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Abstract—Publish/subscribe communication model has become
an indispensable part of the Web 2.0 applications, such as
social networks and news syndication. Although there exist a
few systems that provide a genuinely scalable service for topic-
based publish/subscribe model, the content-based solutions are
still suffering from restricted subscription schemes, heavy and
unbalanced load on the participating nodes, or excessively high
matching complexity. We address these problems by constructing
a distributed content-based publish/subscribe system by using
only those components that are proven to be scalable and can
withstand the workloads of massive sizes. Our publish/subscribe
solution, Vinifera, requires only a bounded node degree and as
we show, through simulations, it scales well to large network
sizes and remains efficient under various subscription patterns
and loads.

I. INTRODUCTION

The amount of data in the digital world that surrounds us is

increasing very rapidly, thus, finding the relevant pieces of in-

formation becomes even more challenging. Publish/subscribe

systems, which are now pivotal to many Web 2.0 applications,

especially On-line Social Networks (OSNs) like Twitter, Face-

book and Google+, leverage this problem by providing users

with only the information they are actually interested in, e.g.,

a friend’s status update, sport news, or a music playlist. As a

result, when some new data is generated, the interested sub-

scribers are notified. All these examples, which classify data

into coarse-grained predefined categories or topics, are known

as topic-based subscriptions. On the other hand, subscriptions

that define a more fine-grained filter over the content of the

generated data, are called content-based. These subscriptions

usually consist of continuous ranges of values over several

attributes that describe the content. For example, a user may

be interested to get notified if the local temperature is below

zero between 6am and 6pm.

The traditional model to provide a publish/subscribe service

uses a central server or broker to maintain node subscrip-

tions [2][6][14]. The published data is also sent to this central

point and is matched against the existing subscriptions. Since

subscription maintenance and matching are done centrally

in this approach, the server could become a bottleneck as

the number of users and subscriptions grow. Consequently,

researchers have studied distributed publish/subscribe sys-

tems, in particular peer-to-peer (P2P) solutions, as an al-

ternative design paradigm to the centralized model. Cur-

rently, a wide range of solutions are proposed for topic-

based publish/subscribe over P2P overlays [4][11][16][32].

The topic-based solutions, however, can not be readily reused

for the content-based model, due to the conceptual differ-

ences, i.e., discrete independent topics versus multiple con-

tinuous ranges over various attributes. Hence, a number of

solutions have been proposed particularly for P2P content-

based publish/subscribe [19][31][36][39], spanning from the

designs based on unstructured gossip driven overlays to highly

structured overlays with rigid event dissemination structures.

In particular, at one end of the design space we find a

family of solutions that are subscription aware [19][36]. These

solutions, partition the data space into subspaces that include

each and every subscriber that is interested in that subspace.

Published data is routed to the subspace that it belongs to, and

is delivered to the subscribers in that subspace. As we describe

in Section II, these systems perform well under simple work-

loads, but fail to deliver an efficient service to massive number

of users with multi-dimensional subscriptions, mainly because

they require unbounded number of connections per node.

Moreover, despite having to maintain potentially numerous

connections, these solutions can not provide an upper bound

guarantee for average delivery path length.

At the other end of the design space lie DHT-based solu-

tions, such as [31][37][39], that exploit a technique, known

as rendezvous routing [5]. To enable rendezvous routing all

the nodes and attributes are embedded in an identifier space,

by taking a random identifier. Also, a distance function is

introduced to make a greedy routing possible. The node with

the closest, but higher, identifier to the attribute identifier is

selected as the responsible node, i.e., the rendezvous node, for

that attribute. Every subscriber node that performs a greedy

routing (lookup) for an attribute identifier, therefore, ends up at

the rendezvous node for that attribute. Next, the reverse routing

path, i.e., from the rendezvous node to the subscriber node, is

used for data dissemination. Consequently, the dissemination

structure consists of a single tree per attribute, thus, often

consisting of a handful of dissemination trees for the whole

node population. Note, this is different from the multiple

rendezvous based trees for topic-based subscription model

(e.g., as in Scribe [10]), because, as opposed to the topic-

based model, where a subscriber to a topic wants to receive

all the events relevant to that topic, in the content-based model

nodes that join an attribute tree, are often subscribed to only

a subset of the possible values for that attribute. Hence, while

this approach does not require an unbounded node degree, the

constructed dissemination trees, which blindly deliver all the

events to every node on the tree, are very inefficient.

In fact, the aforementioned state-of-the-art solutions are



forced to choose a trade-off between scalability (bounded node

degree and efficient routing) and overhead (both in volume

and distribution), thus, fail to provide a genuinely distributed

publish/subscribe service for Internet-scale applications. Such

state of the design space inspired us to work on a solution

which would not require unsuitable trade-offs and could retain

all the desirable properties of a scalable system under any

scenarios. As a result, we propose Vinifera, which to the best

of our knowledge, is the first P2P content-based system that

simultaneously fulfills all the fundamental requirements of a

scalable distributed service.

Vinifera is empowered by a gossip-based topology manage-

ment service and clusters the nodes with similar subscriptions.

These clusters are later exploited to create efficient data

dissemination structures. The same gossiping process, also,

embeds a navigable small-world structure into the overlay

after each node is assigned an identifier, selected from a

globally known identifier space. This enables a distributed

greedy distance minimizing routing algorithm to find short

paths between any two nodes, which in turn, allows us to

utilize the aforementioned rendezvous routing technique [5].

