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Abstract—So far, initial treatment recommendations for
internet-based cognitive behavioral therapy (iCBT) decision sup-
port were mostly high-level or static. Personalized treatment
recommendations could pave the way toward better treatment
outcomes and adaptive treatments by leveraging information
from past patients. We explore the disadvantages of multi-class
recommendation and propose a modular approach using multi-
label classification for treatment recommendations. Our machine
learning-based treatment recommender composes treatment pro-
grams from a set of modules. It achieves a 79.02% F1-score on
historically successful treatments, significantly outperforming the
existing system by around 4% while offering other advantages
such as interpretability and robustness. Using our recommenda-
tion as an initial starting point, clinicians can adjust the modular
treatments to provide a more personalized treatment.

Index Terms—Personalized treatment, Machine learning,
Treatment recommendation, Internet-based cognitive behavioral
therapy, Modular treatments, Common mental health disorders

I. INTRODUCTION

Mental disorders are among the most prevalent illnesses,
affecting nearly one billion people worldwide [1]. Although
mental illness can be effectively treated with psychosocial
interventions, only a minority of patients receive timely and
effective treatment. To meet the increasing treatment need,
more automated methods have been developed in the last two
decades [2]. Among these, research has focused chiefly on
internet-based psychotherapy [3], particularly internet-based
cognitive behavioral therapy (iCBT). By now, significant ev-
idence suggests that iCBT is efficient and effective in the
treatment of mental disorders [4]-[7] and can reduce relapse
rates dramatically [8]. However, more research needs to be
done to understand which interventions work best for whom.

In psychotherapy, precision mental health means helping
a clinician make treatment-related decisions to find the most
promising path to change for a given patient using empirically
based decision rules [9]. Machine learning (ML) techniques
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Fig. 1. Treatment recommendation process.

can play a crucial role in precision mental health by symptom
and risk factor identification, prediction of symptom pro-
gression, and treatment personalization [10]. ML models to
assist clinicians in navigating the psychotherapeutic process
are called clinical decision support systems (CDSS) [11]. Per-
sonalized pre-treatment recommendations include suggestions
based on pre-treatment patient features to select the optimal
treatment. Literature on this topic suggests that ML can be
applied to predict patients’ expected response to different
treatment options [12]-[14] or assign patients to matching
therapists [15]. The transferability of these findings to real-life
settings is questionable, and fine-grained treatment recommen-
dations for specific interventions within one psychotherapeutic
model may be more feasible in clinical practice [11].

Braive' is one of the companies addressing this challenge.
Braive offers a scalable, digital, on-demand solution with
11 psychotherapy treatment programs for adults suffering
from common mental disorders (CMDs), including depres-
sion, anxiety, insomnia, and stress-related disorders. Braive’s
platform uses evidence-based iCBT techniques in a self-help
or a blended treatment approach combining self-help with
clinician feedback. The patients follow treatment programs,
which comprise eight to 12 treatment modules. There are
32 modules in total, each representing distinct content. On
average, a treatment program consists of nine modules (at least
six and at most 12). Each module is designed to be completed
in a week. Therapists give feedback on each completed module
in written form or via a 30-minute video call.

Fig. 1 shows the process of Braive’s current system for
treatment program recommendation (Braive’s system). There
are four steps: (i) mental health check (MHC), (ii) initial treat-
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ment recommendation, (iii) assessment call, and (iv) treatment.
Patients complete the MHC, which includes demographic vari-
ables and validated psychometric questionnaires to assess their
mental health condition. The MHC provides item and total
scores, with higher scores indicating more severe conditions.
The MHC is described in Section II-A. Based on the MHC
results, an initial treatment recommendation 7' is generated
using a static decision tree, suggesting one of 17 programs
for adults or adolescents. In the assessment call, the clinician
presents the treatment recommendation T to the patient, and
they discuss and agree on a suitable treatment 7. The patient
may either follow the recommended treatment (7' = T") or opt
for an alternative program (T # T”). Once the treatment 7" is
chosen, the patient begins the program, and their treatment
trajectory is evaluated using general and symptom-specific
questionnaires. Detailed information on monitoring treatment
trajectories can be found in Section II-B.

