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The exponential growth of data production emphasizes the importance of database management systems (DBMS) for managing
vast amounts of data. However, the complexity of writing Structured Query Language (SQL) queries requires a diverse range of
skills, which can be a challenge for many users. Different approaches are proposed to address this challenge by aiding SQL users in
mitigating their skill gaps. One of these approaches is to design recommendation systems that provide several suggestions to users for
writing their next SQL queries. Despite the availability of such recommendation systems, they often have several limitations, such as
lacking sequence-awareness, session-awareness, and context-awareness. In this paper, we propose TranSQLation, a session-aware
and sequence-aware recommendation system that recommends the fragments of the subsequent SQL query in a user session. We
demonstrate that TranSQLation outperforms existing works by achieving, on average, 22% more recommendation accuracy when
having a large amount of data and is still effective even when training data is limited. We further demonstrate that considering
contextual similarity is a critical aspect that can enhance the accuracy and relevance of recommendations in query recommendation
systems.
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1 Introduction
Given the exponential growth in the amount of data being produced, it is undeniable that having powerful tools

for managing such voluminous data is of paramount importance. One such tool that plays a fundamental role in data
management is Database Management Systems (DBMS). A recent survey by StackOverflow [1] about the top-used
DBMSs in 2022 revealed that several relational DBMSs, i.e., MySQL, PostgreSQL, SQLite, and Microsoft SQL Server,
were among the top five most frequently-used DBMSs. This fact leads to the result that most database users rely on
Structured Query Language (SQL) to access and query their data. However, writing SQL queries can be challenging for
different users, as it demands diverse skills [17, 19], including: (i) expertise in SQL syntax [17], (ii) familiarity with the
database schema [9, 17], and (iii) a comprehensive understanding of the application domain [19].

Since many users are deficient in at least one of the skills mentioned above, a considerable amount of research has
been conducted to aid SQL users in mitigating such skill gaps. These research works can be classified into several
categories, a few of which are as follows:
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(1) A popular research trend in this regard is to develop tools for converting users’ requirements expressed in
Natural Language (NL) to SQL queries, a.k.a. NL2SQL. This approach is particularly advantageous for novice
users encountering challenges in comprehending the complex syntax of SQL [4, 7, 8, 14, 26, 29, 32].

(2) Another approach is to design tools for clustering and identifying similar SQL queries based on different query
similarity metrics [25, 28].

(3) Another practical approach is to design recommendation systems that utilize previous queries submitted by a user
to suggest the subsequent SQL query. This approach offers notable benefits; first, it enables the personalization
of suggestions based on a user’s query history during a particular user session; second, it benefits users with
varying proficiency levels [3, 10, 12, 17, 19, 31].

From the three approaches mentioned above, using recommendation systems presents significant advantages in
addressing the skill gap challenges faced by SQL users. Such systems also provide notable benefits to a broad spectrum
of users by offering personalized suggestions. The output of such recommendation systems can be either a full SQL
query or specific parts of the query. Recommending a full SQL query is challenging, given the rigid and complex syntax
of SQL; thus, a considerable amount of research has been dedicated to recommending specific parts of the query, named
fragments, rather than recommending the full query [10, 17, 23, 31]. In other words, most works focus on recommending
the next SQL query’s fragments, which are the attributes and the table names used in a query. We explain the concept of
query fragments in more detail in Section 2; however, to clarify, let us illustrate it using an example. Given an SQL
query as SELECT ATTR_1, ATTR_2 FROM TABLE_1 WHERE ATTR_3=1, the set of fragments for this query would be:
{ATTR_1, ATTR_2, TABLE_1, ATTR_3}. Recommending only query fragments may have limitations in isolation, as it
does not cover the entire query construction. However, when combined with other query structure recommendation
systems, users can utilize a two-stage process: first, they select their query structure, and then they choose fragments to
fill the query structure. This approach enhances the overall SQL query creation process [9, 18, 19].