However, in contrast to other content-based publish/subscribe

systems that construct a single delivery tree per attribute, thus,

suffer from an unbalanced load and large traffic overhead,

Vinifera constructs a forest per attribute, where the roots of the

trees in the forest are the rendezvous nodes for the attribute

values, thus, the load is distributed over all the participating

nodes. These trees are dynamically constructed based on the

user subscriptions.

Vinifera forest is constructed by utilizing an order preserv-

ing hash function [13], that maps each and every attribute

domain to the node identifier space. For example, if an attribute

has a domain [a, z], this range is mapped to the whole identifier

space (say between 0 and 1) and every node in the overlay

takes the responsibility for a part of this range that falls

between itself and its predecessor in the identifier space. For

example, let us assume nodes X, Y, and Z are responsible

for ranges [a, d], [d, f] and [f, g] in the attribute domain,

which are in turn, mapped to [0, 0.1], [0.1, 0.3], and [0.3,

0.4] in the identifier space. Then, nodes that subscribe to any

value in the first range, route towards node X, while nodes

that subscribe to the values in the second or third ranges, route

towards nodes Y or Z, respectively (Note, a node can subscribe

to a range, which contains multiple rendezvous nodes, for

example, a subscription for the range [b, e] will be routed to

both nodes X and Y, each being responsible for a part of the

subscription). Hence, multiple small trees are constructed for

event delivery for this attribute. We further enhance the load

balancing in Vinifera, by a novel technique that enables it to

deal with non-uniform subscriptions and publications. Thus,

we ensure an evenly distributed load, even in case the data

in some regions of the identifier space is more popular or is

published more frequently than the other regions.

The resulting balanced load in Vinifera is of critical im-

portance, not only because it implies fairness and a higher

resource utilization, but also, and most importantly, because it

enables the system to function under massive data publications

and tolerate failures.

We run extensive simulations to evaluate multiple aspects

of the performance, namely scalability, fault tolerance, load

balancing and congestion control. We compare Vinifera to

a baseline system, constructed based on a state-of-the-art

solution, eFerry [39], which is a purely small-world overlay,

oblivious to node subscriptions. Section II shows that this

baseline solution is also conceptually equivalent to Ferry [39]

and CAPS [31]. We show that, compared to the baseline sys-

tem, Vinifera generates only one third of the traffic overhead,

while the load is evenly distributed among the nodes and the

delivery paths are up to four times shorter. We also show

that Vinifera outperforms the baseline solution in the presence

of churn, derived from real-world traces, and under intensive

publications.

To summarize, our contribution is a genuinely scalable fault-

tolerant multi-dimensional content-based publish/subscribe

system with a bounded node degree requirement, a logarithmic

worst-case bound on the delivery path length, and small and

balanced load on the nodes. We achieve these properties by

utilizing (i) an overlay topology that adapts to user subscrip-

tions and exploits the similarity of subscriptions, in order to

reduce the amount of traffic overhead that is generated in

the network, (ii) constructing multiple efficient dissemination

paths, instead of a rigid single tree structure, and (iii) a load

balancing mechanism that enables the system to work under

massive workloads.

II. RELATED WORK

As we briefly discussed in the introduction, there exist

a number of solutions for building distributed content-based

publish/subscribe systems [19][31][36][39]. In this section, we

will have a closer look at these systems.

Meghdoot [19] exploits the idea of mapping each node

subscription to a point in a 2d dimensional space, where

d is the number of attributes/dimensions in the subscription

scheme. Then, a CAN [33] overlay is utilized for routing the

messages. Although matching events against subscriptions can

be nicely done in Meghdoot, the routing is not efficient, due

to the inherent inefficiencies in CAN overlay. Moreover, node

degree could grow linearly with the number of attributes. The

load on the nodes is also very unbalanced, depending on where

in the CAN overlay the node is positioned.

Sub-2-Sub [36] takes a completely different approach. It

clusters the subscription space into multiple subspaces, where

each subspace includes all and only the nodes that are sub-

scribed to the whole subspace. From then on, each subspace

is treated like a topic in a topic-based model. A ring is

constructed over each subspace for disseminating the events

inside that subspace. The problems are two fold: firstly, it

is difficult to construct the subspaces, if subscriptions are

complex. In Hyper [38], which is a non P2P solution for

content-based publish/subscribe, it is proved that solving such

a problem is NP-complete. The existence of churn in the

P2P networks makes this problem even more challenging.



Secondly, maintaining a ring per subspace implies that if a

subscription is split into many subspaces, then the node has

to join many overlays at the same time. Therefore, the node

degree and maintenance cost could grow very large.

Ferry [39] is yet another approach to enable subscriptions

over multiple attributes by employing a structured overlay

network. Every node hashes the attribute names and sends its

subscription to a rendezvous (RV) node, which is responsible

for one of the generated hash values, preferably to the closest

one. All the subscriptions are then maintained at the RV nodes.

Upon an event publication, the event is delivered to all the RV

nodes and will be routed towards the subscribers, accordingly.