Braive’s system recommendations align with completed
treatment programs in only 35.6% of cases. In the remaining
cases, the treatment program is changed. Another notable
limitation of Braive’s system lies in its failure to consider valu-
able historical patient data, impeding its capacity to provide
personalized recommendations due to its static nature.

As health technologies and applications make health and
behavioral data available on a large scale, the ML approach
seems particularly suitable to address this problem [10]. We
hypothesize that training ML models can improve treatment
program recommendations. To that end, we create datasets
and train ML models on Braive patients’ pre-treatment mental
health evaluations and show that our ML models outperform
Braive’s system. Our findings suggest that individual symptom
patterns before the beginning of treatment can be used for (i)
personalizing treatment, (ii) supporting clinicians in choosing
the most promising treatment option, and (iii) improving
treatment outcomes.

In summary, this paper makes the following contributions:

1) We create a dataset comprising samples identified as
successful treatments (Section II).

2) We train ML models for personalized treatment recom-
mendations (Section III).

3) We evaluate and discuss the results of a multi-class vs. a
more modular approach using multi-label classification
with four ML architectures (Section IV and Section V).

II. TREATMENT RECOMMENDATION DATA

This section outlines creating datasets for training per-
sonalized treatment recommendation ML models. We follow
a four-step approach: (i) introducing the MHC as model
input, (ii) defining treatment trajectories, (iii) merging MHC
and treatment trajectories, and (iv) filtering out unsuccessful
treatments and providing justification for this strategy. The
subsequent parts of this section elaborate on the study design
and delve into each of the four steps in comprehensive detail.

In this study, we use de-identified clinical data from 1369
patients signing up for Braive treatment between 05/2021
and 10/2022. Data analysis was carried out between 06/2022

and 12/2022. All patients gave written consent for their de-
identified data to be used in routine evaluations for service
monitoring and improvement.

A. Step 1: Mental Health Check (MHC)

Before assigning a treatment program, a patient completes
the MHC, which comprises demographic variables (gender,
age, civil status, children, occupational situation) and validated
psychometric questionnaires to assess the patient’s mental
health.? The questionnaires vary in the number of items, and
each item has multiple answer options with corresponding
scores. Patients choose the option that best reflects their
situation, with higher scores indicating more severe symptoms.

B. Step 2: Monitoring Treatment Trajectories

Once a patient begins the treatment phase, the treatment
trajectory is evaluated using two questionnaires for general
assessment: K10 [29] and PSS [27] (general questionnaires).
Depending on the treatment program, either K10 or PSS is
used, but never both. A patient’s treatment trajectory 7 is the
sequence of total scores s; for the general questionnaires (1).
Total scores s; are the sum of item scores s;; at each t.
The trajectory begins at ¢ = 1 and ends at ¢ = M, where
M is the maximum number of modules for that treatment
program. If a patient quits a treatment program, no further
questionnaire scores are available from that s;. The number
of questions N in a questionnaire remains the same at each .
For instance, a patient fills out the general assessment at any
t by answering 10 questions (N = 10), producing the item
scores {S¢1,St.2y---,8,10}

N
s SMt St:ZSt,j, t=1,....M (1)

j=1

7 ={s1,89,...