In query recommendation systems, users’ query history can provide valuable insight into their preferences and
objectives, which can be used to enhance the relevance of future recommendations. In other words, by considering the
context of a user’s current session, known as session-awareness, a system can providemore personalized recommendations
tailored to their current needs. Moreover, by analyzing the sequence of queries in a user session, referred to as sequence-
awareness, the system can capture the temporal dependencies between queries and better understand the user’s
intentions. Therefore, incorporating session-awareness and sequence-awareness into query recommendation systems
provides the potential for having more effective and personalized recommendations that align better with the users’
goals [18, 19].

There are different types of recommendation systems, such as collaborative filtering, content-based filtering, and
hybridmethods, which combine collaborative filtering and content-based filtering to take advantage of their strengths [24,
27]. However, these methods often fall short regarding sequential and context-aware recommendations [24, 27]. A
potential solution to overcome these limitations and provide sequential and context-aware recommendations is to
use Natural Language Processing (NLP) techniques. These techniques leverage sequential models to encode a user’s
historical interactions into a vector representation that can be used to provide personalized recommendations [24, 27].
By considering the sequence of events and modeling the context in which the user interacts with the system, these
models can provide more accurate and contextually relevant recommendations.

According to the available literature, only a few studies have considered session-awareness and sequence-awareness
for providing effective and personalized suggestions [18, 19]. However, these studies employed one-hot encoding
to represent user session queries, missing out on capturing semantic similarities and context-awareness. Notably,
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considering contextual and semantic similarity can improve the relevance of suggestions in various applications [24, 27].
Nevertheless, to date, no research has utilized the contextual and semantic similarities between queries to enhance the
accuracy of recommendations. Therefore, the lack of considering contextual similarity is a critical limitation in query
recommendation systems.

In this paper, we propose TranSQLation, a session-aware and sequence-aware recommender system that suggests
fragments of the next SQL query in a user session by considering contextual and semantic similarities between
queries. We propose a BERT-based architecture for TranSQLation that takes a user session as input and recommends
the fragments of the subsequent SQL query in the same session. By leveraging BERT, we can take advantage of its
sequence-awareness and context-awareness capabilities. We evaluate TranSQLation on two frequently-used datasets
and demonstrate that, in case of having a large amount of data, TranSQLation outperforms existing works by 22%
on average. Moreover, even when training data is limited, TranSQLation can still outperform the baselines due
to its transferability. Overall, TranSQLation has significant potential to improve the accuracy and relevance of
recommendations in query recommendation systems.
2 Preliminaries

The main goal of TranSQLation is to propose a session-based, sequence-aware model for SQL query recommenda-
tions. This section begins with a formal definition of key concepts and terms related to the problem and then provides a
brief overview of BERT, the language model used in TranSQLation.
2.1 Terminology
Definition 1 (Query). A query, denoted by 𝑄 , is composed of |𝑄 | tokens, and the sequence of the tokens in 𝑄 is
shown as (𝑡1, 𝑡2, · · · , 𝑡 |𝑄 | ). As an example, assume 𝑄1 represents a query statement as: SELECT ATTR_1, ATTR_2 FROM

TABLE_1. Then, the sequence of tokens of 𝑄1 is: (SELECT, ATTR_1, ATTR_2, FROM, TABLE_1).
Definition 2 (Fragments). Given a query𝑄 , its fragments are the set of all attributes and table names in𝑄 , represented
by fragments(𝑄). Accordingly, the fragment set of 𝑄1 is equal to: fragments(𝑄1) = {ATTR_1, ATTR_2, TABLE_1}.