The strong point in Ferry is that the node degree is bounded

regardless of the number of attributes in the subscription

scheme. However, since the nodes subscribe for the hash of

the attribute names, the routing structure solely depends on

the subscription scheme in the system. For example, if there

is only one attribute in the model, then one RV node and one

delivery tree will exist. Therefore, the load on the nodes will

be extremely unbalanced. The RV node not only receives all

the published events in the system, but also has to match each

and every event against all the existing subscriptions, before

relaying the received events. An effort to solve the problems

in Ferry is presented in eFerry [37]. The approach is to use

different combinations of several attributes, for subscription

registration. The proposed mechanisms exhibits desirable load

balancing properties only for the publish/subscribe system

with extremely large number of attributes, while is still in-

efficient for the usual systems with one or few attributes.

Another solution, that also requires a bounded node degree,

is CAPS [31]. Similar to Ferry, CAPS uses the rendezvous

model for subscription installation and event delivery. The

main difference is that instead of a single key per attribute,

it generates a set of hash values for each subscription, and

installs a node subscription in multiple RV nodes in the

overlay. The matching is then performed at those RV nodes

and events are forwarded along the overlay links from the

RV nodes to the subscribers. The problem in CAPS is that

a subscription may be translated into too many keys to be

installed, and could potentially result in a high traffic in the

network. Moreover, the matching is performed centrally at the

RV nodes and there is no mechanism for load balancing.

Pyracanthus [1] is another solution, which uses order pre-

serving hashing to enable range queries for content-based

publish/subscribe. However, it has a high maintenance cost

as it stores a node subscription in all the rendezvous nodes

across all the attributes. Moreover, event publication is very

costly in Pyracanthus, since the publisher requires to collect

all node subscriptions from the rendezvous nodes for all the

attributes. It then selects the matching subscribers among the

collected subscriptions, and forwards the event to them.

BlueDove [28] is yet another solution for multi-dimensional

content-based subscriptions, which is particularly designed for

well-engineered environments like clouds. In such environ-

ments, data center servers are connected by high speed local

networks, packet loss rate is very low, and servers stay on-line

for long periods of time.

There are also some related work on enabling range queries

over P2P networks [3][8]. Mercury [8], for example, supports

multi-dimensional rang-based searches, while it guarantees

efficient routing and load balancing. Nevertheless, it does

not provide all the necessary propertied of a fully-fledged

publish/subscribe system, since it lacks the mechanisms for

installing user subscriptions and event delivery. Moreover, the

construction of the overlay in Mercury is oblivious to user

interests.

Another set of related work is focused on how to filter data

content in the overlay networks [12][17][27]. However, these

works are orthogonal to our work and can be complementary

to Vinifera. In particular, we can utilize [12] on top of our

dissemination trees in order to better filter out the published

content. The focus in Vinifera is on building a topology that

exploits user subscriptions to enable efficient data dissemina-

tion structures.

III. ARCHITECTURAL MODEL

Vinifera is a multi-layer solution, where each lower layer

provides a service to its upper layers. The architectural model

of Vinifera (Figure 1(a)) consists of three main layers:

Random overlay. On the bottom layer we have a random

network, which we construct by a gossip-based peer sam-

pling service [22], similar to Cyclon [35], NewsCast [21], or

Gozar [30]. This service is periodically executed by all the

nodes and provides each node with a random sample of the

existing nodes in the overlay. This layer also enables nodes to

propagate control information that are required by the upper

layer. In particular, every node piggybacks its subscription

information on the gossip messages that it sends out.

Vinifera overlay. The topology of this layer is constructed

by capturing the existing subscription correlation in the system

and clustering similar nodes together, using the same gossiping

protocol. Moreover, we make this topology navigable by

embedding it into an identifier space and enriching it by Small-

World links following Kleinberg’s model [24]. The resulting

topology allows efficient routing while preserving interest

locality.

Vinifera Content management layer. This layer consists of

several components that work together to manage the efficient

delivery of the content. It exploits the navigability and the

interest locality of the underlying layer by constructing a forest

of dissemination structures based on RV routing. Because

of the inherent interest locality property of the underlying

overlay, each and every dissemination tree is expected to be

small and efficient, involving mostly the interested nodes in

the dissemination process. At the same time, Vinifera trees are

expected to be shorter as compared to the state-of-the-art.

IV. VINIFERA

A. Preliminaries

As we mentioned in the previous section, Vinifera is a

gossip-based protocol, i.e., each nodes periodically exchanges

some information with some other nodes in the overlay. This
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information includes the node profile, which contains the node

identifier and the node subscription. The node identifier is

selected uniformly at random from a globally known identifier

space. The subscription scheme includes n attributes from

A1 to An, of any type, where attribute Ai could take values

between vimin
and vimax

. We map the range [vimin
, vimax

]
to the entire node identifier space, by applying an order

preserving hash function (OPHF) [13] over the values that

are valid for each attribute. An OPHF guarantees that if v >

u then OPHF(v) > OPHF(u). For the sake of simplicity,

from now on we refer to the hashed value OPHF(v), only as v.

Each node subscribes in the system by introducing a number of

constraints over a subset of attributes. A constraint specifies

either an exact value (equality) or a range of values for an

attribute, and a subscription S is the conjunction of all such

constraints. Figure 1(b) shows a system with two attributes A1

and A2 and three subscriptions: X , Y , and Z. Subscriptions

are shown by rectangles that specify the ranges over the two

attributes. For example, subscription X is modeled as:

Sx : A1 ∈ [u, v] ∧A2 ∈ [s, t]

A data item, or event, is a point in the attribute space,

with exact values for all the attributes. An event matches a

subscription, if each and every attribute value satisfies the

corresponding constraint over that attribute. For example event

e in Figure 1(b) matches subscription X , but it does not match

subscriptions Y and Z.

