
Sepidar: Incentivized Market-Based P2P

Live-Streaming on the Gradient Overlay Network

Amir H. Payberah

and Fatemeh Rahimian and Seif Haridi

Swedish Institute of Computer Science (SICS)

KTH - Royal Institute of Technology

Email: {amir, fatemeh, seif}@sics.se

Jim Dowling

Swedish Institute of Computer Science (SICS)

Email: jdowling@sics.se

Abstract—Live streaming of video content using overlay net-
works has gained widespread adoption on the Internet. This
paper presents Sepidar, a distributed market-based model, that
builds and maintains overlay network trees, which are approxi-
mately minimal height, for delivering live media as a number of

substreams. A streaming tree is constructed for each substream
such that nodes that contribute higher amounts of upload
bandwidth are located increasingly closer to the media source
at the root of the tree. While our distributed market model
can be run against a random sample of nodes, we improve its
convergence time to stabilize a tree by executing against a sample
of nodes that contribute similar amounts of upload bandwidth.
We use the Gradient overlay network to generate samples of
such nodes. We address the problem of free-riding through
parent nodes auditing the behaviour of their child nodes. We
evaluate Sepidar by comparing it in simulation with state-of-the-
art NewCoolstreaming. Our results show significantly improved
playback latency and playback continuity under churn, flash-
crowd, and catastrophic failure experiment scenarios. We also
show that using the Gradient improves convergence time of
our distributed market model compared to a random overlay
network. Finally, we show that Sepidar punishes the performance
of free-riders, and that nodes are incentivized to contribute more
upload bandwidth by relatively improved performance.

Keywords-P2P Overlay; Live Streaming; Gradient Overlay;
Distributed Market Model;

I. INTRODUCTION

Live streaming using overlay networks on the Internet

requires distributed algorithms that strive to use the nodes’

resources efficiently in order to ensure that the viewer quality

is good. To improve user viewing experience, systems need to

maximize the playback continuity of the stream at nodes, and

minimize the playback latency between nodes and the media

source. Nodes should be incentivised to contribute resources

through improved relative performance, and nodes that attempt

to freeride, by not contributing resources, should be detected

and punished. In order to improve system performance in the

presence of asymmetric bandwidth at nodes, it is also crucial

that nodes can effectively utilize the extra resources provided

by the ”better” nodes.

In this paper, we meet these requirements by building mul-

tiple approximately minimal height streaming overlay trees,

where the nodes with higher available upload bandwidth are

positioned higher in the tree as they can support relatively

more child nodes. Minimal height trees help reduce both the

probability of streaming disruptions and the average playback

latency at nodes [25]. The media stream is split into a set

of sub-streams, called stripe, and each tree delivers one sub-

stream. Multiple sub-streams allow more nodes to contribute

bandwidth and enable trees to be more robust [5].

Our system, called Sepidar, models the problem of con-

structing and maintaining minimal height overlay trees as

an assignment problem [31], where the stripes that can be

uploaded by nodes (upload slots) are matched to the stripes

that nodes attempt to download (download slots), such that the

height of the tree (the cost function for all nodes) is minimized.

We introduce a new market model, a distributed algorithm

inspired by auction algorithms [4], where, for each stripe,

nodes continuously compete to become children of nodes

providing stripes that are closer to the root (the media source).

Parents supplying stripes prefer children nodes who offer to

forward the highest number of copies of the stripes. Children

proactively switch parents, when the market-modelled benefit

of switching is greater than the cost of switching, until the

trees stabilize. Our market model works in the presence of

freeriders by parents periodically auditing children. Children

are audited by querying the children’s children (grandchildren)

to validate that the child is forwarding the copies of stripes it

claims to forward.

To improve the speed of convergence of the trees, nodes

execute the market model in parallel using samples taken from

the Gradient overlay [24]. The Gradient is a gossip-generated

overlay network where nodes organize into a gradient structure

with the media source at the centre of the gradient and

nodes with decreasing relative upload bandwidth found at

increasing distance from the centre. When nodes sample from

their neighbours in the Gradient, they receive nodes with

similar upload bandwidths. In a converged minimal height

streaming overlay tree, the sampled nodes will be located at

similar depths in the tree. Although we only consider upload

bandwidth for constructing the Gradient and overlay trees in

this paper, the model can easily be extended to include other

characteristics such as node uptime, load and reputation.

We evaluate Sepidar by comparison with NewCoolstream-

ing, a successful and widely used media streaming solution

[10]. We show in simulation, under churn, flash-crowd, and

massive-failure scenarios, that our market-based approach

improves the playback continuity and decreases the average

playback latency at clients compared to NewCoolstreaming.

We also evaluate the performance of Sepidar when varying

key system parameters such as block size, number of stripes,

playback buffering time, and freerider detection sensitivity.

Finally, we evaluate the performance improvement for the

market model in sampling from the Gradient overlay compared

to sampling from a random overlay.

We build on our previous work in [21] by providing a dis-

tributed market model that works in the presence of freeriders

and dynamic upload bandwidths.

II. RELATED WORK

There are two fundamental problems in building the media

streaming overlay networks: (i) how to disseminate data, and

(ii) how to discover other nodes supplying the stream.