Definition 3 (Session). A user session is a sequence of queries submitted by the user in chronological order. The
following notation represents a session: 𝑆 = (𝑄1, · · · , 𝑄 |𝑆 | ), where |𝑆 | denotes the session length, i.e., the number of
queries submitted by the user. The use of a numerical subscript to denote the order of queries in a session, such as 𝑖
in 𝑄𝑖 , indicates the sequence-awareness. The sequence of queries in a user session often reflects the intention of the
user [2, 3]. Moreover, if𝑄𝑡 represents a query in the user session 𝑆 and 𝑡 ≤ |𝑆 |, then𝑄𝑡+1 and𝑄∗

𝑡+1 show the actual and
recommended next query in the user session, respectively.

Definition 4 (Log File). A log file is a sequence of user sessions. The number of user sessions in the log file defines
the length of the log file. Therefore, a log file 𝐿, with length |𝐿 |, is represented as 𝐿 = (𝑆1, · · · , 𝑆 |𝐿 | ).
Definition 5 (Fragment Recommendation). If a log file 𝐿 comprises of |𝐿 | user sessions, i.e., 𝐿 = (𝑆1, · · · , 𝑆 |𝐿 | ), then,
the current user session is represented by 𝑆𝑖 = (𝑄1, · · · , 𝑄𝑡 ), where 1 ≤ 𝑖 ≤ |𝐿 |. The primary objective in the fragment
recommendation is to predict the set of fragments of the next query, fragments(𝑄∗

𝑡+1).
Definition 6 (Accuracy). To evaluate the prediction accuracy of fragments(𝑄∗

𝑡+1), similar to [19], we divide it into
the table and attribute accuracy. Assuming𝑄𝑡+1 as the actual next query, we calculate the table accuracy by considering
only the table names present in fragments(𝑄𝑡+1) and fragments(𝑄∗

𝑡+1). Similarly, we calculate the attribute accuracy
by considering only the attribute names in fragments(𝑄𝑡+1) and fragments(𝑄∗

𝑡+1). The formula is as follows:

|fragments(𝑄𝑡+1) ∩ fragments(𝑄∗
𝑡+1) |

|fragments(𝑄𝑡+1) |
(1)
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2.2 BERT Language Model
BERT [6] is a fundamental model leveraged in the design of TranSQLation. It is a language model pre-trained on

significantly large datasets, which can be fine-tuned using smaller datasets to perform various downstream tasks such
as question-answering [30] and sentence classification [5]. BERT utilizes several special tokens to mark different parts
of input sequences to facilitate the pre-training and fine-tuning processes. The most commonly-used special tokes are
[CLS] and [SEP]. The [CLS] token is employed as the first token in the input sequence, and its output is often used in
a classification task. The [SEP] token is utilized to differentiate between two sequences. BERT has different specialized
variants, each targeting specific objectives. One widely-used variant is RoBERTa [22], which modifies the pre-training
process of BERT to enhance its performance and is used as the base model for many other language models, such as
CodeBERT [11], a RoBERTa-based language model for code-related tasks.
3 TranSQLation

As defined in Section 2, the objective of the fragment recommendation is to predict the set of fragments of the next
query of a user session. Figure 1 shows the architecture of TranSQLation. Below, we first elaborate on the different
components of this architecture, and then we provide further details about the training and fine-tuning process.

Recommender Layer

Language Model (BERT, CodeBERT, ...)

SELECT [CLS] ATTR_1 [CLS] ATTR_2 FROM [CLS] TBL_1 [SEP] SELECT [CLS] ATTR_3 FROM [CLS] TBL_2 [SEP]

RSELECT R[CLS] RATTR_1 R[CLS] RATTR_2 RFROM R[CLS] RTBL_1 R[SEP] RSELECT R[CLS] RATTR_3 RFROM R[CLS] RTBL_2 R[SEP]

R′ATTR_1 R′ATTR_2 R′TBL_1 R′ATTR_3 R′TBL_2

ŶATTR_1 ŶATTR_2 ŶTBL_1 ŶATTR_3 ŶTBL_2

Fig. 1. Architecture of the Fragment Prediction Component

3.1 Component Architecture
The architecture of TranSQLation’s fragment prediction is depicted in Figure 1. The insight behind TranSQLation is
as follows:

(1) We create a representation for every fragment that has appeared in the user session so far. To do so, we format

the input and feed it to the BERT language model. By using BERT, TranSQLation becomes aware of the
sequence of queries in each user session, making it both sequence-aware and context-aware.

