
Framework-Agnostic Optimization of Repeated Skewed Joins at Massive Scale

Andrea Nardelli, Vladimir Vlassov, Amir H. Payberah
KTH Royal Institute of Technology, Sweden

{andnar,vladv,payberah}@kth.se

Abstract—The join operation is a common but expensive
operation in many data analysis processes. Despite lots of work on
optimizing distributed joins in data-parallel processing platforms,
there is still room to improve its performance, especially in
repeated join operations and skewed data. Repeated join is an
operation used in many services, where the same join operation
is repeated multiple times by different users. Moreover, due to
skewed data, joins may create uneven load distribution over the
workers that harms the performance. Our goal is to improve
the performance of repeated distributed joins on massive data
with respect to execution time and network traffic. To this end,
we present SMBJOIN, a framework-agnostic join operation that
reduces execution time and network traffic by 50% and 17%,
respectively, compared to the distributed hash-join operation
after five joins. We also present SMBJOINSKEWED, a variant
of SMBJOIN, which is particularly robust for different degrees
of skewness, and show that it outperforms the distributed hash-
join operation. For example, for a medium degree of skewness,
SMBJOINSKEWED reduces execution time and network traffic
by 34% and 5%, respectively, compared to the distributed hash-
join operation after five joins.

Index Terms—Join, Skewed Data, Repeated Join, Distributed
Join, Apache Beam

I. INTRODUCTION

Join is a prominent operation in almost all data analysis
applications in data-parallel processing platforms, such as
Spark [1], Flink [2], and Google Cloud Dataflow [3]. To
execute a join operation in a cluster of computers (workers),
each worker holds a certain fraction of data, and by commu-
nicating with each other and shuffling data, they can produce
the join results. Shuffling data dominates the processing time
in a distributed implementation of joins. This is mainly due to
sending high network traffic and serializing/deserializing data
to be transferred over the network.

One use case of join operations is repeated joins that
naturally arises when multiple users need to compute the same
join operation. For example, consider a company that stores
the encrypted data of its users and the decryption keys in
different tables to comply with the users’ privacy regulations.
To decrypt the data and access users’ information, it is required
to join the two tables based on users’ ids as the join-keys to
find the decryption key of each encrypted record. However,
since it is impossible to store the decrypted data, the join
operation should be repeated whenever the users’ information
is required. Given that joining is an expensive task, it is desired
to reduce this operation’s cost as much as possible. Note that
tackling the privacy issue of such join operations is out of the
scope of this paper.

Distributed join operations also suffer from skewed data,
when a large fraction of records in a dataset have a small

set of join-keys. In distributed joins, all records with the
same join-key should be collected at the same worker so that
each worker can perform the join operation locally. However,
data skewness can create uneven load distribution among the
workers [4]. If data is skewed, then collecting records with
similar join-keys on workers can overload a few of them
(which are responsible for skewed join-keys) and consequently
degrades their performance. These slow workers (stragglers)
can significantly delay the joint operation’s completion time.

In this work, we present the SMBJOIN operation that
improves the performance of repeated joins in data-parallel
computing platforms, with respect to execution time and
network traffic. We also present SMBJOINSKEWED, a variant
of SMBJOIN, to address skewed data challenges in repeated
joins. We evaluate SMBJOIN and SMBJOINSKEWED on
two different types of datasets. First, we test them on real
big data collected from a music streaming company’s event
delivery infrastructure. Compared to the distributed hash-join
operation, the results show that SMBJOIN executes faster after
two sequences of joins and shuffles fewer data after four
repetitions. For example, if the join operation is repeated five
times, SMBJOIN reduces execution time and network traffic
by 50% and 17%, respectively, compared to the hash-join.

The first dataset, however, does not suffer from skewness
under normal operating conditions. Therefore, we synthetically
generate a similar dataset with increasing skewness degrees as
the second type of dataset. While the performance of hash-
join and SMBJOIN degrade quickly with a medium degree
of skewness, SMBJOINSKEWED proves to be effective even
when a high degree of skewness is present. In such high
skewness scenarios, SMBJOINSKEWED performs better than
distributed hash-joins even for a single join operation. We
implemented our algorithms using Apache Beam [5] over
Google Cloud Dataflow [3]; however, our algorithms are not
tied to this execution platform and are compatible with any
other data-parallel processing platforms, such as Spark [1] or
Flink [2].

II. BACKGROUND

In this section, we briefly present the join operation in data-
parallel processing platforms, explain the skewness and its
impact on joins, and finally describe Apache Beam as the
platform we used for the implementations.

A. Join operation

Hash-join is a popular way to implement the join operation
that combines two tables R and S into one table, based on
matching join-keys. It first creates a hash-table from one of the

tables that maps each join-key to all the records containing it,
then scans the second table, and finds matching records in the
hash-table. An alternative way to implement joins is the sort
merge-join, which is a two-step process: (i) sort both tables
in the same order, and (ii) merge-join the tables by scanning
them in an interleaved fashion while outputting records that
satisfy the join condition. If both tables R and S are sorted,
the merge-join is the fastest join; otherwise, hash-join shows
a better performance.