B. Components

1) Overlay Construction: To enable nodes to select their

neighbors (i.e., links or connections), based on their interest,

identifier, or load, we employ a topology management pro-

tocol, inspired by T-Man [20], on top of the peer sampling

service provided by the underlying random overlay. Each node

p, maintains a routing table, i.e., a list of its neighbors, which

it periodically exchanges with a neighbor, q, chosen uniformly

at random among the existing neighbors in the routing table.

Node p, then, merges its current routing table with the routing

table of q, together with a fresh list of the nodes, provided

by the underlying peer sampling service. The resulting list

becomes the candidate neighbors list for p. Next, p selects

a number of neighbors among the candidate neighbors and

refreshes its current routing table. The same process will take

place at node q.

Every vinifera node selects three types of links. First, each

node maintains two links to connect to the nodes that are

closest to it in the node identifier space, one in each direction.

Algorithm 1 Select Primary Attribute

1: procedure SELECTPRIMARYATTRIBUTE

2: for all Ai in self.S do ⊲ S represents node subscription

3: rank(Ai) ← 0 ⊲ initialize the rankings

4: end for

5: for all n in self.neighbors do

6: for all Ai in self.S do

7: if n.S.contains(Ai) then

8: selfCi ← self.S.getC(Ai) ⊲ self constraint over Ai

9: nCi ← n.S.getC(Ai) ⊲ neighbor constraint over Ai

10: if overlapping(selfCi , nCi) 6= ⊘ then

11: rank(Ai) =rank(Ai) + 1

12: end if ⊲ increment the rank of the attribute

13: end if

14: end for

15: end for

16: Ap ← Ai where rank(Ai) is highest for all Ai ∈ self.S

17: end procedure

These links are called ring links, because eventually these links

shape up a ring structure in the overlay. The ring topology

guarantees the existence of a path between any two nodes,

and ensures the lookup consistency in the overlay, which is

later required.

Next, to boost the routing efficiency, each node also selects

some small-world links, based on the idea introduced by

Kleinberg [24]. More precisely, node p selects node q as a

small-world link, with a probability inversely proportional to

the distance from p to q in the identifier space. It is proved

that, having Ksw such neighbors enables a poly-logarithmic

routing cost in the overlay (O( 1

Ksw
log2N)) [26].

Finally, links that are selected based on similarity of sub-

scriptions are referred to as friend links. Every Vinifera node

selects Kf friend links. These links connect together nodes

with similar subscriptions. In a system with one attribute the

similarity between two nodes p and q is captured by

Utility(p, q) =
Sp ∩ Sq

Sp ∪ Sq

(Function I) (1)

where, Si contains the range(s) that node i has subscribed

to. However, when there are more attributes, this approach

is not readily applied. Instead, each node first selects one of

the attributes, and then uses the mentioned utility function

along that attribute only. As we will explain in Section IV-B4,

when an event is published in a system with multiple attributes,

multiple copies of the event are propagated in the overlay, one

for each attribute. Therefore, to guarantee the event delivery, it

is enough if a node is efficiently located in a cluster associated

with only one of the attributes. The clusterization, i.e., the

friend links selection, is completed in two steps:

• A node first examines the subscriptions of its candidate

neighbors to select an attribute, across which it has more

neighbors with overlapping ranges. We refer to this at-

tribute as the primary attribute for the node. Algorithm 1

illustrates how the primary attribute is selected. The

basic idea is that a node assigns a rank to each of the

attributes in its own subscription. The rank of an attribute

is calculated by counting the number of neighbors with

an overlapping interest on that attribute (Lines 10, 11).



Algorithm 2 Range Query

1: procedure LOOKUP(requester, lookupRequest)

2: if requester 6= self then

3: installNeighborSubscription(requester, lookupRequest)

4: end if

5: RVNodes ← NULL

6: if overlap(lookupRequest.range, [self, successor]) 6= ⊘ then

7: RVNodes.add(successor)

8: end if

9: for all neighbor in self.neighbors do

10: if lookupRequest.range.includes(neighbor) then

11: RVNodes.add(neighbor)

12: end if

13: end for

14: if RVNodes 6= NULL then ⊲ Shower

15: for all RV in RVNodes do

16: send lookup(self, lookupRequest) to RV

17: end for

18: else ⊲ Proceed with a lookup for the beginning of the range

19: nextHop ← findNextHop(lookupRequest.range.from)

20: send lookup(self, lookupRequest) to nextHop

21: end if

22: end procedure

Finally, the attribute with the highest rank is selected as

the primary attribute (Line 16).

• Next, the node uses the utility function (Function I) on the

primary attribute and biases its neighbor selection towards

selecting those nodes with higher rank as its friend links.

The combination of ring, small-world, and friend links results

in a hybrid overlay, on top of which we build the data dissem-

ination paths. We show, in the experiment section, that such

a hybrid topology performs significantly better than a pure

small-world overlay, as it not only reduces the unnecessary

traffic in the network, but also improves the routing efficiency.

2) Routing: The basic routing or lookup in Vinifera is a

greedy distance minimizing algorithm, i.e., at each step the

lookup request is routed to a node which is closer to the

destination. The destination of a lookup for value v is a node

with the closest, but higher, identifier to v, which we refer to

as the rendezvous node (RV) for v.