Early data delivery overlays use a tree structure, where the

media is pushed from the root to interior nodes to leave nodes.

Examples of such systems include Climber [20], ZigZag [26],

NICE [3], and [7]. The short latency of data delivery is the

main advantage of this approach [33]. Disadvantages, however,

include the fragility of the tree structure upon the failure of

nodes close to the root and the fact that all the traffic is only

forwarded by the interior nodes. SplitStream [5] improved this

model by using multiple trees, where the stream is split into

sub-streams and each tree delivers one sub-stream. Orchard

[16], ChunkySpread [28] and CoopNet [18] are some other

solutions in this class.

An alternative to tree structured overlays is the mesh struc-

ture, in which the nodes are connected in a mesh-network,

and nodes request missing blocks of data explicitly. The mesh

structure is highly resilient to node failures, but it is subject to

unpredictable latencies due to the frequent exchange of notifi-

cations and requests [33]. SopCast [13], DONet/Coolstreaming

[34], Chainsaw [19], and PULSE [22] are examples of mesh-

based systems.

Another class of systems combine tree and mesh structures

to construct a data delivery overlay. Example systems include

CliqueStream [2], mTreebone [30], NewCoolStreaming [10],

Prime [14] and [12].

The second fundamental problem is how nodes discover the

other nodes that supply the stream. CoopNet [18] uses a cen-

tralized coordinator, GnuStream [8] uses controlled flooding

requests, SplitStream [5] and [12] use DHTs, while NewCool-

streaming [10], DONet/Coolstreaming [34] and PULSE [22]

use a gossip-generated random overlay network to search for

the nodes. Sepidar uses the Gradient overlay for this purpose.

NewCoolstreaming [10] has the most similarities with Sep-

idar. Both systems have the same data dissemination model

where a node subscribes to a sub-stream at a parent node,

and the parent subsequently pushes the stream to the child.

However, Sepidar’s use of the Gradient overlay to discover

nodes to supply the stream contrasts with NewCoolStreaming

that samples nodes from a random overlay. A second major

difference is that NewCoolStreaming only reactively changes a

parent when a sub-stream is identified as being slow, whereas

Sepidar proactively changes parents to improve system perfor-

mance.

The problem of reducing freeriding in P2P systems has

been addressed by many existing incentive mechanisms and

reputation models [16], [25], [15]. Our solution for freerider

identification is influenced by Give-to-Get [17], that first used

transitive dependencies to a child’s children in order to audit

children nodes. In contrast to Sepidar, Give-to-Get is a video-

on-demand protocol built on a mesh network, and based on

BitTorrent.

Our market model is inspired by auction algorithms. The

first widely-used auction algorithm was designed by Bertsekas

[4], and has an equivalent representation as a weighted bipar-

tite matching problem [31]. However, in contrast to auction

algorithms, our market model does not assume that prices

always rise - freeriders cause the price of an upload slot to be

reset to zero. Also, our market model assumes local views of

the system at nodes and that the discovery of nodes and price

information is expensive.

Tan and Jarvis describe a payment-based approach to solv-

ing freeriding for live streaming [25]. Nodes run periodic auc-

tions for their resources and earn points that can be used to ac-

cess resources. Whereas we incentivize nodes to provide more

resources to get better video performance, they incentivise

nodes to remain in the system even when not viewing video to

acquire an increased number of points. Similar to Sepidar, they

also support a strategy for preferring the lowest depth parent

resulting in the construction of a height-balanced tree. Another

related approach to matching nodes for live streaming is based

on finding maximal bipartite matchings using a flow algorithm

by Li and Mahanti [11]. They transformed the traditional

min-cost media flow dissemination problem into an auction

problem.

III. PROBLEM DESCRIPTION

We assume the video is treated as a constant-rate bitstream

that is divided into blocks of equal size without any coding,

where every block has a sequence number to represent its

playback order in the stream. The blocks are delivered to nodes

over multiple sub-streams, called stripes, that each deliver an

equal number of blocks per unit time. Nodes can retrieve any

stripe independently from any other node that can supply the

stripe. We define the number of copies of stripes that nodes

are willing and able to forward as its number of upload slots.

Nodes do not upload more stripes than they have upload slots.

Each node has a number of upload slots, that is proportional to

the amount of upload bandwidth capacity it contributes to the

system. Every node has the same number of download slots,

equal to the number of stripes. We assume all nodes have

sufficient download bandwidth capacity to receive all stripes.

A parent can forward a copy of any stripe over an upload slot,

and a child node, that connects its download slot to an upload

slot, requests a specific stripe for an upload slot. Nodes are not

assumed to be cooperative; nodes may execute protocols that

attempt to download the stream without forwarding it to other

nodes. We do not, however, address the problem of nodes

colluding to receive the video stream, although this can be

addressed by a reputation management scheme [35].

The problem we address in this paper is how to deliver a

video stream from a source as multiple stripes over multiple

approximately minimal height trees. This problem can be rep-

resented as the assignment problem [27]. Centralized solutions

to this problem are possible for small system sizes. For exam-

ple, if all nodes send their number of upload slots to a central

server, the server can use any number of algorithms that solve

linear sum assignments, such as the auction algorithm [4],

the Hungarian method [9], or more recent high-performance

parallel algorithms [27].