There are different ways to implement joins in data-parallel
processing platforms, such as Spark [1], Flink [2], and Google
Cloud Dataflow [3]. The main idea in all of these approaches
is to forward records with the same join-key to the same
worker and then perform a local join (e.g., hash-join or sort
merge-join) algorithm on each worker. Two popular ways to
implement distributed joins are map-side join and reduce-side
join. The assumption in the map-side join is that one of the
tables is small enough to be loaded in each worker’s memory.
In this case, the bigger table is split among the workers, while
the smaller one is loaded into the memory of all of them. In
the reduce-side join, both tables are partitioned according to
the join-key using a hash function, and are shuffled over the
network, such that all records with the same join-key will end
up at the same worker.

B. Skewness

Data skew refers to having a small set of join-keys shared
by a large fraction of the records in a data table. This type of
skew is applicable for reduce-like operations [6], where the
records are assigned to workers based on hash partitioning of
the join-keys. In data-parallel processing platforms, data skew
can lead to uneven distribution of records of a table among
workers [4], and consequently overload some of those workers,
which are responsible for skewed join-keys. Such situations
can severely downgrade the performance of queries, especially
in join operations.

C. Apache Beam

Apache Beam [5] is a unified programming model for batch
and streaming data processing. The Beam is execution engine-
agnostic, meaning that jobs written with Beam can be used in
any supported runner, which is the back-end system to execute
that job. The runner is used to abstract away complicated
details that are dependent on the underlying engine. The Beam
API is reminiscent of FlumeJava [7], a Java library designed to
simplify the task of writing MapReduce jobs [6]. Beam jobs
are expressed as pipelines that represent a Directed Acyclic
Graph of steps, i.e., a series of operations (PTransforms)
on distributed collections (PCollections). Data-parallel op-
erations equivalent to map in MapReduce [6] are expressed
through ParDo in Beam, while reduce-like operations are
expressed through GroupByKey. In Beam, the hash-join can
be implemented through a CoGroupByKey operation, which
uses the GroupByKey primitive.

Bucketing

R S
e

b

b
f

a

a

c

d
a

a, a, a, d

b, b, e

c, f

Bucketed R Bucketed S

Merge join

Merge join

Merge join

Joining

Partition
& Sort

Partition
& Sort

a

a

b
c

e

f

c

d
f

a, a, d

b, e

c, c, f, f

Bucketing

Fig. 1. High level overview of SMBJOIN.

III. SORT MERGE BUCKETS (SMB)

Here, we first explain SMBJOIN, a solution to improve
the performance of repeated joins, and then describe SMB-
JOINSKEWED, a variant of SMBJOIN, to handle skewed data.

A. SMBJOIN

We aim to improve the performance of repeated join op-
erations in data-parallel processing platforms with respect to
execution time and network traffic. To this end, we present
SMBJOIN, a distributed implementation of the sort merge-
join. SMBJOIN breaks the join operation into two phases:
(i) the bucketing phase to structure the data in such a way
that the expensive shuffling step can be avoided by dividing
the datasets into several buckets and sorting records in each
bucket, and (ii) the joining phase to apply the merge-join on
the prepared data in the previous phase. The bucketing phase
is executed only once for a repeating join; thus, although it
adds some overhead to the system, its cost will be amortized
after a certain number of joins repetitions.

Figure 1 demonstrates a high-level overview of SMBJOIN.
As it shows, two tables R and S are first partitioned and
sorted on their join-keys, and then corresponding buckets are
joined through a merge-join operation. The letters in Figure 1
represent the values of the join-key. Below, we present these
phases in detail.

Bucketing phase. The bucketing phase is composed of two
steps: partitioning and sorting. First, data is partitioned, such
that each partition (bucket) can be loaded in the memory of
each worker, and then the data will be sorted by the join-key.
Achieving a global ordering on data is very expensive due to
its massive size and data distribution over workers. Therefore,
we relax the global ordering requirement by performing a local
sorting of records in each worker’s buckets. Listing 1 shows
the bucketing phase of SMBJOIN, written in Beam.

1) Partitioning (lines 3, 4): here, we use ParDo to apply
a hash function h on each record of the input table to
partition them into B buckets. The bucket-key kx of
each record x is determined as kx = h(x.key) mod
B, where x.key refers to the join-key of the record x.
The partitioning process works by first extracting each
record’s bucket-key and then grouping records by their

Listing 1: Bucketing phase for SMBJOIN.
1 def BucketingPhase(input, B):

Data: input is a PCollection〈V〉, with V denoting the type of the
records inside the PCollection. B is the number of buckets.

Result: PCollection〈Bucket〈V〉〉
2 return input
3 .apply(ParDo.of(ExtractBucketKeyFn(B)))

/* Returns a PCollection〈K, V〉, where the key K is
the bucket-key determined by applying the
hash function h on records’ keys. */

4 .apply(GroupByKey.create())
/* Returns a PCollection〈K, Iterable〈V〉〉 */

5 .apply(ParDo.of(SortBucketFns()))
/* Locally sorts the records in an iterable by

their join-key, creating a Bucket〈V〉 and
returning a PCollection〈Bucket〈V〉〉. */

bucket-keys into an iterable, through a GroupByKey. The
GroupByKey operation in this step is the only shuffle
operation (that transfers data over the network) in the
whole SMBJOIN pipeline.

2) Sorting (line 5): the previous step’s output is
a PCollection of buckets. Each bucket in the
PCollection is located only on one worker; hence, it
is possible to perform a local sort of each bucket in
parallel. Here, we use the merge-sort [8] to sort records
of each bucket.

At the end of the bucketing phase, each bucket’s content is
written to a file with its metadata that includes the bucket-key,
the total number of buckets, the hash function h, and the
join-keys.