In addition to the general questionnaires KI10/PSS,
the patients complete symptom-specific questionnaires. Six
symptom-specific questionnaires are employed: GAD-7, PHQ-
9, SPIN, ISI, PADIS, and KEDS. They are used more sparsely,
usually at the beginning of every second module. Symptom-
specific questionnaires are linked to specific modules, e.g.,
PADIS is used along with K10 for the panic disorder program
producing only the scores {s1, s3, S5, $7}

C. Step 3: Merging MHC and Treatment Trajectories

We merge MHC scores with treatment trajectories to create
supervised ML training datasets. Matching is based on patient
and treatment identifiers, as well as timestamps. Exactly one
MHC is required per treatment trajectory. Correct timestamp
order is crucial because MHC precedes treatment. Exceptions
include cases where patients start treatment without an MHC,
which are excluded. Multiple MHCs can be filled by a
patient, such as post-treatment assessments or when changing
treatment programs. The last treatment program is typically

2We use PHQ-9 [16], GAD-7 [17], KEDS [18], Mini-SPIN [19], PADIS
[20], ISI [21], PC-PTSD-5 [22], GAF [23], IPDS [24], BGQ [25], SCOFF
[26], Perceived Stress Scale (PSS) [27], and BDDQ [28].



the most successful. Fig. 2 exemplifies non-trivial merging to
end up with the desired 1:1 mapping, where multiple MHCs
and treatment trajectories need to be considered.
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Fig. 2. Merging MHCs and corresponding treatment trajectories (7).

D. Step 4: Successful Treatment

Only patients with positive treatment outcomes are included
in the dataset to ensure the integrity of model training and
prevent distortion. If the models were trained on a mixture
of successful and unsuccessful MHC samples, the ground
truth would become ambiguous. To address this ambiguity and
maintain consistency, we employ a criterion to differentiate
between successful and unsuccessful treatments. The reliable
change criterion (RCC) [30], [31] serves as a classification
rule [32], distinguishing whether patients have experienced
significant change beyond measurement variability [31]. It has
shown reliability in predicting treatment response in clinical
populations [32]. Specifically, a successful treatment is deter-
mined by the difference in scores As between the initial score
s1 and the final available score s, in the treatment trajectory
surpassing the RCC threshold: As = s; — sp; > RCC.

We use the RCC from [31] with a 90% confidence interval
(CI), derived in a four-step process. First, we determine Cron-
bach’s alpha («) [33], which measures the internal consistency
of a test [33]. We calculate Cronbach’s alpha for K10 and
PSS and use normal population samples for symptom-specific
questionnaires from [34]-[40]. For N number of questions
in the questionnaire, average covariance between questions
O'JZ, and the overall variance of the total measured score O'g(,
Cronbach’s alpha is defined as follows.

N D
a= (- = ). )

In the second step, we calculate the standard deviation o
on the item scores {si1,51,2,...,51, 8} at t = 1, with N
number of questions, mean questionnaire score (i, and item
scores s ; and use it with « to compute the standard error
SE in the third step as follows.

N

1
=5 Z(Sl,j — )%, €))

j=1

SE:O'l'\/i'm. (4)

Finally, to provide a sufficient sample size to develop and
test the prediction model, we multiply the z-score for the 90%
CI with the SE to retrieve the RCC = 1.645 x SE. A value
greater than the RCC would only occur by the unreliability
of measurement alone in less than 10% of times (p < 0.1)
that two measurements are made on the same person [31]. We
could and will improve the model in future iterations using a
CI of 95% (p < 0.05) when more data is available.

III. MODELS FOR TREATMENT RECOMMENDATION

This section presents the models employed in our analysis,
focusing on supervised learning models for tabular data tasks
[41]-[43]. We categorize the training objectives into multi-
class and multi-label classification, accompanied by corre-
sponding performance metrics.

A. Training Objectives - Multi-class vs. Multi-label

When therapists followed ML-driven treatment recommen-
dations based on pre-treatment patient characteristics in the
first ten sessions, Lutz et al. [44] found an increase of 0.3
in effect size in an outpatient setting. Hence, we aim to
recommend personalized treatments to patients using pre-
treatment questionnaire scores from the MHC. We refer to
treatment programs as 7' and labels at the time of ML training
as y. We define the task in two ways that differ in label
granularity: multi-class vs. multi-label classification.