The problem with a decentralized implementation of the

auction algorithm is the communication overhead in nodes

discovering the node with the upload slot of highest net value.

The auction algorithm assumes that the cost of communicating

with all nodes is close to zero. In a decentralized system,

however, communicating with all nodes requires flooding,

which is not scalable. An alternative approach to compute an

approximate solution is to find good upload slots based on

random walks or sampling from a random overlay. However,

such solutions typically have slow convergence time, as we

show in section V. In the next section, we introduce our market

model that finds approximate solutions using the partial views

sampled from the Gradient overlay.

IV. SEPIDAR SYSTEM

Our distributed market model uses the following three

properties, calculated at each node, to build trees:

1) Currency: the total number of upload slots at a node. A

node uses its currency to bid for a connection to another

node’s upload slot for each stripe.

2) Price: the minimum currency that should be bid when

establishing a connection to an upload slot. The price of

a node that has an unused upload slot is zero, otherwise

the node’s price equals the lowest currency of its already

connected children. For example, if node p has three

upload slots and three children with currencies 2, 3 and

4, the price of p is 2.

3) Cost: the cost of an upload slot at a node for a particular

stripe is the distance from that node to the root for that

stripe. Since the media stream consists of several stripes,

nodes may have different costs for different stripes. The

lower the depth a node has for a stripe (the lower its

cost), the more desirable a parent it is for that stripe.

Our market model is based on minimizing costs through

nodes iteratively bidding for upload slots. This model could

be best described as an approximate auction algorithm, where

there is a continuous auction and no reserve price. For each

stripe, child nodes place bids of their entire currency for

upload slots at the parent nodes with lowest cost (depth).

Child nodes always bid with their entire currency to avoid

the complexity of price-setting. A parent node sets a price of

zero for an upload slot when at least one of its upload slots

is unassigned or when it has a free-riding child. Thus, the

first bid for an upload slot will always win (no reserve price),

enabling children to immediately connect to available upload

slots. When all of a parent’s upload slots are assigned, it sets

the price for an upload slot to the currency of its child with the

lowest number of upload slots. If a child with more currency

than the current price for an upload slot bids for an upload

slot, it will win the upload slot and the parent will replace

its child with the lowest currency with the new child. A child

that has lost an upload slot has to discover new nodes and

bid for their upload slots. In contrast to the auction algorithm,

there are no bidding and assignment phases, thus, we call it a

continuous auction.

In contrast to the auction algorithm, the price of upload

slots does not always increase - it can be reset to zero if a

child node is detected as a freerider, that is, if the node is

not correctly forwarding all the stripes it promises to supply.

As such, it is a restartable auction, where the auction is

restarted because a bidder did not have sufficient funds to

complete the transaction. Another crucial difference with the

auction algorithm is that our market model is decentralized;

nodes have only a partial (changing) view of a small number

of nodes in the system with whom they can bid for upload

slots. We use the Gradient overlay to provide nodes with a

constantly changing partial view of other nodes that have a

similar number of upload slots. Thus, rather than have nodes

explore the whole system for better parent nodes, the Gradient

enables us to limit exploration to the set of nodes with a similar

number of upload slots.

A. Gradient overlay construction

The Gradient overlay is an overlay network that arranges

nodes using a local utility function at each node, such that

nodes are ordered in descending utility values away from a

core of the highest utility nodes [23], [24]. The highest utility

nodes are found at the centre of the Gradient topology, while

nodes with decreasing utility values are found at increasing

distance from the centre.

The Gradient is built by both gossiping and sampling from

a random overlay network (we use Cyclon [29]). Each node

maintains a set of neighbours called a similar-view containing

a small number of nodes whose utility values are close to,

but slightly higher than, the utility value of the node. Nodes

periodically gossip to exchange and update their similar-views.

Node references stored in the similar view contain the utility

value for the neighbours. In Sepidar, the utility value of a node

is calculated using two factors: a node’s upload bandwidth and

a disjoint set of discrete utility values that we call market-

levels. A market-level is defined as a range of network upload

bandwidths. For example, in figure 1, we define 5 example

market-levels: mobile broadband (64-127 Kbps) with utility

value 1, slow DSL (128-511 Kbps) with utility value 2, DSL

(512-1023 Kbps) with utility value 3, fiber (>1024 Kbps)

with utility value 4, and the media source with utility value

5. A node measures its upload bandwidth (e.g., using a server

or trusted neighbour) and calculates its utility value as the

market-level that its upload bandwidth falls into. For instance,

Fig. 1. Different market-levels of a system, and the similar-view and fingers of p.

a node with 256 Kbps upload bandwidth falls into slow DSL

market-level, so its utility value is 2. Nodes may also choose

to contribute less upload bandwidth than they have available,

causing them to join a lower market level.

A node prefers to fill its similar-view with nodes from

the same market-level or one level higher. A feature of this

preference function is that low-bandwidth nodes only have

connections to one another. However, low bandwidth nodes

often do not have enough upload bandwidth to simultaneously

deliver all stripes in a stream. Therefore, in order to enable low

bandwidth nodes to utilize the spare slots of higher bandwidth

nodes, nodes maintain a finger list, where each finger points

to a node in a higher market-level (if one is available). We

illustrate the market levels and fingers in figure 1. Each ring

represents a market-level, the black links show the links within

the similar-view and the gray links are the fingers to nodes in

higher market-levels.