Joining phase. In the second phase, SMBJOIN joins the two
bucketed-sorted tables. Two bucketed tables can be joined if
they are compatible. Two tables are compatible if (i) they use
the same join-key for bucketing and sorting the records, (ii)
they use the same hash function to ensure the same join-keys
are hashed to the same bucket, and (iii) they both have the
same number of buckets to ensure that the bucket-keys of
two records with the same join-key in different tables are the
same. The joining phase, which is presented in Listing 2, also
consists of two steps: bucketing resolution and merge-join:

1) Bucketing resolution (line 3): this step ensures that the
input tables are compatible, and it also generates the
corresponding pairs of buckets. It iterates through the
lists of metadata of two tables, R and S, to determine
their compatibility and find pairs of matching buckets.

2) Merge-join (line 4): each pair of buckets are joined using
a merge-join operation. When two tables are compatible,
the result of the merge-join will be correct. This is
because records that have the same join-key are assigned
to the buckets with the same bucket-key.

One of the important parameters in SMBJOIN is the number
of buckets B. If B = 1, then all the records will be grouped in
a single bucket and on a single worker, which is unfeasible for
big datasets that do not fit in memory. A practical approach
to determine the number of buckets is to pick a number such
that each bucket fits in the memory of one worker. However,

Listing 2: Joining phase for SMBJOIN.
1 def JoiningPhase(PathR, PathS):

Data: PathR and PathS represent the location where the bucketed
data of R and S is stored.

Result: PCollection〈VR, VS〉, with VR and VS represent the records of R
and S, respectively.

2 return PBegin
3 .apply(ParDo.of(ResolveBucketingFn(PathR, PathS)))

/* Returns a PCollection〈Bucket〈VR〉, Bucket〈VS〉〉,
with each tuple represents a matching pair
of buckets. Two buckets match, if they have
the same bucket-key. The records inside each
bucket are not read yet. */

4 .apply(ParDo.of(MergeJoinFn()))
/* Performs a merge-join over each pair of

buckets, returning a PCollection〈VR, VS〉. */

determining the number of buckets presents some issues:
• It is necessary to know the size of the input data in

advance. This can be estimated or can be computed as
another Dataflow job.

• To determine if a bucket fits in workers’ memory, runner-
specific information such as the number of workers and
their available memory is needed. However, any particular
awareness of these configurations should be seen as a
failure from the perspective of determining a framework-
agnostic solution.

• An approach that simply divides the total dataset size
over the available memory assumes that buckets contain
an equal share of records. However, such a distribution
is unlikely due to skewness in datasets.

B. SMBJOINSKEWED

Among the aforementioned challenges, skewness is a
major problem in data-parallel processing platforms. In
particular, when data is skewed, the bucketing phase of
SMBJOIN is affected due to the GroupByKey operation.
In addition to skewness, an additional issue lies in the
notion of dataset compatibility, which limits the flexibility of
joining two tables. To overcome these challenges, we present
SMBJOINSKEWED, a variant of SMBJOIN, that adjusts the
bucketing and joining phases as follows.

Bucketing phase. Unlike SMBJOIN that requires the number
of buckets, in SMBJOINSKEWED we set the size of the
buckets b. The number of buckets is calculated as the size of
a table R divided by the bucket size b, e.g., BR = |R|

b , where
|.| indicates the size of a table. When creating buckets, if the
size of the records in a bucket exceeds the size of buckets, b,
then the bucket is skewed. In this case, the bucket should be
divided into multiple parts, called shards, such that each shard
has the maximum size b. The records of the original skewed
bucket are then distributed uniformly among the new shards
(e.g., by using a round-robin strategy).

According to these changes, we modify the bucketing phase
by first computing the number of buckets (given the bucket size
b) and then computing the number of shards for each bucket.
To prevent the skewness in GroupByKey operation, instead of
using bucket-key as the key, we put shard-id together with

Listing 3: Bucketing phase for skew-adjusted SMB.
1 def BucketingPhase(input, b):

Data: input is a PCollection〈V〉, with V denoting the type of the
records inside the PCollection. b is the target bucket size.

Result: PCollection〈Shard〈V〉〉
2 B ← input
3 .apply(ParDo.of(ComputeSizeFn()))
4 .apply(Sum.globally())
5 .apply(ParDo.of(ComputeNumBucketsFn(b)))

/* Returns the number of buckets in B */
6 M ← input
7 .apply(ParDo.of(ComputeSizeWithBucketKeyFn(B)))
8 .apply(Sum.perKey())
9 .apply(ParDo.of(ComputeNumShardsFn(b)))

/* Returns the number of shards in M */
10 return input
11 .apply(ParDo.of(ExtractShardedBucketKeyFn(B,M)))

/* Returns a PCollection〈K, V〉, where the key K is
a tuple of (bucket-key, shard-id). */

12 .apply(GroupByKey.create())
/* Returns a PCollection〈K, Iterable〈V〉〉 */

13 .apply(ParDo.of(SortBucketFns()))
/* Locally sorts the records in an iterable by

their join-key, creating a Shard〈V〉 and
returning a PCollection〈Shard〈V〉〉. */

bucket-key and use a tuple-key (bucket-key, shard-id) instead.
This allows the GroupByKey operation and sorting to not
suffer from skewness. As before, each shard is written out
as a single file with all its metadata, including its (bucket-key,
shard-id) tuple. Due to sharding, a bucket may span multiple
files.