In Vinifera, nodes can not only route towards exact values,

e.g., v, but also towards ranges of values, e.g., [u, v] (Al-

gorithm 2). To perform a range query, a node first applies

an OPHF on the range boundary values. Then, a showering

routing protocol [15] is executed, i.e., every node forwards the

lookup request to as many nodes as it knows that fall into the

range of the hashed values. Lines 15 to 17 in Algorithm 2

describe how the showering mechanism is performed. In case

the node does not know any node in the requested range (line

18), it performs a simple greedy routing, i.e., it forwards the

request to a node with closer, but not higher, identifier to

the beginning of the range. The lookup ends at one or more

consecutive RV nodes, each responsible for a part of the range.

3) Subscription Installation: Every node installs its sub-

scription along the routing path to the rendezvous node(s)

for the range over its primary attribute. We refer to this

path (from the node itself to the rendezvous node(s)) as the

installation path. Note that, we take advantage of the Vinifera

overlay topology, by installing node subscriptions along the

attribute for which they clustered more effectively, i.e., their
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.       ...

RangesNgh
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.       ...

RangesNgh
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Fig. 2. (a) Subscription [75, 85] for node Q is installed. (b) Subscription [80, 100]

for node P is installed (and aggregated with the previously installed subscription).

primary attribute. As a result, nodes that have the same primary

attribute, and a similar range of interest over that attribute, will

lookup for the similar rendezvous nodes. Since these nodes

are very likely to be directly connected through friend links,

they share most of their routing path towards the rendezvous

node(s), with high probability. This is important, as it reduces

the amount of traffic overhead transferred on the delivery

paths.

Figure 2(a) illustrates the lookup process with a single

attribute. Assume node Q wants to subscribe for the hashed

values from 75 to 85. Among its neighbors, it selects node

R, which has the closest, but not higher, node identifier to

the requested range (Line 19 in Algorithm 2). The request is,

therefore, sent from Q to R. Node R forwards the request to

its neighbor S, which falls into the requested range (Line 10

in Algorithm 2). Node S takes the responsibility for the sub-

range [75, 78], and also forwards a request for the remaining

sub-range to node T (Line 6 in Algorithm 2). Consequently,

the installation path from the subscriber node to the RV nodes

is constructed (Path Q → R → S → T in Figure 2(a)).

Every node on the installation path maintains a table, called

a Content Routing Table or CRT for short. The CRTs are

populated when the queries are forwarded in the overlay. In

our example, node R adds an entry to its CRT, for node Q

requesting range [75-85], while node S registers range [75,

85] for node R. Finally node T registers a request from node

S for the range [78-85]. In this example, we only have one

attribute, and therefore CRTs, only include the requested range

for that single attribute. If there are more attributes, each entry

associates the requested range(s) with an attribute. Moreover,

each entry of CRT contains the complete subscription(s) of the

requesting node over all the attributes. This field will be used

during event delivery process, described in Section IV-B4.

Putting all these together, an entry of a CRT is a tuple in form

of < Ngh,Attr,Ranges, Subscriptions >, where Ngh indicates

the requesting neighbor, Attr is the requested attribute, Ranges

are the interested ranges over the requested attribute, and

Subscriptions are the subscription requests, containing all the

attributes, which are received through the requesting neighbor.

The subscription installation process is further equipped

with an aggregation technique. That is, whenever possible, a

node aggregates all the requests it receives from the same

neighbor on the same attribute. This is usually referred to

as subscription subsumption or covering in the literature. For

example, in Figure 2(b) node P appears in the system and



subscribes for the range [80-100]. The closest neighbor of P

to the requested range is node Q. So P sends a request to Q.

As a result, Q installs this request in its CRT, and forwards

it further to node R. Since node R previously had an entry

for Q in its CRT (for the range [75-85]), it aggregates the

two requests and modifies the entry for Q to range [75-100].

Now R knows two nodes, S and T , in the requested range. So

it showers the request to both of them, by sending a request

for range [75-78] to S and the remaining part of the range to

T . When this new request is further forwarded in the overlay,

nodes S and T similarly update their CRTs with the range

[75, 78] and the aggregated range [78-100], respectively. Then,

node T forwards the request further to node U , which is also

a rendezvous node for a part of the requested range.

As mentioned previously, thanks to the employed clustering

technique, nodes with similar subscriptions on the same pri-

mary attribute are grouped together. When these nodes install

their subscriptions, they initiate a routing towards the same or

close-by rendezvous nodes. Therefore, the installation tree is

mostly shared between such nodes, thus, the requests can be

effectively aggregated. This results in smaller CRTs, as well

as less traffic overhead in the overlay. Smaller CRTs not only

reduce the maintenance cost of the trees, but also simplify the

matching process.

Note that, the subscription installation is a periodic process,

and therefore, if a node fails or changes its subscription, it

does not send any more request for the previously requested

range, and therefore, the already installed rows in CRTs further

ahead, can de-aggregate or be removed completely. This

ensures that the quality of CRTs are constantly maintained.

4) Event Delivery: Any node in Vinifera can publish events.