1) Multi-class classification: The ground truth y €
{1,...,C} corresponds to a treatment program. In multi-class
classification, labels are mutually exclusive: one treatment
program y per MHC sample. The deviation from the ground
truth is measured to determine the classifier’s performance.
During training, the model learns to minimize the deviation.

2) Multi-label classification: We define the task of predict-
ing a treatment program on the modular level. Each treatment
program is a composition of modules. Thus given a set of K
distinct modules, a treatment program y can be represented as
a binary vector y = {my, ma,...,mx}, where

0 if module ¢ treatment program

®)

e 1 if module € treatment program.

This way, a treatment program is defined more granularly
but irrespective of the order of the modules. For instance,
suppose two treatments 77 and T, with two modules msy
and my out of four total modules: T3 = {msy,my} and
Ty = {my4,ma}. These two treatments will have the same
binary vector representation y = {0,1,0,1}.

In multi-class classification, we train a model that learns to
map the MHC input to a class label {1, ..., C}. In multi-label
classification, we train K classifiers (one classifier for each
module) that each predicts whether a particular module m;
should be included, thereby transforming the approach from
multi-class into multiple binary prediction tasks.



B. Machine Learning Models

We evaluate the following ML models in multi-class and
multi-label classification: decision tree [45], random forest
[46], and XGBoost [47]. These models have excelled on
tabular data in the medical domain [41]-[43]. We also include
logistic regression for multi-label classification. We employ
a one-vs-the-rest (OvR) approach to produce binary modular
predictions. In OvR, we fit one classifier for each class
against all other classes. We use the scikit-learn library [48] to
implement the models. We use Braive’s system as a baseline.

C. Data Preprocessing

We transform the categorical features using one-hot encod-
ing. We z-standardize the numeric MHC questionnaire scores
using (s; — u)/o where p is the mean and o the standard
deviation of the questionnaire. We remove MHC and treatment
trajectory pairings with fewer than two completed modules.
Pairings below the successful treatment threshold are also
excluded. We split the data into train, validation, and test sets.

IV. EXPERIMENTAL RESULTS

In this section, we present the datasets and the metrics we
use for our analysis and evaluate the results.

A. Datasets

We experiment on three datasets:

1) DI: We merge MHC total scores and general (K10/PSS)
treatment trajectories. There are a total of 1528 patient
samples. We then exclude those instances where the
treatment is unsuccessful according to the success mea-
sure. Of the 1528 patient samples, 579 remain.

2) D2: We merge MHC item scores and general treatment
trajectories. We explore whether item scores serve as
better input for the model to make predictions. There are
also 579 patient samples, though the number of features
increases as there are more MHC item than total scores.

3) D3: We merge MHC total scores and symptom-specific
treatment trajectories. We explore whether the symptom-
specific questionnaires are a more sensitive measure of
the symptoms and provide better results than general
ones. There are 343 patient samples in this dataset.

We use the RCCs to distinguish between successful and
unsuccessful treatments. Cronbach’s alphas «, standard devia-
tions ¢ and standard error of change (SE) to compute the RCCs
are shown in Table I. General questionnaires are above, and
symptom-specific questionnaires are below the dashed line.
The RCC represents the minimum reduction needed from s;
to sy to fulfill the requirements to be a successful treatment
defined in Section II-D. For instance, a patient with a K10
treatment trajectory must improve by at least 7.72 from the
first score s; to the last score s, to be included in the dataset.

TABLE I
RELIABLE CHANGE CRITERIA FOR QUESTIONNAIRES.
Questionnaire 16" o1 SE | RCC
K10 085 | 7.17 | 3.94 | 7.72
PSS 0.83 | 6.50 | 3.78 | 7.41
| "GAD-7 (D) | 0.89| 341 | 1.60 | 2.63 |
PHQ-9 (UK) 0.83 | 647 | 377 | 6.20
SPIN (UK) 094 | 930 | 3.22 | 5.30
ISI (N) 090 | 6.20 | 2.77 | 4.56
PSS (D) 0.85 | 641 | 3.51 5.77
PADIS (AUS) 0.86 | 2.74 1.45 2.38
KEDS (SWE) | 0.75 | 6.18 | 437 | 7.19
TABLE II

TEST SET RESULTS IN PERCENT (%) FOR MULTI-CLASS PREDICTION ON
THE TOTAL SCORES DATASET (D1).