Listing 3 contains the updated code of the bucketing phase
for SMBJOINSKEWED. Some boilerplate code has been
removed for brevity: in particular, the number of buckets B
and shard map M , which contains the number of shards for
each bucket, are broadcasted to all workers.

Joining phase. After making shards, we should join the
corresponding pairs. Recall that two bucketed tables can be
joined if they are compatible, i.e., have the same number of
buckets. However, the bucketing phase of SMBJOINSKEWED
may violate the compatibility condition. Assume two tables
R and S with different sizes, and the bucket size b, then the
tables have BR = |R|

b and BS
|S|
b buckets, respectively. As

the two tables have different numbers of buckets, they are not
compatible, and therefore there is no correspondence between
bucket-keys of the two tables.

A naive approach to join tables with different numbers of
buckets is to compute the merge-join between all pairs of
buckets. Although the result of this join is correct (as all pairs
of buckets are joined, and hence all matching records would
be joined), it is an expensive approach. This is because each
bucket of a table S is replicated for each bucket of the other
table R, meaning that in total, it computes BR × BS merge-
joins, which is not efficient.

However, it is not necessary to compute the merge-join
for all pairs of buckets. Recall that for each record x with
the join-key x.key, its bucket-key is kx = h(x.key) mod B,
where B is the number of buckets. Moreover, considering
the distributive property of the modulo operation, for integers

R

S

0

1

1

0

2

2

3

3

4

5
GCF(BR, BS) = 2

Fig. 2. Joining two tables with different numbers of buckets (c = 2, hR = 2,
and hS = 3).

x, i, j we have (x mod ij) mod i = x mod i. Therefore, if
we pick integers c, h ∈ N such that B = c× h, then by using
the distributive property, we have:

h(x.key) mod B = kx

(h(x.key) mod B) mod c = kx mod c

(h(x.key) mod ch) mod c = kx mod c

h(x.key) mod c = kx mod c.

In other words, we can treat the tables as having been
bucketed in c buckets, each of which is composed of h of
the original B buckets, without actually having to re-bucket
the data. This property can be used to significantly reduce the
number of merge-joins by picking c such that BR = c×hR and
BS = c × hS , and emitting pairs whose bucket keys modulo
c are the same. In this case, the total number of merge-joins
computed is BR×BS

c . If c = 1, this ends up computing the
join over all pairs of buckets, and if the two tables have the
same number of buckets, i.e., c = BR = BS , no replication is
required. If we pick c as the greatest common factor (GCF)
of BR and BS , then the number of computed joins will be
minimum. With this adjustment, we do not need to define the
number of buckets as we did in SMBJOIN.

As mentioned before, the size of buckets b should be
selected such that each bucket fits in the memory of a worker.
Given such a bucket size b, then the number of buckets of two
tables R and S will be BR = |R|

b and BS = |S|
b , respectively.

The amount of replicated data for joining R and S, then
depends on c = GCF(BR, BS). The lower is c, the higher
is the cost of replication. Figure 2 shows an example, where
c = GCF(4, 6) = 2, hR = 2, and hS = 3.

After replicating the buckets (including their shards), we can
join the two tables. If a bucket is sharded, to join two buckets, a
merge-join between all pairs of underlying shards is computed
instead. Therefore, the ResolveBucketingFn (in Listing 2)
may end up with creating more join operations as a result
of sharding. Each shard contains its bucket-key and is joined
with all other shards with a matching bucket-key (modulo c if
the number of buckets is different). The joining phase code is

then unchanged apart from the described changes inside the
ResolveBucketingFn function.

IV. EXPERIMENTS

This section presents the performance evaluation of SMB-
JOIN and SMBJOINSKEWED operations and compares them
with the distributed hash-join operation. First, we describe the
experimental setup and then present the comparison results for
a pipeline scenario using two data sets: (i) a real non-skewed
dataset collected from a music streaming company, and (ii) a
synthetic data set with different skewness degrees.

A. Experimental Setup

We used Apache Beam [5] for the development and
conducted the experiments on Google Cloud Dataflow [3]
(as a runner of the Beam). We also use clusters of
n1− standard− 4 workers, where each worker has four
CPUs and 15 GB of memory. We define the following three
metrics to compare the performance of the join algorithms
(implemented as Beam pipelines):

1) Wall clock time: the total time to run a pipeline.
2) CPU hours: the number of CPU hours allocated to

a pipeline. Since the wall clock is dependent on the
number of workers, we define the CPU hours that shows
the computing cost of running a pipeline.

3) Network traffic: the amount of shuffling data in GB.
We evaluate the above metrics in the following three algo-

rithms:
• Hash-join: this is the standard join operation in Beam,

which is implemented as a reduce-side join.
• SMBJOIN: this is a distributed implementation of sort-

merge join explained in Section III.
• SMBJOINSKEWED: similar to SMBJOIN, but takes into

account the skewness cases.
To evaluate the algorithms, we consider the use case of the

decryption of user data generated in user behavior experiments
of a music streaming company. In this scenario, each interac-
tion of users with the player application generates an event.
There are two tables:

1) Events: each record of this table describes a partic-
ular event happening in a user experiment. The event
information is stored encrypted in this table to keep the
privacy of the users. Each event is identified with a user
id, which is used as the two tables’ join-key.

2) Keys: this table includes all the keys to decrypt the
encrypted records of the Events table. All the Events

table’s records have a matching join-key in the Keys

table.
To access the values of the Events table, we should join it

with the Keys table to find their decryption keys. However,
data cannot be stored unencrypted on disk, and since the
decryption key cannot be kept along with the encrypted data,
the tables should be joined before accessing their data. It
means that the join operation should be repeated for each
access to the values of events.