In order for nodes to be able to explore to find new nodes

with which to execute our market model, a node constantly

updates its neighbours within its market level. Each node p

periodically increments the age of all the nodes in its similar-

view, removes the oldest node, q, from its similar-view and

sends a subset of nodes in its similar-view to q. Node q

responds by sending back a subset of its own similar-view to p.

Node p then merges the view received from q with its existing

similar-view by iterating through the received list of nodes, and

preferentially selecting those nodes in the same market-level

as p or at most one level higher. If the similar-view is not full,

it adds the node, and if a reference to the node to be merged

already exists in p’s similar-view, p just refreshes the age of

its reference. If the similar-view is full, p replaces one of the

nodes it had sent to q with the selected node. What is more, p

also merges its similar-view with its own local random-view,

in the same way described above. Upon merging, when the

similar-view is full, p replaces a node whose utility value is

higher than p’s utility value plus one.

The fingers to higher market-levels are also updated peri-

odically. Node p goes through its random-view, and for each

higher market-level, picks a node from that market-level if

there exists such a node in the random-view. If there is not, p

keeps the old finger.

Grandchild0

Grandchildn-1

Parent Child

audit response

audit request

audit request
audit response

Fig. 2. Transitive auditing by parents querying grandchildren about the performance

of children.

B. Streaming tree overlay construction

Nodes periodically send their currency, cost, price, number

of children and buffer map to their similar-view nodes. The

buffer map shows the last blocks that a node has in its buffer.

For each stripe i, a node p periodically checks if it has a

node in its similar-view and finger list that has (i) a lower

cost (depth) than its current parent, (ii) a price less than its

currency and (iii) blocks ahead of its block in stripe i. If such

a node is found, it is added to a list of candidate parents

for stripe i. Next, the node sorts the candidates by the term

S =
numOfChildren

currency
, and selects the node with smallest S.

That is, it biases selection towards nodes with fewer children

and higher currency. If two nodes have the same S, it selects

the one with higher currency.

If a node q receives a connection request from node p for

stripe i, has a free upload slot, it accepts the request, otherwise

if p’s currency is greater than the price of q, q abandons its

child that has the lowest currency, and accepts p as a new child.

If q has a freeriding child (see section IV-C), it abandons that

node as the child with the lowest currency. The disconnected

node has to find a new parent. If q’s price is greater than or

equal to p’s currency, q declines the request.

C. Freerider detection and punishment

Freeriders are nodes that supply less upload bandwidth

than claimed. To detect freeriders, we introduce the freerider

detector component with strong completeness property. By

strong completeness property, we mean that, if a non-freerider

node does not have free upload slots, eventually it detects all

its freeriding children.

Nodes identify freeriders through transitive auditing using

their children’s children (Figure 2). To do this, a non-freerider

parent p periodically sends an audit request, about its child

q, to q’s claimed children. Whenever a grandchild receives

a message from p, it checks if q is its parent, and has

properly forwarded the stripe(s) it has promised to supply.

The grandchild, then, sends back either a positive or negative

audit response to p that shows whether these conditions are

satisfied or not.

We now show how strong completeness property is satisfied

for the freerider detector. Assume a node q claims it has k

upload slots, such that m of them are assigned to other nodes

and n of them are free upload slots, k = m + n. Its parent

p periodically sends audit requests to q’s m claimed children.

Before the next iteration of sending audit requests, p calculates

F as the sum of (i) the number of audit responses not received

before a timeout, (ii) the number of negative audit responses,

and (iii) the n free upload slots. If F is more than M%

of k, q is suspected as a freerider. If q becomes suspected

in N consecutive iterations, it is detected as a freerider. For

example, if N equals 2, a node is detected as a freerider if

it is suspected on two consecutive iterations of the freerider

detector. The higher the value of N , the more accurate but

slower the detection is.

In a converged tree, for nodes not in the two bottom levels

(market-levels one and two), we expect that at least M% of

their upload slots are meeting their contracted obligation to

correctly supply a substream over that upload slot. M is a

threshold for freerider suspicion. For example, if M is 90%,

then node q is suspected as a freerider, if 10% or more of

its upload slots are either not connected to child nodes or

connected to child nodes but do not supply the stream at the

requested rate.

After detecting a node as a freerider, the parent node p,

decreases its own price (p’s price) to zero and as a punishment

considers the freerider node q as its child with the lowest

currency. On the next bid from another node, p replaces the

freerider node with the new node. So, if a node claims it has

more upload bandwidth than it actually supplies, it will be

detected and punished. In a converged tree, many members of

the market-level one and two may have no children, because

they are the leaves of the trees. So, the nodes in these two

market-levels are not suspected as freeriders. Freeriders can

use the extra resources in the system without any punishment

if they just join as a member of market-level one or two.

V. EXPERIMENTS AND EVALUATION

In this section, we establish the performance of Sepidar

for different system parameter settings, and then compare

the performance of Sepidar with NewCoolstreaming under

simulation.