Model Prec. | Recall FI
Braive’s system | 42.21 35.60 | 34.84
Decision Tree 30.75 3478 | 31.46
Random Forest | 31.99 39.13 | 34.86
XGBoost 30.08 36.52 | 32.41

B. Evaluation Metrics

We perform 5-fold cross-validation for multi-class and
multi-label classification and evaluate test set results using pre-
cision, recall, and F1 to compare multi-class and multi-label.
Additionally, we evaluate multi-label results with Hamming
loss (HL) [49] and the Jaccard index [50], also known as the
Intersection over Union (IoU), to provide a more comprehen-
sive evaluation. We plot the receiver operating characteristic
(ROC) curves for multi-label results and provide the area under
the curve (AUC). The metrics for supervised classification are
computed in a OvR manner for each class (see Section III-B).
We present the micro and weighted averages for the metrics.

C. Multi-class Treatment Program Prediction

We train the models mentioned in Section III first as multi-
class and second as multi-label classification. We measure the
results using the metrics from Section IV-B. Table II shows
the test set results for the multi-class classification on D1. The
model predicts the treatment program, e.g., Depression and
Anxiety or Depression and Sadness. The F1-score of Braive’s
system (34.84) is only matched by random forest (34.86). The
decision tree (31.46) and XGBoost (32.41) fail to match the
performance of Braive’s system. Overall, we observe that the
multi-class performance is not convincing.

To investigate the cause, suppose three treatment programs:
T,, Ty, and T,. The predictive performance of a supervised
ML model is evaluated by comparing the prediction ¢ to the
ground truth y. If we evaluate a multi-class classification, y
and y take the form of one of the treatments 7T,, T and
T,, usually represented as a dummy vector of shape 1 x |C|
where |C| is the number of classes. A classifier is trained
and predicts one of the three treatments. However, treating
each misclassification § # y equally wrong is problematic
because there is an inherent similarity between some treatment
programs that share modules.



TABLE III

TEST SET RESULTS IN PERCENT (%) FOR MULTI-LABEL CLASSIFICATION ON D1-D3.

Total scores (D1) Item scores (D2) Symptom-specific (D3)
Model HL  IoU Prec. Recall F1 HL  IoU Prec. Recall F1 HL  IoU Prec. Recall F1
4 T i) T T 4 T T T T 4 i) i) T T
Braive’s system 14.68 6491 79.15 7439 75.36 14.68 6491 79.15 7439 7536 13.82 66.76 81.28 76.27 77.02
Log. Regression | 11.74 70.30 79.49 7847 77.68 13.46 67.87 7775 7691 76.61 1242 6997 7930 7635 77.17
Decision Tree 1293 69.02 7539 7797 75.87 14.65 65.11 74.67 7443 73.66 11.44 69.56 7421 76.02 74.90
Random Forest 10.90 71.54 81.02 80.13 78.66 12.27 6820 78.56 77.44 75.89 11.22 7118 7796 7810 77.22
XGBoost 11.25 7137 81.24 79.63 79.02 12.18 69.02 80.87 77.96 77.69 11.01 70.61 7442 77.77 75.83
The similarity is better captured if we consider the modular 1.0] o ]
. _ g RSP I TR TR AR "
representation of a treatment program. Now the treatment pro- et s
7’
grams are represented as 7, = [0,1,1,1,1], T, = [0, 1,1, 0, 1] 08l o
. - 4
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. . . 4
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ground truth is y = T},. In multi-class classification, we get the False Positive Rate
Fl-scores 1, 0, and 0, respectlvely. In multi-label classification, Fig. 3. Micro-averaged ROC for modular predictions on MHC total scores.

we get the Fl-scores 1, 0.75, and 0.25, respectively.