TABLE I
COMPARISON OF JOINS ON THE DECRYPTION PIPELINE.

Baseline Wall Clock CPU Hours Shuffled Data GB

Events on Keys 0:45:53 349.42 6576

SMBJOIN Wall Clock CPU Hours Shuffled Data GB

Bucketing Keys 0:15:00 23.644 845
Bucketing Events 0:53:57 423.159 11810

Events onSMBJOIN Keys 0:19:16 72.767 2974

B. Real Non-skewed Data

Here, we executed the experiments on 128 workers, with
512 CPUs and 1880 GB of memory, and used a real data
set collected at a music streaming company. In this case, the
Events and Keys tables are as below:

• Events: 6.7 × 109 records for a total serialized size
of 2.86 TB. Each record describes a particular event
happening in a user experiment.

• Keys: 1.15 × 109 records for a total serialized size of
194.87 GB. Each record contains an encryption key for
a specific user.

In SMBJOIN, we create 8096 buckets of approximately 1
GB each. As each worker has four CPUs and 15 GB memory,
considering 1 GB for each bucket is reasonable to load four
buckets in memory simultaneously (each bucket is assigned to
one CPU). To pick the number of buckets, we consider 1.4×
overhead for deserializing data and 2× overhead for sorting
in PTransform. Given the size of the serialized Events (i.e.,
2.86 TB), we need around 8000 GB (i.e., 2.86× 1.4× 2) for
the deserialized data in memory. That is why we selected 8096
buckets.

The first block in Table I shows the result of executing the
distributed hash-join in Beam over Google Cloud Dataflow.
The amount of shuffled data corresponds to reading the data
and performing a CoGroupByKey operation. The results of
SMBJOIN are represented in the second block of Table I.
These values are shown for the bucketing and the joining
phases separately. For the bucketing phase, the shuffled data
includes reading data, creating buckets (using GroupByKey),
and writing the buckets. In the join phase, the operation reads
each pair of buckets, joins them, and decrypts the user field.
As expected, the join phase of SMBJOIN is faster than the
hash-join as no shuffling is required. However, the bucketing
phase is an expensive task, but this phase happens only once
for any number of joins.

We can compute the number of joins n after which SMB-
JOIN has a better performance than hash-joins as Bucketing+
MergeJoin × n ≤ HashJoin × n, where Bucketing and
MergeJoin show the cost of bucketing and joining phases
on SMBJOIN for a particular metric (e.g., CPU Hours),
respectively, and HashJoin shows the hash-join cost for the
same metric. So, we can define

n ≥
⌈

Bucketing

Join− SMBJoin

⌉
. (1)

1 2 3 4 5 6 7 8 9
Number of joins

500

1000

1500

2000

2500

3000
To

ta
l C

PU
 H

ou
rs

Baseline
SMB

(a)

100 101 102 103 104 105 106

Rank in key frequency table

102

104

106

108

Ke
y

fre
qu

en
cy

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Value of s (skew parameter of Zipf's law)

100

200

300

400

500

600

700

CP
U

Ho
ur

s

Baseline
SMB
Skew-Adj. SMB

(c)

Fig. 3. (a) the total CPU hours after n joins for hash-join and SMBJOIN, (b) the frequency distribution for the first million most frequent keys in generated Event for different
values of s, and (c) the comparison of CPU hours of SMBJOIN (in orange, bucketing and joining), SMBJOINSKEWED (in green, bucketing and joining), and distributed hash-join
(in blue) for different values of s.

By solving it for CPU hours, we obtain n = 2, meaning
that after the second SMBJOIN, the cost of bucketing has
been amortized. Figure 3(a) illustrates it. The same applies to
the amount of shuffled data, which becomes less after n = 4
joins.

C. Synthetic Skewed Data

In order to evaluate SMBJOINSKEWED, we repeat the anal-
ysis for synthetic datasets with different degrees of skewness.
To do so, we generate data with join-keys following Zipf’s
law. This Zipf’s law states that the frequency of a join-key is
inversely proportional to its rank, i.e., the ith key has frequency
1
is times the most frequent key, for some shape parameter s.
The higher is s, the more skewed are the frequencies.

Here, Keys is approximately 50 GB, and the Events is
approximately 640 GB. In order to test the effect of skewness,
we generate the Event tables 15 times with different degrees
of skewness, by choosing s ∈ [0.0, 1.4]. Figure 3(b) plots the
frequency of the first million most frequent keys for a subset
of the values s. When s = 0 all keys have an equal frequency
of 120. For s = 0.2, the first five keys have frequencies
[3327, 2896, 2670, 2521, 2411]. As s increases, the first key
has a frequency of 86482 for s = 0.4, 1999427 (approximately
two millions) for s = 0.6, 35534777 (approximately 36
millions) for s = 0.8, up to 1933322357 (approximately two
billions, roughly one third of the dataset) for s = 1.4.

To do this experiment, we executed the join pipelines
on 32 workers with a total of 128 CPUs and 480 GB of
memory. Here, we evaluate the performance of SMBJOIN and
SMBJOINSKEWED against the hash-join for different join-key
distributions. As Table II shows, the hash-join performance
appears to be approximately constant until s > 0.7. As the data
becomes more and more skewed, we observe a steep increase
in the time spent for executing the pipeline’s job. By inspecting
the Google Cloud Dataflow graph, we figure out the reason
for slowing down the pipeline process is appearing a straggler
(i.e., an overloaded worker). Out of the 109 unique join keys,
a worker is stuck in the GroupByKey grouping all the data
for the last skewed key, whereas the remaining 999999999
keys have already been processed. The amount of shuffled

TABLE II
HASH-JOIN BETWEEN Keys AND Events FOR DIFFERENT VALUES OF s.