As mentioned previously, an event is a piece of data that

has an exact value for each attribute. Therefore, in a system

with n attributes, an event is associated with n rendezvous

nodes, one for each attribute. When a node publishes an event

e{v1, v2, .., vn}, it sends one copy of the event to each of

the n relevant rendezvous nodes, i.e., RV (v1), RV (v2), ..,

RV (vn), which are responsible for the values assigned to

each of the attributes. This is done by initiating a simple

rendezvous routing for each attribute. Then, n delivery trees

for the event are constructed on the fly, by following the links

on the reverse installation paths from the rendezvous nodes

to the subscriber nodes, using the node CRTs. Note that each

matching subscriber is registered in only one of the delivery

trees, i.e., the one that corresponds to its primary attribute. So,

it does not receive redundant messages from multiple trees.

The delivery trees are constructed as follows. Each ren-

dezvous node, matches the event against the subscriptions

that are registered in its CRT, and sends the event only to

the neighbors with matching subscriptions. Note that, the

matching is performed on the whole registered subscriptions,

that is, if the event does not match the registered subscription

of a node on any of the attributes (primary or not), the

event will not be forwarded further to that node. Likewise,

every node on the path performs such a matching process and

forwards the event further if it matches the registered request,

until it reaches the interested subscribers. By this approach,

the matching process will be carried out as the event goes

down to the subscribers, while every node maintains partial

information about the other nodes. In essence, we distribute

the load of matching events against subscriptions between the

nodes that are on the installation path. At every step, those

branches that are not interested in the event are pruned and

the event is forwarded only down the paths that hold some

interested node(s).

5) Load Balancing: Due to the prevalent skewed subscrip-

tion patterns in the real world, the use of an OPHF inevitably

results in a non-uniform identifier distribution and thus, an

unbalanced load on the nodes. More precisely, some regions in

the identifier space might be very popular with huge number of

corresponding events, while some other regions might not be

popular at all. So, the nodes who happen to fall into the popular

regions may have to deal with huge number of requests.

For example, if an attribute in the subscription scheme is

temperature in a city, then the published events are most likely

in the range [−10,+30], probably a few around this range, and

almost no event in less than −30 or over +50. Hence, node

that have an identifier between OPHF(−10) and OPHF(+30)
are likely to be highly loaded, while the rest of the nodes are

under loaded.

To alleviate this problem, we utilize an idea, inspired

by [23], for adapting the node identifiers to the existing load

in the network. The idea is that Vinifera nodes may change

their identifiers along the ring, while their connections remains

intact. In other word, nodes change their identifier to an

identifier between themselves and their successor. The new

identifier is assigned to the node to halve the load on the

successor. Since nodes do not change their neighbors upon

change of the identifier, they can easily inform their neighbors

of the new identifier, when they send the next gossip message

to the neighbors.

For our system, we define a measure of load as follows.

Every node counts the number of events that it receives as a

rendezvous node, without having any interest in them. When-

ever the node sends its gossip message to its predecessor, it

piggybacks its current load on the message. In order to prevent

perturbation of the node identifiers, we define a threshold β

for load imbalance between a node and its successor. When

the difference of load between the two nodes exceeds the

threshold β, the proceeding node changes its identifier to a

value closer to its successor. Then the two nodes update their

load to the average of their current loads. We show in the

evaluation section that by employing this mechanism, Vinifera

nodes can adapt to even very skewed user subscriptions.

C. Maintenance

In general, P2P networks are subject to churn, i.e., nodes

join or leave the system continuously and concurrently, and

network capacity changes. Therefore, it is essential to design

P2P systems that tolerate failures. When a node fails in

Vinifera, all the layers take the required actions to deal with

that failure. The random overlay at the bottom, which is



a gossip-based peer sampling service, is inherently failure

tolerant. More details on fault tolerance in such protocols can

be found in [22].

In the Vinifera overlay layer, failure handling is done simi-

larly to the random overlay. As we described in Section IV-A,

nodes periodically send their profile to their neighbors. This

profile message, therefore, serves as a heartbeat message and

enables the nodes to detect the failure of their direct neighbors.

When a node fails, its direct neighbors that detect the failure,

remove the entries for the failed neighbor from their partial

view. When these nodes exchange their views with other nodes

in the system, the contacted nodes will also receive the updated

information and remove the stale entries, accordingly. There-

fore, the information about the failed nodes, is propagated

in the overlay by taking advantage of the ongoing gossiping

protocol.

In the content management overlay, we need to ensure that

CRTs are always updated and do not contain stale entries,

i.e., when a node fails, we should remove its subscription

from all the CRTs along the installation path. Note that, every

entry in the CRT has an expiry timestamp. If a node does not

receive a new subscription request from its neighbor, it will

automatically remove the request from its CRT. Normally, in

each gossip round requests are resent and therefore maintained

in the CRTs. When a node fails, however, the first node met on

the installation path, which has been directly connected to the

failed node, detects the failure and removes the subscription

of the failed node from its CRT. Therefore, it never again

forwards the requests for that subscription, i.e., the next

node on the relay path, will not receive the request for that

subscription, thus, removes the entry from its CRT. Note that,

if an entry in the CRT is the result of an aggregation, i.e., a

node A received two requests from the same neighbor B for

some overlapping ranges, and part of this aggregated range

concerned a node C that is failed now, only the part that

corresponded to C will be de-aggregated, as node B will send

only one of the requests to node A, thereafter.

V. EVALUATION

We implemented Vinifera in Peersim [29], a discrete event

simulator for P2P applications. Through extensive simulations

with a hybrid of cycle based and event based models, we

evaluated the performance of Vinifera, while comparing it

against a baseline system, inspired by the state-of-the-art

techniques such as Ferry [39], eFerry [37], and CAPS [31].