D. Multi-label Modular Treatment Prediction

Instead of using programs as labels, we redefine labels as
modules, shifting the training objective to multi-label classifi-
cation while utilizing the same dataset (D1). Table III presents
the test set results for modular treatment recommendation, with
Braive’s system achieving a 75.36% Fl-score. ML models
surpass the baseline, with logistic regression (77.68%) out-
performing the decision tree (75.87%). Random forest and
XGBoost outperform Braive’s system in all metrics, with
XGBoost achieving the highest Fl-score at 79.02%, followed
by random forest at 78.66%.

Fig. 3 displays the ROC curves for multi-label treatment
recommendations based on total scores. The micro-averaged
AUC is reported for each ML model, demonstrating superior
performance compared to a random classifier. Random forest
and logistic regression slightly outperform XGBoost with an
AUC of 0.94, while the decision tree performs the worst
at 0.92. Similar results are obtained for item scores, where
random forest achieves the highest AUC of 0.94, followed by
logistic regression (0.93) and the decision tree (0.90).

To compare the multi-class and multi-label approaches,
we map the multi-class labels to modular representations of
treatment programs and compare y to y. The modular repre-
sentation is limited to binary vectors representing predefined
modular treatments, with maximum |C/| distinct binary vectors.

Table IV presents the results for modular evaluation, show-
ing significant improvements in all metrics compared to multi-
class performance in Table II. The best-performing model
achieves an Fl-score of 76.00%, more than doubling the

TABLE IV
TEST SET RESULTS IN PERCENT (%) FOR MULTI-CLASS WITH MODULAR
EVALUATION (D1).

Model HL IoU | Prec. | Recall F1

4 T T T T
Braive’s system | 14.40 | 65.63 | 80.17 74.98 | 76.00
Decision Tree 15.30 | 65.66 | 73.67 76.12 | 73.95
Random Forest | 14.51 | 67.09 | 73.66 78.36 | 75.66
XGBoost 14.78 | 66.81 | 73.25 78.11 | 75.17

previous result of 34.86%. It is important to note that these im-
provements stem from the evaluation approach change rather
than an actual performance increase. Nonetheless, even in
the modular evaluation, multi-label models outperform multi-
class models. The modular approach promotes personalized
treatment, offering robust and interpretable models trained for
each module. The models focus on learning signals directly
related to specific modules, enhancing customization during
retraining.

The recommendations do not reflect the order of modules,
except for naturally ordered modules like introduction mod-
ules. Future work will explore the ordering of modules using
approaches similar to [51]. Ordering remains the responsibility
of clinicians for the models presented in this study.

V. DISCUSSION

A. Personalized Treatment Recommendations

We present models for personalized treatment recommen-
dations. We show that multi-class predictions of a treatment
program are sensitive to the evaluation scheme. Furthermore,



multi-class recommendations lack the granularity to provide
personalized recommendations. Multi-label recommendations,
on the other hand, allow for the composition of treatments
tailored to the individual needs of each patient. Our study can
be placed within the broader context of using ML approaches
for mental health treatment predictions. Other researchers used
prognostic indices (see [52] for an overview) or compared
treatment outcome estimates for different treatment alterna-
tives (e.g., [53], [54]) or the expected change for different
treatment strategies (e.g., [55]-[57]) to predict optimal treat-
ment. Different methods were used for treatment selection.
We, in contrast, predict more fine-grained treatment recom-
mendations as modular components focused on interventions
rather than strategies. On a technical level, this means higher
complexity in terms of the number of classes: 11 treatment
programs in multi-class and 32 in multi-label classification.