Events on Keys
Repartition Join

for diff. values of s
Wall Clock CPU Hours Shuffled Data GB

(Read + GBK)

0.0 0 : 27 : 12 52.343 1485.22
0.1 0 : 27 : 27 53.175 1484.15
0.2 0 : 28 : 30 55.356 1483.98
0.3 0 : 27 : 33 52.790 1483.48
0.4 0 : 27 : 24 52.739 1482.78
0.5 0 : 27 : 56 53.845 1481.83
0.6 0 : 27 : 26 53.006 1480.49
0.7 0 : 28 : 12 54.059 1478.47
0.8 0 : 32 : 16 63.061 1475.36
0.9 0 : 44 : 19 90.093 1465.99
1.0 1 : 18 : 00 161.499 1459.73
1.1 2 : 09 : 00 267.030 1442.35
1.2 3 : 44 : 00 469.501 1436.95
1.3 4 : 47 : 00 602.886 1435.39
1.4 5 : 58 : 00 750.614 1429.68

data remains approximately constant. GBK in the table refers
to the traffic generated by GroupByKey.

Table III and Table IV show the performance of SMB-
JOIN for the bucketing and joining phases, respectively. The
pipelines for s = 0.9 and s = 1.0 fail in the bucketing step
due to lack of progress when sorting. The workers responsible
for sorting the skewed buckets are straggling and cannot
output any records for over 30 minutes, which causes a failure
in Google Cloud Dataflow. Figure 3(c) plots the total CPU
hours of a single hash-join (in Table II) in blue and a single
SMBJOIN in orange.

We observe that SMBJOIN is more advantageous than hash-
join in terms of CPU hours starting with the second SMBJOIN
(n = 2), for all values of s. Note that in this scenario we do
not include the bucketing step for Keys, as that happens only
once for all 15 values of s. It can also happen in parallel as
bucketing of the Events, in addition to requiring less than one
10th of the time. Repeating the same analysis for the amount
of network traffic, we observe that SMBJOIN shuffles fewer
data after the fourth join (n = 4) for all s. In summary, this
means that SMBJOIN has better performance than hash-join
after performing two joins and shuffles fewer data after four
joins. However, this join is not robust to higher degrees of
skewness as some tested scenarios fail.

In the last experiment, we measure the performance of
SMBJOINSKEWED. Here, instead of picking the number of

TABLE III
BUCKETING PHASE OF SMBJOIN FOR KEYS AND EVENTS .

Bucketing Keys Wall Clock CPU Hours Shuffled Data GB
(Read + GBK + Write)

n/a 0 : 16 : 13 7.271 205.33

Bucketing Events
for diff. values of s Wall Clock CPU Hours Shuffled Data GB

(Read + GBK + Write)

0.0 0 : 40 : 04 77.496 2595.42
0.1 0 : 39 : 25 76.100 2593.58
0.2 0 : 38 : 42 74.846 2593.50
0.3 0 : 38 : 56 74.683 2592.87
0.4 0 : 38 : 53 75.697 2591.87
0.5 0 : 39 : 03 76.454 2590.48
0.6 0 : 38 : 21 74.901 2588.48
0.7 0 : 38 : 08 73.871 2585.38
0.8 0 : 48 : 50 96.901 2580.68
0.9 failed failed failed
1.0 failed failed failed

TABLE IV
JOINING PHASE OF SMBJOIN FOR KEYS AND EVENTS .

Events on Keys
SMB Join

for diff. values of s
Wall Clock CPU Hours Shuffled Data GB

(Read)

0.0 0 : 08 : 41 12.368 620.31
0.1 0 : 09 : 07 12.482 619.84
0.2 0 : 08 : 50 12.148 619.75
0.3 0 : 08 : 34 11.692 619.52
0.4 0 : 08 : 08 10.944 619.18
0.5 0 : 08 : 12 11.204 618.71
0.6 0 : 08 : 00 11.531 618.05
0.7 0 : 08 : 05 11.056 617.01
0.8 0 : 08 : 28 11.711 615.46
0.9 n/a n/a n/a
1.0 n/a n/a n/a

buckets, we set a bucket size of 300 MB in order for each
worker to have ample memory to sort it. If the size of a
bucket exceeds 300 MB, it will be split into several shards,
such that the size of each shard does not go beyond 300 MB.
Table V and Table VI show the performance of bucketing
and joining of SMBJOINSKEWED, respectively. Note that the
additional column in Table V represents the total number of
shards written out, and the last column in Table VI represents
the value of n (Formula 1) for CPU hours and shuffled data,
respectively.

Compared with hash-joins for s < 0.8, SMBJOINSKEWED
shows a better performance in terms of CPU hours after three
joins and shuffles less data after five. As skewness quickly
increases, SMBJOINSKEWED uses fewer CPU hours than a
single hash-join for s ≥ 1.0, as can be seen in Figure 3(c). This
advantage in processing time has a trade-off in amounts of data
shuffled: as data becomes more skewed, SMBJOINSKEWED
replicates more and more shards. For the highest degree of
skew tested, it still shuffles fewer data after 10 joins.