(2) The obtained representations from BERT are fed to the recommender layer, which is a binary classifier.
(3) The recommender layer estimates the likelihood of each fragment being included in the next query.

In what follows, we explain each of these steps in more detail.
Input Formatting. This step aims to format and prepare the input for being fed to the language model. To this end,
each query in the current user session is first tokenized, and (i) a classification token (e.g., [CLS] for BERT and <s> for
RoBERTa) is inserted before each fragment, and (ii) a separation token (e.g., [SEP] for BERT and </s> for RoBERTa) is
appended at the end of it. We use 𝑄𝑖 to denote the formatted input of query 𝑄𝑖 . For example, if 𝑄𝑖 is SELECT ATTR_1

FROM TABLE_1, then 𝑄𝑖 will be SELECT [CLS] ATTR_1 FROM [CLS] TABLE_1 [SEP].
After creating such augmented representation for each query in a user session, they are concatenated to form the

final input representation (Figure 1). However, it is essential to consider that the maximum length of BERT input tokens
is 512. To ensure compliance, if concatenating a query to the previous ones results in a representation that exceeds
the 512 token limit, we remove a query from the beginning of the concatenation, allowing the input length to stay
within 512. Finally, we feed the concatenation of such formatted and augmented representations to the BERT language
model. Accordingly, BERT returns the encoded representation of all tokens ({R1, R2, · · · }). Among all the encoded
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representations, the representation of the classification tokens (R[CLS]) is extracted and passed to the subsequent layer.
The representations of the classification tokens capture the contextual information of the whole user session and are
used to make predictions for the fragments of the next query.
Recommender Layer. The recommendation layer is a binary classifier comprised of a basic linear neural network
that accepts the encoded representation of the classification tokens from the language model. As shown in Figure 1,
if there are 𝑐 classification tokens, then the input to the recommendation layer is {R′1, R

′
2, · · · , R

′
𝑐 }. For each input, the

output of the recommendation layer (represented by { Ŷ1, Ŷ2, · · · , Ŷ𝑐 }) is the probability of the corresponding fragment
being included in the subsequent query. More specifically, having𝑊 and 𝑏 as the parameters of the recommender layer,
then: Ŷ𝑖 = sigmoid(𝑊 R′

𝑖
+ 𝑏) : 1 ≤ 𝑖 ≤ 𝑐 . According to the predicted probabilities, Ŷ𝑖 , a straightforward strategy is

employed to determine whether the fragments are expected to appear in the next query. Specifically, if the value of Ŷ𝑖
exceeds 0.5, it is inferred that the corresponding fragment will appear in the next query.
3.2 Model Learning

To train and evaluate TranSQLation, we leverage SQL log files to create train and test datasets. The procedure
for creating both datasets is the same. Let 𝐿 be the log file from which the train (or test) dataset is created, where 𝐿
comprises |𝐿 | user sessions, i.e., 𝐿 = (𝑆1, 𝑆2, · · · , 𝑆 |𝐿 | ). For each session 𝑆𝑖 in 𝐿, the queries (𝑄1, 𝑄2, · · · , 𝑄𝑡 ) are iterated
over and formatted according to the input formatting method described in Section 3.1. Let (𝑄1, 𝑄2, · · · , 𝑄𝑡 ) represent
the formatted and augmented queries of 𝑆𝑖 . Then, we create the inputs and their corresponding ground-truth labels as
follows:

∀ 𝑗 ∈ [1, 𝑡 ) :
{
input𝑗 = concat(𝑄1, ...,𝑄 𝑗 )
label𝑗 = fragments(𝑄 𝑗+1 )

(2)

To clarify the procedure of creating the datasets, assume a session consisting of three queries denoted as𝑄1,𝑄2, and𝑄3,
alongside their respective formatted versions denoted as𝑄1,𝑄2, and𝑄3. These queries and their formatted versions are
represented in the first and second columns of Table 1 respectively.