A. Experiment setup

We have implemented both Sepidar and NewCoolstreaming

using the Kompics platform [1]. Kompics provides a frame-

work for building P2P protocols and a discrete event simulator

for simulating them using different bandwidth, latency and

churn models. Our implementation of NewCoolstreaming is

based on the system description in [10], [32]. We have

validated our implementation of NewCoolstreaming by repli-

cating, in simulation, the results from [10].

In our experimental setup, we set the streaming rate to

512Kbps. The stream is split into 8 stripes and each stripe is

divided into a sequence of 16Kb blocks. Nodes start playing

the media after buffering it for 15 seconds. The size of a node’s

partial view (the similar-view in Sepidar and the partner list in

NewCoolstreaming) is 15 nodes. The number of upload slots

for the non-root nodes equals 2i, where i is picked randomly

from the range 1 to 10. Considering that the size of an upload

slot equals 64Kbps, this number corresponds to an upload

bandwidth between 128Kbps and 1.25Mbps. As the average

upload bandwidth of 704Kbps is not much higher than the

streaming rate of 512Kbps, nodes have to find good matches

as parents in order for good streaming performance. The media

source is a single node with 80 upload slots. We assume all

the nodes have enough download bandwidth to receive all the

stripes simultaneously. Here, we define 11 market-levels, such

that the nodes with the the same number of upload slots are

located at the same market-level. For example, nodes with two

upload slot (128Kbps) are the members of the first market-

level, nodes with four upload slots (256Kbps) are located in

the second market-level, and the media source with 80 upload

slots (> 5Mbps) is the only member of the 11th market-level.

Latencies between nodes are modelled using a latency map

based on the King data-set [6]. The failure detector settings

are N = 2 and M = 50%.

In the experiments, we measure the following metrics:

1) Playback continuity: the percentage of blocks that a node

received before their playback time. In our experiments

to measure playback quality, we count the number of

nodes that have a playback continuity of greater than

90%;

2) Playback latency: the difference in seconds between the

playback point of a node and the playback point at the

media source.

We use the following scenarios in the experiments:

1) Join only: 1000 nodes join the system following a

Poisson distribution with an average inter-arrival time

of 100 milliseconds;

2) Flash crowd: first, 100 nodes join the system following a

Poisson distribution with an average inter-arrival time of

100 milliseconds. Then, 1000 nodes join following the

same distribution with a shortened average inter-arrival

time of 10 milliseconds;

3) Catastrophic failure: 1000 nodes join the system follow-

ing a Poisson distribution with an average inter-arrival

time of 100 milliseconds. Then, 500 existing nodes fail

following a Poisson distribution with an average inter-

arrival time 10 milliseconds. The system then continues

its operation with only 500 nodes;

4) Churn: 500 nodes join the system following a Poisson

distribution with an average inter-arrival time of 100

milliseconds, and then till the end of the simulations

nodes join and fail continuously following the same

distribution with an average inter-arrival time of 1000

milliseconds;

5) Freerider: 1000 nodes join the system following a Pois-

son distribution with an average inter-arrival time of 100

milliseconds, such that 20% of the nodes are freeriders.

B. Establishing parameters for good system performance

Here, we evaluate the performance of the system for dif-

ferent system settings. These experiments are based on the

join only scenario. In the first experiment, we measure the

performance of the system for varying block sizes: 16Kb,

32Kb and 64Kb. Figure 3(a) shows better playback continuity

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600
 0

 10

 20

 30

 40

 50

 60
P

la
y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

PC - 16
PC - 32
PC - 64
PL - 16
PL - 32
PL - 64

(a) Different block sizes.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

PC - 4
PC - 8

PC - 12
PL - 4
PL - 8

PL - 12

(b) Different numbers of stripes.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

PC - 5
PC - 15
PC - 25

PL - 5
PL - 15
PL - 25

(c) Different buffering times.

Fig. 3. System performance for different system settings.

and less playback latency for smaller block sizes. The same

result is shown in the NewCoolstreaming paper [10], and

our subsequent experiments comparing Sepidar with Newcool-

streaming are based on a block size of 16Kb.

Another system parameter is the number of stripes. As can

be seen in figure 3(b), as more stripes are used, playback

continuity increases and playback latency reduces. For a media

stream split into K stripes, a node that receives the whole

stream should assign its K download slots to K upload slots.

If a node misses M of its parent connections, its misses M
K

of

the stream. So, as K increases, nodes lose less of the stream

for a single failed parent connection.

Figure 3(c) shows the behaviour of Sepidar for different

initial playback buffering times. We compare three different

settings: 5, 15 and 25 seconds of initial buffering time.

Buffering 5 seconds of blocks in advance results in playback

interruptions when nodes change their parents, but better

playback continuity is achieved for 15 and 25 seconds of

buffering. We can also see that playback latency increases

when the buffering time is increased. Thus, the initial

buffering time is a parameter that trades off better playback

continuity against worse playback latency.