That is, the baseline system is a pure small-world overlay, thus,

requires a bounded node degree and guarantees a bounded

routing time, but it is oblivious to node subscription, with no

load balancing mechanism. In the lack of real-world traces,

we synthetically generated user subscriptions, using a Zipf-

like distribution over the attribute space [9]. Unless otherwise

mentioned, the network size is 1000.

A. Topology Configuration

In this experiment, we investigate the choice of values for

parameters Ksw, and Kf , which define the number of small-

world links and friend links, respectively. The total number of
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Fig. 3. Performance with variable number of friend links

links per node is set to 10, among which two are dedicated

to ring links and the rest are used for small-world and friend

links, i.e., Ksw + Kf = 8. Figures 3(a) and 3(b) show the

traffic overhead and average delivery path length of Vinifera

and the baseline system for two subscription models. Since the

baseline system does not have any friend links, its topology

does not change across the X-axis. Zero friend link in Vinifera

generates a pure small-world topology, which is oblivious to

node subscriptions, just like the baseline system. Hence, at

this point both systems have the same topology and that is

why with random subscriptions, the improvement in the traffic

overhead in Vinifera is negligible. However at the same point,

the average path length in Vinifera is decreased. This is due

to the existence of many short delivery trees in Vinifera, as

opposed to a single long delivery tree in Ferry. With skewed

subscriptions, we can also improve the traffic overhead from

over 32% to 22%. By adding more friend links, we take

advantage of the subscription similarities and significantly

improve both metrics at the same time. With 8 friends and

skewed subscriptions, for example, the traffic overhead drops

from 32% to less than 10%, while the average path length is

decreased from around 7 to 3. This proves the huge potential

of exploiting user subscription correlations, common in real-

world scenarios. In the rest of our experiments, we set Ksw

to 0 and Kf to log(N)− 2, where N is the number of nodes

in the network. However, for the applications that require an

upper bound guarantee on the number of delivery hops, we

can add more small-world links.

B. Scalability

To measure the scalability of Vinifera, we performed exper-

iments with different number of nodes, as well as, different

number of attributes. Figure 4(a) shows the traffic overhead of

both systems. The performance of both systems is almost the

same for different network sizes. However, the traffic overhead

in the baseline system is more than 80% for random subscrip-



tions, whereas it is reduced to 60% in Vinifera. Note that ran-

dom subscriptions bring up the worst case scenario, for nodes

can not effectively benefit from our clustering technique, due

to the lack of correlation between user subscriptions. However,

it is shown that a significant subscription correlation exists in

real-world application [25][34]. When the user subscriptions

are skewed, the traffic overhead in the baseline system drops

to nearly half, while Vinifera reduces the traffic to almost one

sixth of that of the random subscriptions. This shows that our

data dissemination overlay is remarkably benefiting from the

utilized clustering technique. Figure 4(b) shows the average

delivery path length of both systems in terms of hop counts.

Here again, the number of hops in Vinifera is nearly one third

of that of the baseline system. However, the path length is

slightly bigger with skewed subscriptions, because the overlay

topology is clustered. With the random subscription model,

however, the overlay better resembles a random network, thus,

we observe a reduced path length.

Next, we observe the behavior of both systems when the

subscription model includes more attributes. We have designed

Vinifera to work with any dimensionality. Because of the

lack of real-world traces we had to decide on the number

of dimensions ourselves while carrying out the experiments.

To be consistent (as well as being able to easily compare)

with the existing state-of-the-art solutions we used most of the

parameters (including dimensionality) from the related work

papers. As we observed, most of the related work had reported

results with 2, 3, or 5 attributes. We also show the results with

up to 5 attributes. In higher dimensions, Vinifera still exhibits

consistent results. Nevertheless, with our randomly generated

events, the fraction of matching events drops sharply, thus, the

measured values become insignificant, making the system hard

to evaluate. This is due to a phenomenon, known as the curse

of dimensionality in the literature [7]. However, since in real

life the generated data is not uniformly spread in the data space

and there exists a correlation between user subscriptions and

the generated data [9][25][34], Vinifera is expected to function

effectively in higher dimensions under realistic workloads.

Figure 4(c) shows when the subscription model is random,

the traffic overhead of the baseline system remains at around

80%. This overhead starts from around 58% in Vinifera,

but increases in higher dimensions, because in a random

subscription scheme there exists very little similarities to be

exploited, and therefore, the primary attribute is practically a

random attribute for each node. As a result, the installation

paths, and thus, the delivery trees are scattered in the overlay

and nodes can not effectively cooperate in data dissemination.

However, this overhead is still less than that of the baseline

system. With the skewed subscription model, both systems

behave significantly better. The overall improvement is again

due to the skewed event publication in the system. However,

the improvement in the baseline system with more attributes is

because instead of having one single tree, more delivery trees

are constructed, one for each attribute. Each node joins one of

these trees, as a subscriber, and does not receive the events that

are forwarded on other trees, unless it is a relay node in those

trees. However, in Vinifera nodes with similar subscriptions

are grouped together, and the delivery tree is shared between

these nodes. Thus, the overall number of uninterested node on

the delivery trees is reduced, thus, the traffic overhead drops

to nearly one third of that of the baseline system.