When compared with SMBJOIN, for s < 0.8, the bucketing
operation has an overhead of approximately 25%. For s = 0.8,
the bucketing takes the same amount of CPU hours. For s >
0.8, unlike SMBJOIN, SMBJOINSKEWED handles all degrees
of skewness tested. SMBJOINSKEWED also relaxes the notion
of compatibility to allow joining with datasets with different
numbers of buckets.

According to the results shown, we can combine SMBJOIN
and SMBJOINSKEWED to optimize different join scenarios
based on different degrees of skew:
• Low skew (0 ≤ s < 0.8): if joining more than two times,

SMBJOIN has a better performance than a hash-join.

TABLE V
BUCKETING PHASE OF SMBJOINSKEWED FOR KEYS AND EVENTS .

Bucketing Keys Wall Clock CPU Hours Shuffled Data GB
(Read + GBK + Write) Shards

n/a 0 : 23 : 59 11.275 206.83 512

Bucketing Events
for diff. values of s Wall Clock CPU Hours Shuffled Data GB

(Read + GBK + Write) Shards

0.0 0 : 48 : 22 97.423 2606.94 4096
0.1 0 : 47 : 07 95.113 2605.09 4096
0.2 0 : 44 : 05 88.211 2605.04 4096
0.3 0 : 46 : 27 93.051 2604.38 4097
0.4 0 : 43 : 03 86.183 2603.39 4105
0.5 0 : 42 : 28 85.178 2602.03 4200
0.6 0 : 45 : 21 90.889 2600.34 4484
0.7 0 : 42 : 37 85.222 2597.00 4774
0.8 0 : 48 : 17 97.524 2591.98 4927
0.9 0 : 47 : 02 93.961 2581.75 5227
1.0 0 : 46 : 00 92.573 2572.81 5691
1.1 0 : 48 : 37 95.683 2563.15 6359
1.2 0 : 49 : 11 96.485 2539.17 6896
1.3 0 : 48 : 16 93.908 2538.45 7293
1.4 0 : 46 : 47 89.342 2540.40 7528

TABLE VI
JOINING PHASE OF SMBJOINSKEWED FOR KEYS AND EVENTS .

Events on Keys
Skew-Adj. SMB Join

for diff. values of s
Wall Clock CPU Hours Shuffled Data GB

(Replicated Read)
n

(CPU, IO)

0.0 0 : 12 : 14 18.194 899.75 (3, 5)
0.1 0 : 12 : 04 18.299 899.28 (3, 5)
0.2 0 : 12 : 11 18.354 899.19 (3, 5)
0.3 0 : 12 : 24 18.062 899.04 (3, 5)
0.4 0 : 12 : 21 18.741 899.32 (3, 5)
0.5 0 : 12 : 30 18.282 906.26 (3, 5)
0.6 0 : 13 : 05 19.209 927.74 (3, 5)
0.7 0 : 12 : 48 19.409 949.31 (3, 5)
0.8 0 : 13 : 27 20.293 959.69 (3, 6)
0.9 0 : 13 : 34 20.866 981.48 (2, 6)
1.0 0 : 13 : 49 21.654 1014.86 (1, 6)
1.1 0 : 18 : 28 22.171 1064.82 (1, 7)
1.2 0 : 17 : 36 22.527 1098.79 (1, 8)
1.3 0 : 17 : 26 22.777 1128.53 (1, 9)
1.4 0 : 17 : 48 22.522 1152.54 (1, 10)

• Medium skew (0.8 ≤ s < 1.0): if joining more than three
times, SMBJOINSKEWED has a better performance than
a hash-join.

• High skew (s ≥ 1.0): regardless of the number of joins,
SMBJOINSKEWED has a better performance than the
others.

V. RELATED WORK

There exists a rich study on computing joins in a distributed
environment, both in practice and theory. For example, [9]
presents a solution for scalable online joins, [10] demonstrates
a multi-round distributed join algorithm, [11] presents dis-
tributed joins using MapReduce, and [12] describes distributed
joins on multiple cores, while [13] shows a formal analysis of
join processing in parallel systems, [14] analysis the worst-
case optimal algorithms for parallel query processing, and
[15] computes a worst-case optimal multi-round algorithm for
parallel computation of conjunctive queries.

There are also many works on resolving the problem of
skewed data in distributed joins. Early work by Lin et al. [16]
shows that skewed data distributions lead to the creation of
stragglers in parallel processing. They argue that this distribu-
tion can arise in input data and intermediate data, imposing
a limit on the degree of parallelism of certain tasks, such as
joining tables. To tackle this problem, Afrati and Ullman [17]
present an optimizing join for skewed data. They propose a

mechanism based on replicating data and performing the join
in a single MapReduce job.

Kwon et al. [4] present a general overview of skewness in
MapReduce. They suggest a series of techniques to mitigate
skewness, such as pre-aggregating data through combiners
after the map phase or collecting properties of the data in
previous processing before MapReduce to use different parti-
tioning strategies. With SkewTune [18], the authors present
a drop-in replacement for the MapReduce implementation
that automatically mitigates skew. At runtime, SkewTune
determines stragglers and automatically repartitions data for
which stragglers are responsible through range partitioning.
Two other skewss-resilient join solutions are FastJoin [19] and
ScaleJoin [20]. The former solution proposes an algorithm to
find out the skewed keys and a tuple migration strategy to
solve the load imbalance problem. The latter solution enables
a deterministic and disjoint-parallel join on skewed data.