C. Freerider detector settings

Here, we measure the playback continuity of nodes for

different freerider detector settings. This experiment is based

on the join only scenario. We consider the case where 30% of

all nodes are freeriders and 20% are weak nodes, such that the

ratio of the number of upload slots to download slots is less

than one. Weak nodes are members of the market-level one or

two, that is, nodes who only have enough upload bandwidth

to forward at most half of the media stream. Nodes that are

neither weak nor freerider nodes are called non-freeriders. Our

experiments vary the freerider detector parameter N , while we

measure the playback continuity of the different nodes.

Figure 4(a) shows the playback continuity of nodes for three

values of N : N = 0, that is, no freerider detection, N = 2,

and N = 4. We set M to 50% in all the simulations to take

into account delayed replies by children and to decrease the

false positive detection threshold for freeriders. We measured

the playback continuity for other values of N , but to aid the

readability of the plots we left them out. Although higher

values of N increase the accuracy of the detector, the late

detection of freerider decreases the playback continuity of

nodes. Figure 4(a) confirms our conclusions as we see that

the playback continuity of nodes when N = 0 and N = 4

are almost the same. The figure shows that N = 2 provides

better playback continuity for the all nodes. Another important

result here is the lower playback continuity of freeriders/weak

nodes compared to non-freeriders. If a node detects one of its

children as a freerider, it selects the freerider node as its child

with the lowest currency, and replaces it with other nodes as

soon as it receives a request. Losing a parent decreases the

playback continuity of freeriders.

In figure 4(b), we measure the total number of suspected

nodes and the nodes that are correctly detected. As we see

here, when N has lower values, the fraction of nodes that are

correctly detected as freeriders decreases.

D. Sepidar vs. NewCoolstreaming

In this section, we compare the playback continuity and

playback latency of Sepidar and NewCoolstreaming in the

churn (figures 4(c)), catastrophic failure (figures 4(d)), flash

crowd (figures 4(e)), and freerider (figures 4(f)) scenarios. In

these figures, the Y1-axis (PC) shows the percentage of the

nodes in the overlay that have a playback continuity higher

than 90%, and the Y2-axis (PL) shows the average playback

latency.

We see that Sepidar significantly outperforms NewCool-

streaming in playback continuity for the whole duration of

the experiment in all scenarios. This outperformance is due

to quicker discovery of appropriate parents and faster con-

struction of overlay trees in Sepidar. In Sepidar, high capacity

nodes can quickly discover and connect to the source using the

similar-view, while in NewCoolstreaming nodes take longer

to find parents as they search by updating their random view

through gossiping. In addition, nodes in NewCoolstreaming do

not consider the available upload bandwidth at the parent node

when selecting a new parent, so nodes change their parents

more often. This is the reason for the slow convergence of

playback continuity in NewCoolstreaming. Another reason for

outperformance is the difference in policies used by a child to

pull the first block from a new parent. In Sepidar, whenever a

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

P
la

y
b

a
c
k
 C

o
n

ti
n

u
it
y
 (

P
C

)

Time (s)

non-freeriders, No detection
non-freeriders, N=2
non-freeriders, N=4

freeriders/weaks, No detection
freeriders/weaks, N=2
freeriders/weaks, N=4

(a) Playback continuity of (non-)freerider nodes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500

T
o

ta
l
N

u
m

.
o

f
S

u
s
p

e
c
te

d
 F

re
e

ri
d

e
rs

Time (s)

N=1, suspected
N=1, correct detected

N=2, suspected
N=2, correct detected

N=3, suspected
N=3, correct detected

N=4, suspected
N=4, correct detected

(b) Different freerider detector settings.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(c) Churn.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(d) Catastrophic failure.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(e) Flash crowd.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b
a
c
k
 C

o
n
ti
n
u
it
y
 (

P
C

)

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

P
L
)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(f) Freeriders present.

Fig. 4. Figures 4(a) and 4(b) show the behaviour of Sepidar in different settings of the freerider detector, and the other figures show the performance of Sepidar and Newcoolstreaming

in different scenarios.

node p selects a new parent q, p informs q of the last block

it has in its buffer, and q sends subsequent blocks to p, while

in NewCoolstreaming, the requested block is determined by

looking at the buffer head of the partners [10]. This causes

NewCoolstreaming to miss blocks when switching parent.

As we see in all the scenarios, NewCoolstreaming keeps

its playback latency constant, which is because of reactively

changing parents when nodes playback latency is greater than

the predefined threshold. There is a trade-off between play-

back continuity and playback latency in NewCoolstreaming,

such that lower playback latency results in lower playback

continuity [10]. In Sepidar the nodes have higher playback

latency in the beginning, but they decrease it very soon when

they finds appropriate parents, by ignoring the missed blocks

and fast forwarding the stream to play from the block where

streaming from the new parent is resumed.

An important point of difference between the two systems

is the behaviour of Sepidar and NewCoolstreaming upon an

increase in the playback latency. In Sepidar, if playback la-

tency exceeds the initial buffering time and enough blocks are

available in the buffer, nodes are given a choice to fast forward

the stream and decrease the playback latency. In contrast,

NewCoolstreaming jumps ahead in playback by switching par-

ent(s) even it misses several blocks, thus negatively affecting

playback continuity [10].