Table 1. An Example of a User Session

Q1: SELECT ATTR_1 FROM TBL_1 WHERE ATTR_3 = 1 �̃�1: SELECT [CLS] ATTR_1 FROM [CLS] TBL_1 WHERE [CLS] ATTR_3 = 1 [SEP]

Q2: SELECT ATTR_3 FROM TBL_2 �̃�2: SELECT [CLS] ATTR_3 FROM [CLS] TBL_2 [SEP]

Q3: SELECT ATTR_1, ATTR_2 FROM TBL_1 �̃�3: SELECT [CLS] ATTR_1, [CLS] ATTR_2 FROM [CLS] TBL_1 [SEP]

Accordingly, for such a user session, the inputs and labels are created according to Table 2:
Table 2. Examples of Inputs and Labels for the User Session

Input Label
1 input1 =𝑄1 label1 = fragments(Q2) = { ATTR_3, TBL_2 }
2 input2 = concat(𝑄1 ,𝑄2) label2 = fragments(Q3) = { ATTR_1, ATTR_2, TBL_1 }

4 Experiments
In this section, we describe the datasets, introduce the baselines, and provide an overview of the experiments

conducted to evaluate the effectiveness of TranSQLation in predicting the fragments of the user’s next SQL query.
4.1 Datasets

For training and evaluating TranSQLation, we need to select several SQL log files for creating the train and test
datasets according to the procedure mentioned in Section 3.2. However, since TranSQLation is a session-aware and
sequential recommendation system, the SQL log files should satisfy two requirements: (1) they need to be session-based,
and (2) the sequence of queries in each session should be specified.

In this regard, we extract all the SQL log files used in similar related work [3, 9, 10, 12, 17–20, 23, 25, 31] and filter
them based on the two mentioned requirements, resulting in having only two SQL log files: Sloan Digital Sky Survey
(SDSS) and SQLShare [15]. SDSS is an astronomical survey containing data for over three million astronomical objects,
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and SQLShare is collected from the SQLShare platform, a database-as-a-service platform where users can upload data
and write queries to interact with it.

For both SDSS and SQLShare, we use the pre-processed data provided by [18, 19]. The data has several attributes,
including session ID and query text. In both datasets, the number of user sessions is 11317. However, the average
number of queries per user session in SQLShare and SDSS is 12 and 86, respectively. Thus, SDSS is about seven times
larger than SQLShare. Such a huge difference makes these two datasets a perfect match for our work. By evaluating the
performance of TranSQLation on both large and small datasets, we better understand how well the model generalizes
across different data sizes and characteristics. This also helps us determine the scalability of the approach and its
potentiality for being used in real-world scenarios, where the size and characteristics of data may vary significantly.
4.2 Baseline

To choose suitable baselines for comparison with TranSQLation, we conducted a thorough review of various related
works [3, 9, 10, 12, 17–20, 23, 25, 31]. Nevertheless, these works utilize diverse resources for their recommendations,
such as log files, database data, and database schema. Given that TranSQLation relies on log files as the primary
resource for recommendation, we can only compare it with other methods that also rely on log files. After filtering the
related works based on this criterion, we ended up with five suitable ones as [3, 9, 17–19]. Among these, [3, 17] are
not appropriate as baselines due to their limitations: the former lacks the capability to suggest new fragments–merely
selecting fragments from the input, while the latter focuses on selecting the range or the value for attributes in where
clauses. Hence, as baselines, we have chosen [9, 18, 19]. Notably, in [19], the authors proposed two different approaches,
namely the convolutional sequence-to-sequence model (ConS2S) and the transformer-based model (Workload-aware),
both of which are considered in our evaluations.
4.3 Fragment Prediction