While the previous skew-handling solutions work at runtime
by monitoring pipeline progress and mitigating stragglers,
[21] proposes using proactive cloning, through which tasks
are replicated similarly to the previous work, and the first
available result for each clone group is used. In order to
mitigate the problem, they introduce delay assignment as a
hybrid approach, in which downstream consumers first wait a
certain amount of time before reading intermediate data to get
an exclusive copy. After that time, reading with contention is
used. Note, however, it has some limitations: computing the
cluster-wide straggler probability is not always possible, e.g.,
when using a managed service, and the solution modified the
Hadoop implementation, which does not make it applicable in
a broader scope. A similar approach to shard cloning is used
in our SMBJOINSKEWED algorithm.

VI. CONCLUSION

In this work, we have presented SMBJOIN and SM-
BJOINSKEWED, two algorithms to optimize repeated and
skewed joins at a massive scale. Both SMBJOIN and SM-
BJOINSKEWED consist of two steps: (i) bucketing step to
reorganize the data, and (ii) joining step that exploits the struc-
ture of the data for efficient merge-join. Compared to reduce-
side distributed hash-join, these joins have the bucketing step
extra. However, since the joins operations considered in this
work are repeated joins, our proposed solutions show better
performance for joins repeated multiple times.

In addition to repeated joins, we tackle the skewed data
problem, where a large fraction of data has a small set of
join-keys. To support this kind of data, we propose SM-
BJOINSKEWED, a variant of SMBJOIN, robust to varying
degrees of skewness. To mitigate the effects of skewed data,
SMBJOINSKEWED splits skewed buckets into several shards
and replicates them to have a broader versatility in joining
tables that are split into different numbers of buckets.

When data is not skewed, SMBJOINSKEWED has more
overhead than SMBJOIN, but it is still more compute-efficient
than hash-join after a couple of join operations. Moreover,
SMBJOINSKEWED is robust to fluctuating data size and skew

and has a lower barrier of entry: the programmer does not
need to estimate properties of the data or understand how
the number of buckets ties into the inner workings of the
procedure. We conducted the experiments using Apache Beam
running on Google Cloud Dataflow. As no runner-specific
details are used, this solution is broadly applicable to all of
Beam’s runners.

REFERENCES

[1] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), 2012, pp. 15–28.

[2] P. Carbone et al., “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[3] S. Krishnan et al., “Google cloud dataflow,” in Building Your Next Big
Thing with Google Cloud Platform. Springer, 2015, pp. 255–275.

[4] Y. Kwon et al., “A study of skew in mapreduce applications,” Open
Cirrus Summit, vol. 11, no. 8, 2011.

[5] Apache Beam: An advanced unified programming model, (accessed
May 9, 2020). [Online]. Available: https://beam.apache.org

[6] J. Dean et al., “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[7] C. Chambers et al., “Flumejava: easy, efficient data-parallel pipelines,”
ACM Sigplan Notices, vol. 45, no. 6, pp. 363–375, 2010.

[8] R. Cole, “Parallel merge sort,” SIAM Journal on Computing, vol. 17,
no. 4, pp. 770–785, 1988.

[9] M. Elseidy et al., “Scalable and adaptive online joins.” VLDB, 2014.
[10] F. Afrati et al., “Gym: A multiround distributed join algorithm,” in 20th

International Conference on Database Theory (ICDT 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[11] A. Okcan et al., “Processing theta-joins using mapreduce,” in Pro-
ceedings of the 2011 ACM SIGMOD International Conference on
Management of data, 2011, pp. 949–960.

[12] C. Barthels et al., “Distributed join algorithms on thousands of cores,”
Proceedings of the VLDB Endowment, vol. 10, no. 5, pp. 517–528, 2017.

[13] P. Koutris et al., “A guide to formal analysis of join processing in
massively parallel systems,” ACM SIGMOD Record, vol. 45, no. 4, pp.
18–27, 2017.

[14] ——, “Worst-case optimal algorithms for parallel query processing,”
in 19th International Conference on Database Theory (ICDT 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[15] B. Ketsman et al., “A worst-case optimal multi-round algorithm for
parallel computation of conjunctive queries,” in Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 2017, pp. 417–428.

[16] J. Lin et al., “The curse of zipf and limits to parallelization: An look at
the stragglers problem in mapreduce.” in LSDS-IR@ SIGIR, 2009.

[17] F. Afrati et al., “Optimizing joins in a map-reduce environment,” in Pro-
ceedings of the 13th International Conference on Extending Database
Technology, 2010, pp. 99–110.

[18] Y. Kwon et al., “Skewtune: mitigating skew in mapreduce applications,”
in Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, 2012, pp. 25–36.

[19] S. Zhou et al., “Fastjoin: A skewness-aware distributed stream join
system,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2019, pp. 1042–1052.

[20] V. Gulisano et al., “Scalejoin: A deterministic, disjoint-parallel and
skew-resilient stream join,” IEEE Transactions on Big Data, 2016.

[21] G. Ananthanarayanan et al., “Effective straggler mitigation: Attack of
the clones,” in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013, pp.
185–198.

https://beam.apache.org

	Introduction
	Background
	Join operation
	Skewness
	Apache Beam

	Sort Merge Buckets (SMB)
	SMBJoin
	SMBJoinSkewed

	Experiments
	Experimental Setup
	Real Non-skewed Data
	Synthetic Skewed Data

	Related Work
	Conclusion
	References