E. Incentivizing nodes to contribute upload bandwidth

Here, we investigate the level of incentives for nodes to

contribute more upload bandwidth by measuring the perfor-

mance of the top 10% of upload bandwidth nodes (strong

nodes) and the bottom 10% of upload bandwidth nodes (weak

nodes). We use the churn scenario explained in section V-A.

Since, weak nodes have lower upload bandwidth (and lower

currency) compared to strong nodes, it takes longer for them to

find an appropriate parent, and as a consequence their playback

continuity decreases and their playback latency increases. Fig-

ure 5 compares the playback continuity and playback latency

of strong nodes and weak nodes. As we can see, the strong

nodes receive the stream with higher playback continuity and

lower playback latency compared to weak nodes. Moreover,

while there is churn in the system, we see less fluctuation

in the playback continuity of strong nodes. As such, nodes

are strongly incentivized to contribute more upload bandwidth

through receiving improved relative performance.

F. Comparing the Gradient with random neighbor selection

In the last experiment, we measure the convergence speed

of our market model, in terms of number of parent switches

in the Gradient overlay and a random network. Again, we

compare them using the churn scenario. Our market model is

run using (i) samples taken from the Gradient overlay, where

the sampled nodes have similar upload bandwidth or currency,

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

y
b

a
c
k
 C

o
n

ti
n

u
it
y
 (

P
C

)

P
la

y
b

a
c
k
 L

a
te

n
c
y
 (

P
L

)

Time (s)

strong nodes - PC
weak nodes - PC

strong nodes - PL
weak nodes - PL

Fig. 5. Playback continuity and playback latency of strong nodes vs. weak nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

N
u

m
.
o

f
P

a
re

n
t
S

w
it
c
h

in
g

s

Time (s)

gradient overlay
random overlay

Fig. 6. CDF of number of parent switches.

and (ii) samples taken from a random network, where the

sampled nodes have random amounts of currency. Since in the

Gradient overlay, nodes receive bids from a set of nodes with

almost the same currency, the difference between received bids

is less than the expected difference for the random network.

Figure 6 shows the CDF of number of parent switches for

both overlays against time, and we can see that the Gradient

overlay has a substantially lower number of parent switches.

VI. CONCLUSIONS

In this paper, we presented Sepidar, a P2P live streaming

system that uses both the Gradient overlay and a distributed

market-based approach to build multiple minimal height trees,

where nodes with higher available upload bandwidth are

positioned higher in the tree. Sepidar addresses the problem

of free-riding through parent nodes auditing the behaviour

of their children nodes by querying their grandchildren. We

showed how the Gradient overlay helped nodes efficiently

find good neighbours for building these streaming trees. Our

simulations showed that, compared to NewCoolstreaming,

Sepidar has higher playback continuity and lower playback

latency.

REFERENCES

[1] Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, simulat-
ing, and deploying peer-to-peer systems using the kompics component
model. In COMSWARE ’09: Proceedings of the Fourth International
ICST Conference on COMmunication System softWAre and middlewaRE,
pages 1–9, New York, NY, USA, 2009. ACM.

[2] S. Asaduzzaman, Y. Qiao, and G. Bochmann. CliqueStream: an efficient
and fault-resilient live streaming network on a clustered peer-to-peer
overlay. In Proceedings of the 2008 Eighth International Conference
on Peer-to-Peer Computing, pages 269–278. IEEE Computer Society,
2008.

[3] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy.
Scalable application layer multicast. In SIGCOMM ’02: Proceedings
of the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 205–217, New York, NY,
USA, 2002. ACM.

[4] D. P. Bertsekas. The auction algorithm: a distributed relaxation method
for the assignment problem. Ann. Oper. Res., 14(1-4):105–123, 1988.

[5] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: high-bandwidth mul-
ticast in cooperative environments. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pages 298–
313, New York, NY, USA, 2003. ACM Press.

[6] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King:
Estimating latency between arbitrary internet end hosts. In SIGCOMM
Internet Measurement Workshop, 2002.

[7] S.A. Jarvis, G. Tan, D.P. Spooner, and G.R. Nudd. Constructing Reliable
and Efficient Overlays for P2P Live Media Streaming. In 21 st UK
Performance Engineering Workshop, page 31. Citeseer, 2005.

[8] Xuxian Jiang, Yu Dong, Dongyan Xu, and B. Bhargava. Gnustream:
a p2p media streaming system prototype. In ICME ’03: Proceedings
of the 2003 International Conference on Multimedia and Expo, pages
325–328, Washington, DC, USA, 2003. IEEE Computer Society.

[9] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistic Quarterly, 2:83–97, 1955.

[10] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. In-
side the new coolstreaming: Principles, measurements and performance
implications. In INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, pages 1031–1039, 2008.

[11] Zongpeng Li and Anirban Mahanti. A progressive flow auction approach
for low-cost on-demand p2p media streaming. In International confer-
ence on Quality of service in heterogeneous wired/wireless networks,
page 42, New York, NY, USA, 2006. ACM.

[12] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Wattenhofer.
Push-to-Pull Peer-to-Peer Live Streaming. In 21st International Sym-
posium on Distributed Computing (DISC), Lemesos, Cyprus, Springer
LNCS 4731, September 2007.