This section presents the evaluation results of TranSQLation on SDSS and SQLShare log files. The train, test, and
validation datasets are derived from the log files used in [19], following the approach explained in Section 3.1. The
accuracy of TranSQLation is assessed according to the metrics defined in Section 2 and summarized in Table 3. Here,
we analyze the evaluation results for both log files. The source code of TranSQLation is publicly available on GitHub1.
SDSS. As explained in Section 4.1, since SDSS is a large dataset, evaluating TranSQLation on SDSS gives us an insight
into TranSQLation’s ability to generalize and perform well when provided with sufficient training data. In our study,
we introduced two models: TranSQLation-BERT and TranSQLation-CodeBERT, based on BERT-base and CodeBERT,
respectively. We chose BERT-base to evaluate how changing the input format for a basic transformer-based variant
affects performance and CodeBERT to measure how using this input format for a structure-aware language model
improves performance. Rows 1 to 5 in Table 3a describe the results of these models. The results confirm that both
TranSQLation-BERT and TranSQLation-CodeBERT significantly outperform the baseline using a proper input
format. Specifically, TranSQLation improves table accuracy by up to 15% and attribute accuracy by up to 30% 2.
SQLShare. SQLShare is a smaller dataset than SDSS, and using it enables us to evaluate TranSQLation’s performance
with limited training data. Given that TranSQLation-BERT outperforms TranSQLation-CodeBERT for SDSS, we
chose BERT as the base language model for SQLShare and proposed the TranSQLation-BERT model. Row 1 of Table 3b
shows the evaluation result of TranSQLation-BERT on SQLShare. The results indicate that while TranSQLation
achieves comparable results to the baseline, it does not outperform it due to having limited training data. Thus, to
improve TranSQLation’s performance on such small datasets, we hypothesized that fine-tuning the model on a large

1https://github.com/ShirinTahmasebi/RESQUE_BERT
2The improvement percentage of two values 𝑣1 and 𝑣2 is calculated as: 𝑣1−𝑣2

(𝑣1+𝑣2 )/2
× 100
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dataset and transferring it to a small dataset could enhance its performance. We proposed TranSQLation-BERT-
Transferred, which uses the TranSQLation-BERT model fine-tuned on SDSS as the base model and then fine-tuned it
on SQLShare. The evaluation results in row 2 of Table 3b show that TranSQLation-BERT-Transferred outperforms the
baseline in terms of both table and attribute accuracy, improving them by 8% and 2%, respectively. Thus, thanks to the
scalability and transferability of TranSQLation, it can outperform the baseline even with limited training data.

Table 3. Accuracy of Fragment Prediction (The accuracy of baselines are reported according to [18, 19].)

(a) Results on SDSS

Model Table Accuracy Attribute Accuracy
1 TranSQLation-BERT 75.89 78.43
2 TranSQLation-CodeBERT 70.99 74.34
3 Workload-aware [19] 65 58
4 ConS2S [19] 65 56
5 QueRIE [9] 46 26

(b) Results on SQLShare

Model Table Accuracy Attribute Accuracy
1 TranSQLation-BERT 66.10 60.40
2 TranSQLation-BERT-Transferred 70.16 67.28
3 Workload-aware [19] 64 66
4 ConS2S [19] 46 55
5 QueRIE [9] 16 26

Freezing BERT Layers. As mentioned earlier, in TranSQLation-BERT, we have used the BERT-base, in which all of
its 12 layers are trained during the fine-tuning phase by default. However, a common approach is to freeze some of
the layers to prevent them from being updated during fine-tuning [13, 16, 21]. This helps the model focus on learning
task-specific features and optimizing only the last few layers, which results in reducing the overall training time and
computation cost and potentially improving the performance by focusing on more task-specific features.