The average delivery path length of the two systems are

shown in Figure 4(d). The baseline system delivers the events

slightly faster when there are more attributes. However, the

average delivery path length in Vinifera is still by far better

than the baseline system, even with 5 attributes in the sub-

scription model, thanks to the utilized clustering technique.

As soon as an event reaches a cluster of nodes with matching

subscriptions, it is propagated inside that cluster very quickly.

We conclude that although both systems can accommodate

any number of attributes in the subscription scheme, Vinifera

exhibits a significantly better performance than the baseline

system, specially in the presence of skewed subscriptions.

C. Load Balancing

To explore how the load is distributed among the node in

Vinifera versus the baseline system, we plot the cumulative

distribution of load on the nodes, for 1, 2, and 3 attributes,

and report the results in Figure 4(e). Although with more

attributes, the load distribution is slightly degraded in Vinifera,

it is still significantly better than the baseline system and the

load on any Vinifera node never exceeds 30%. More precisely,

over 95% of the nodes has a load less than 20%, even with 3

attributes, whereas, 10% of the baseline system nodes suffer

from over 60% load in the system, while nearly 40% of the

nodes have zero load. Figure 4(e) shows that the load in

the baseline system is extremely unbalanced. This is because

nodes up on the delivery tree are highly stressed, while leaf

nodes are just receiving the service for free. There are nodes

with even nearly 100% load (the rendezvous nodes), which

can significantly harm the performance of the system as soon

as they stop functioning correctly, due to congestion or failure.

This problem prevents the baseline system to work under real-

life scenarios where node and network failures are inevitable,

while Vinifera can still function without having any imminent

bottleneck.

D. Workload

In this section, we examine if the systems can function under

different workloads, i.e., under different event publication

rates. To model the congestion, we assume that every node

in the system can handle a bounded number of messages, X ,

in every round, and if it receives more events it will simply

drop them. Then, we increase the number of events that are

published in the system to up to five times X .

Figure 4(f) shows that the hit ratio in the baseline system

significantly drops as soon as the publication rate passes the X

threshold. Whereas, Vinifera survives even under high event

publication rates. This is due to the fact that the baseline

system relies on very few nodes to propagate the event in

the system (only the intermediary nodes in the delivery tree).

Therefore, under a high publication rate, those nodes become
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(c) Traffic overhead for multiple attributes.
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Fig. 4. Performance results.
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Fig. 5. Performance under Skype churn trace.

highly overloaded and start dropping the messages. When a

node in the tree drops a message, all its descendant nodes fail

to receive the message. On the other hand, in Vinifera load is

almost evenly distributed among the nodes. Thus, the nodes

do not have to drop the messages due to the excessive load.

E. Fault Tolerance

To evaluate the performance of Vinifera in the presence

of failures, we used real-world churn traces [18], that were

obtained by monitoring a set of 4000 nodes participating in the

Skype superpeer network for one month beginning September

12, 2005. In Figures 5(a) to 5(c) the x-axis shows the time,

while the y-axis on the right shows the network size. The

black solid line in the three graphs shows how the network

size changes over time. Figure 5(a) shows the hit ratio of the

two systems with random and skewed subscriptions. Although

the hit ratio of Vinifera slightly decreases in the flash crowds,

i.e., around time 100 h., when a large number of nodes join the

system concurrently, the system recovers quickly and the hit

ratio goes back to and remain at 100%, even in the presence

of further joins and failures. In contrast, the hit ratio in the

baseline system is highly affected by churn, due to the fragile

structure of a single delivery tree. When this tree is broken,

the baseline system can not repair it quickly enough to catch

up with further event deliveries. When no more node joins

or fails, the baseline system is potentially able to repair the

dissemination tree. However, as we see in this real-world trace,

this hardly happens.

Figure 5(b) shows the traffic overhead in both systems.

The traffic overhead in Vinifera is one forth compared to the

baseline system for both random and skewed subscriptions.

Note that, the reduced traffic overhead in the baseline system

is because it fails to deliver the events to all the nodes. We

also observe, in Figure 5(c), that Vinifera is takes a four times

shorter delivery path compared to the baseline system, in the

presence of churn. Here again, we should take into account

that in the baseline system some nodes are not receiving the

events, and the measured values for the baseline system only

include the nodes that received the events.

VI. CONCLUSION

We introduced Vinifera, a P2P content-based pub-

lish/subscribe system that enables users to subscribe for the

information they are willing to receive, without having to



rely on any single authority or central server. We employed

a gossip-based technique to construct a topology that not

only resembles a small-world network, but also connects the

nodes with similar subscriptions together. On top of this

hybrid overlay, we utilized a rendezvous routing mechanism to

propagate node subscriptions in the overlay. Together with an

order preserving hashing technique and an efficient showering

algorithm we enabled range queries, and at the same time, we

employed a load balancing technique to deal with the potential

non-uniform user subscriptions. The combination of all these

techniques are seamlessly integrated within a single gossiping

layer, thus keeping Vinifera simple, lightweight and robust.

Our hybrid publish/subscribe system exhibited superior per-

formance against the state-of-the-art techniques, effectively

without the need to trade-off or degrade any important proper-

ties of the system. The overlay topology autonomously adapts

to user subscriptions and is highly resilient to the dynamism

in the network. The generated traffic overhead and the average

delivery path length are simultaneously kept low, while only

a bounded node degree is required and no global knowledge

at any point is assumed.
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