[13] Yue1 Lu, Benny Fallica, Fernando Kuipers, Robert Kooij, and Piet Van
Mieghem. Assessing the quality of experience of sopcast. Journal of
Internet Protocol Technology, 4(1):11–23, 2009.

[14] Nazanin Magharei and Reza Rejaie. Prime: Peer-to-peer receiver-driven
mesh-based streaming. In INFOCOM, 2007.

[15] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips.
Bartercast: A practical approach to prevent lazy freeriding in p2p
networks. In IEEE International Symposium on Parallel&Distributed
Processing, pages 1–8, Washington, DC, USA, 2009. IEEE Computer
Society.

[16] J. J. D. Mol, D. H. J. Epema, and H. J. Sips. The orchard algorithm:
P2p multicasting without free-riding. In P2P ’06: Proceedings of the
Sixth IEEE International Conference on Peer-to-Peer Computing, pages
275–282, Washington, DC, USA, 2006. IEEE Computer Society.

[17] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema, and H.J. Sips.
Give-to-get: Free-riding-resilient video-on-demand in p2p systems. In
Multimedia Computing and Networking 2008, volume 6818. SPIE Vol.
6818, January 2008.

[18] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou, and Kun-
wadee Sripanidkulchai. Distributing streaming media content using
cooperative networking. In NOSSDAV ’02: Proceedings of the 12th
international workshop on Network and operating systems support for
digital audio and video, pages 177–186, New York, NY, USA, 2002.
ACM.

[19] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy,
Alexander E. Mohr, and Er E. Mohr. Chainsaw: Eliminating trees from
overlay multicast. In Workshop on Peer-to-Peer Systems (IPTPS), pages
127–140, 2005.

[20] K. Park, S. Pack, and T. Kwon. Climber: An incentive-based resilient
peer-to-peer system for live streaming services. In Workshop on Peer-
to-Peer Systems (IPTPS), 2008.

[21] Amir H. Payberah, Jim Dowling, Fatemeh Rahimian, and Seif Haridi.
gradienTv: Market-based P2P Live Media Streaming on the Gradient
Overlay. In Lecture Notes in Computer Science (DAIS 2010), pages
212–225. Springer Berlin / Heidelberg, Jan 2010.

[22] Fabio Pianese, Joaqun Keller, and Ernst W. Biersack. Pulse, a flexible
p2p live streaming system. In INFOCOM. IEEE, 2006.

[23] Jan Sacha, Bartosz Biskupski, Dominik Dahlem, Raymond Cunning-
ham, René Meier, Jim Dowling, and Mads Haahr. Decentralising a
service-oriented architecture. Accepted for publication in Peer-to-Peer
Networking and Applications.

[24] Jan Sacha, Jim Dowling, Raymond Cunningham, and René Meier.
Discovery of stable peers in a self-organising peer-to-peer gradient
topology. In Frank Eliassen and Alberto Montresor, editors, 6th IFIP WG
6.1 International Conference Distributed Applications and Interoperable
Systems (DAIS), volume 4025, pages 70–83, Bologna, June 2006.

[25] Guang Tan and Stephen A. Jarvis. A payment-based incentive and
service differentiation scheme for peer-to-peer streaming broadcast.
IEEE Trans. Parallel Distrib. Syst., 19(7):940–953, 2008.

[26] Duc A. Tran, Kien A. Hua, and Tai T. Do. Zigzag: An efficient peer-
to-peer scheme for media streaming. In INFOCOM, 2003.

[27] Cristina Nader Vasconcelos and Bodo Rosenhahn. Bipartite graph
matching computation on gpu. In 7th International Conference on En-
ergy Minimization Methods in Computer Vision and Pattern Recognition,
pages 42–55, Berlin, Heidelberg, 2009. Springer-Verlag.

[28] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis.
Chunkyspread: Heterogeneous unstructured tree-based peer-to-peer mul-
ticast. In ICNP ’06: Proceedings of the Proceedings of the 2006
IEEE International Conference on Network Protocols, pages 2–11,
Washington, DC, USA, 2006. IEEE Computer Society.

[29] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays. Journal of
Network and Systems Management, 13(2):197–217, 2005.

[30] Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. mtreebone: A hybrid
tree/mesh overlay for application-layer live video multicast. In ICDCS
’07: Proceedings of the 27th International Conference on Distributed
Computing Systems, page 49, 2007.

[31] Douglas B. West. Introduction to Graph Theory (2nd Edition). Prentice
Hall, August 2000.

[32] S. Xie, B. Li, G.Y. Keung, and X. Zhang. Coolstreaming: Design, Theory
and Practice. IEEE Transactions on Multimedia, 9(8):1661, 2007.

[33] W. P. Ken Yiu, Xing Jin, and S. H. Gary Chan. Challenges and
approaches in large-scale p2p media streaming. IEEE MultiMedia,
14(2):50–59, 2007.

[34] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak shing Peter Yum.
Coolstreaming/donet: A data-driven overlay network for peer-to-peer
live media streaming. In IEEE Infocom, 2005.

[35] Runfang Zhou, Kai Hwang, and Min Cai. Gossiptrust for fast reputation
aggregation in peer-to-peer networks. IEEE Trans. on Knowl. and Data
Eng., 20(9):1282–1295, 2008.