Here, we analyze the effect of freezing the BERT layers on the performance of TranSQLation when trained on
SDSS. Specifically, we investigate the impact of freezing each of the 12 BERT layers in a bottom-up order on the model’s
performance. Consequently, we obtain 12 models, each with different frozen layers. Then, we train each of the 12
models for four epochs and capture the loss value four times per epoch, resulting in 16 captured loss values per model.
These loss values for each of the 12 models are depicted in Figure 2a. Moreover, the training time for each of the 12
models for each epoch is plotted in Figure 2b. We also ensure that these models do not overfit by evaluating their
accuracy in predicting attributes and tables on the test dataset–presented in Figure 2c and Figure 2d, respectively.

After analyzing Figure 2a, Figure 2c, and Figure 2d, it can be inferred that the number of frozen layers significantly
impacts the total loss value, loss convergence rate, models’ prediction accuracy, and models’ training time. Freezing all 12
layers and only training the recommender layer results in model underfitting, as the loss value increases significantly, and
the accuracy on both attribute and table prediction reduces dramatically. Conversely, training all the layers improves the
loss value and models’ accuracy for both table and attribute prediction, despite increasing training time. An interesting
finding is that the training time decreases significantly by freezing four layers, but the loss value improves, and the
accuracy for both table and attribute prediction increases. Furthermore, by freezing four layers, the accuracy is even
higher than the model in which all the layers are trained. Therefore, the insight gained from this experiment is that by
freezing some of the BERT model layers, the model can learn task-specific features better and, in some cases, achieve
better accuracy while spending less time training.
5 Related Work

Here, we review and compare existing SQL query recommendation systems to demonstrate their evolution from
2009 to the present day. To accomplish this, we extract the primary features and requirements of such systems and
use them to categorize and compare the works. Furthermore, we discuss the limitations and shortcomings of previous
works that we aim to address in ours. The requirements and features used for comparing the existing works are: (1)
Session-awareness, which can be advantageous in providing personalized and relevant suggestions by considering
other queries in the session. (2) Sequence-awareness, which enables the system to capture temporal dependencies
between queries, allowing a better understanding of users’ intentions. (3) Contextual similarity, which is shown to
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Fig. 2. The Impact of Freezing BERT Layers in TranSQLation-BERT on (2a) Loss Value, (2b) Training Time, (2c) Attribute Accuracy,

and (2d) Table Accuracy

enhance the quality of recommendations in many recommenders by considering the semantic and contextual similarities
between items [24, 27]. (4) Recommendation type, which can either be in the form of auto-completion of the query
that is currently being written or suggestions for the next query. (5) Basis of recommendation, which refers to the
source of recommendations. The most frequently-used ones are database data, database schema, and query logs.
In Table 4, we compare these systems based on the aforementioned features and requirements.

Table 4. Summary of SQL Recommendation Systems

Session-aware Sequence-aware Contextual Similarity Recommendation Type Based on
Auto-completion Next Query Data Schema Logs

Join Queries [31]
Interactive Refinement [23]

SnipSuggest [17]
SQLSugg [10]
QueRIE [9]
Blaeu [25]

ExplIQuE [20]
PyExplore [12]
DASQR [3]

Sequence-aware [18]
Workload-aware [19]

TranSQLation

6 Conclusion and Future Work
In this paper, we proposed TranSQLation, a recommendation system for suggesting SQL query fragments within a

user session. TranSQLation is designed to be session-aware, sequence-aware, and context-aware, addressing limitations
in existing SQL recommenders. Our results showed that TranSQLation outperforms existing solutions, achieving
a 22% performance boost when trained on ample data and remaining effective even with limited data. As a future
work, we aim to predict query templates and integrate them into TranSQLation for an enhanced recommender. This
combination will allow users to choose a template for their next query and fill it in with recommended fragments.
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