhance this methodology by integrat-
ing an inverse dynamic model, enabling the conditioning of
priors on both the current and future states, further improv-
ing the performance.

To more accurately tailor extracted skills to human inten-
tions, Wang et al. (Wang et al. 2022) present Skill Prefer-
ences (SkiP) modeling human preferences for skill extrac-
tion from offline data and employing human feedback as a
reward signal for downstream task solving with RL. Nam et
al. (Nam et al. 2022) propose a method that combines meta-
learning with offline datasets to improve sample efficiency
in tackling unseen tasks compared to previous meta-RL ap-
proaches. The approach involves extracting skills, mapping
transitions to task embeddings via a task encoder, and then
using meta-learning to condition a skills-based policy on
these task embeddings, improving performance compared
to traditional meta-learning approaches. Park et al. (Park
et al. 2024) present HIQL, an algorithm for offline goal-
conditioned RL that leverages hierarchical policies to learn
from diverse, unlabeled datasets. HIQL efficiently utilizes
offline data to train a high-level policy for generating sub-
goals and a low-level policy for executing these subgoals
toward achieving complex navigation tasks.

Skill-Conditioned RL
Unlike human intelligence, which combines diverse skills to
adapt to new challenges, artificial intelligence often focuses
on mastering single tasks. By conditioning agent policies on
specific skills, they can explore the state space more effi-
ciently. Grillotti et al. (Grillotti et al. 2023) propose SCOPA,
a skill-conditioned RL approach that efficiently utilizes suc-
cessor features for learning a spectrum of expressive skills.
SCOPA blends policy skill improvement strategies with uni-
versal function approximators, forming a unified algorithm
that strives for performance maximization and ensures the
execution of a broad array of predefined skills. In another
work, Emukpere et al. (Emukpere et al. 2024) tackle skill
discovery in robotic manipulation by employing multiple
critics and corresponding reward functions. This multi-critic
approach cultivates a skill-conditioned policy that not only
masters diverse and safe manipulation skills but also facil-
itates their application to downstream tasks through hierar-



chical RL and planning frameworks. Laskin et al. (Laskin
et al. 2022) introduces an unsupervised RL approach focus-
ing on developing skill-conditioned policies that can apply
learned skills to new, diverse tasks. This method encourages
the discovery of a wide range of behaviors embedded within
skill-conditioned policies, enhancing the agent’s ability to
navigate and solve complex environments without direct su-
pervision.

While the listed papers demonstrate that skill use and
composition in RL can enhance exploration and solve com-
plex tasks, our work specifically targets the challenges posed
by learning in environments with complex and large state
spaces.

Conclusions and Future Work
This paper presented Skill-Conditioned Online
REinforcement Learning (SCORE), an approach for
integrating skill-conditioned policy learning with online
Reinforcement Learning (RL). By leveraging unsupervised
skill discovery from offline datasets, SCORE efficiently
guides exploration and enhances policy learning for
long-horizon navigation tasks and game environments.
The performance improvements of SCORE over baseline
methods (i.e., PPO and SAC) highlight the potential of
using skill representations to facilitate adaptive and ef-
ficient learning in complex environments. These results
highlight SCORE’s superior performance compared to the
conventional RL methods and its ability to generalize across
diverse scenarios. Moreover, through an ablation study, we
validated the efficacy of SCORE by analyzing the impact of
its individual components in detail.

Our contributions, which include extending policy gradi-
ent RL to incorporate learned skills as input representations
and demonstrating the generalization capabilities of our ap-
proach, lay the groundwork for future explorations into com-
bining offline skill representations with online task learning.
Further research may focus on showcasing the strength of
skill-conditioned policies for online downstream task learn-
ing in more complex game environments where the state
representations are large, sparse, and complex. Another di-
rection is employing more sophisticated embedding models,
such as transformers, to capture an even richer set of skills
and enhance the generalization performance of RL agents.

Appendix
Hyperparameters Details

Here, we provide the details of the hyperparameters used in
our implementations. For the D4RL environments, the skill
embedding model utilizes three linear layers, each with a
size of 200, for the decoder and prior. The encoder consists
of 3 linear layers of size 200, followed by four layers of
GRU units, each with 200 units. In the SAC model, both
actor and critic networks have three linear layers of size 200.
For the CoinRun environment, convolutional layers are used,
and the network architecture used in SCORE, PPO, and SAC
models is adopted from (Huang et al. 2022b).

Hyperparameter PPO SAC PPO SAC Skill

learning rate 3e-4 3e-4 5e-4 3e-4 3e-4
batch size 64 256 256 64 50
horizon 2048 N.A 256 N.A N.A
epochs per update 10 N.A 3 N.A 600
γ 0.99 0.99 0.999 0.99 N.A
gae-λ 0.95 N.A 0.95 N.A N.A
value-loss coef. 0.5 N.A 0.5 N.A N.A
buffer size N.A 1e6 N.A 1e4 N.A
entropy coef. 0.0 0.2 0.01 0.2 N.A
target coef. τ N.A 0.005 N.A 0.89 N.A
kL-term coef. N.A N.A N.A N.A 0.1

Table 4: Hyperparameters used in the D4RL and CoinRun
implementations. The two columns provide the details of
PPO and SAC for D4RL environments, and the second two
columns provide the details of PPO and SAC for CoinRun
environments. The final column contains the details of the
skill embedding models.
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