B. Item vs. Total Scores

We train and evaluate multi-label models for the item (D2)
and total scores (D1). The results are shown in Table III.
We hypothesized that training on item scores might improve
performance because item scores contain more information
than total scores. There are myriad possibilities to arrive at
the same total score. Hence, knowing the degree to which
each question contributed could be valuable. We observe no
improvements on MHC item scores compared to total scores.
Models trained on the total scores (D1) outperform their
counterparts trained on item scores (D2) on all metrics. Total
scores seem to contain enough information for the models
already to learn meaningful features.

C. General vs. Symptom-specific

As the RCCs are the basis for subsetting our datasets,
the quality of the datasets is directly affected by the quality
of the measure for treatment trajectories. Symptom-specific
questionnaires are more specific for symptom development,
thus functioning as better indicators for the treatment trajectory
of a patient. Hence, symptom-specific scores could distinguish
better which treatments were successful and which were not.
We expect models on the symptom-specific dataset D3 to
perform at least as well as those trained on the general
questionnaire datasets D1 and D2, possibly even better. We
see improvements in the Fl-score for three models when
comparing D2 to D3 (Table III). The XGBoost model trained
on D2 performs better. Compared to D1, the D3 models per-
form worse. The baseline improves from 75.36% to 77.02%,
indicating that Braive’s system performance is better reflected
in symptom-specific scores.

D. Inclusion Criteria of Patient Samples

We exclude patient samples classified as unsuccessful based
on the RCC. The dataset decreases from 1528 to 579 samples.
Already operating with a small dataset, we inhibit the ability
to learn from more samples. We argue that unsuccessful
treatments should not be considered recommendations as the
treatment did not lead to the desired decrease in psychometric

scores. Similar strategies were conducted by [12]. They only
included 50% of the patients with the strongest PAIs (Person-
alized Advantage Index), a measure to indicate the difference
between the outcome predictions of two treatment approaches.

We include all patients with at least two completed modules
and a degree of improvement between the first and last
completed module greater than or equal to the RCC. We
calculate RCCs for each primary outcome measure and the
K10 by applying a change equal to z = 1.645 on the basis
of a standard deviation unit. However, alternative strategies
for defining the training dataset could be considered if data
quantity was not the primary concern. Studies examining the
dose-response relationship in psychotherapy in routine care
settings recommend dosages between four and 26 sessions
for less severe symptoms and short-term treatments [58]. As
even higher dosages are needed for severe psychopathology
and open-ended treatments [59], it is debatable whether a
successful treatment outcome after only two sessions in our
sample is attributable to treatment. Furthermore, a common
definition of psychotherapy treatment response follows [30]
definition of clinically significant change (RCC < 1.96 x o
and pass halfway cut-off to normal population compared to
patient population), which is a stricter change criterion.

Assuming that treatment outcome in more complex psychi-
atric problems (e.g., major depressive disorder plus comorbid
OCD) is disproportionately often unsuccessful in our data,
such patients would not adequately be represented in the
training data. Using routine care data instead of high-quality
research data to train our model may result in clinical decisions
that do not align with scientific evidence, perpetuating sub-
optimal choices [60]. Yet, undue reliance on research data in
algorithm development may neglect crucial clinical knowledge
and potentially compromise the quality of care [61].

VI. CONCLUSION AND FUTURE WORK

We presented ML models for treatment recommendations
based on pre-therapy patient assessment. We evaluated two
classification objectives, i.e., multi-class vs. multi-label, and
four architectures, i.e., logistic regression, decision tree, ran-
dom forest, and XGBoost. Using multi-label classification, we
improved the baseline, i.e., Braive’s system, on F1-scores in all
experiments. We explored the role of the evaluation scheme
in multi-class and multi-label classification. Multi-label out-
performed multi-class models in modular evaluations. Addi-
tionally, the modular approach is preferable because it offers
more granular models. This paper provides the groundwork
for implementing a new treatment recommendation model in
production at Braive. This treatment selection model can sup-
port decision-making by providing data-informed predictions,
which can be adapted by continuously monitoring the patient’s
condition throughout treatment.
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