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Abstract—Peer-to-peer overlay networks are attractive so-
lutions for building Internet-scale publish/subscribe systems.
However, scalability comes with a cost: a message published
on a certain topic often needs to traverse a large number
of uninterested (unsubscribed) nodes before reaching all its
subscribers. This might sharply increase resource consumption
for such relay nodes (in terms of bandwidth transmission cost,
CPU, etc) and could ultimately lead to rapid deterioration of
the system’s performance once the relay nodes start dropping
the messages or choose to permanently abandon the system. In
this paper, we introduce Vitis, a gossip-based publish/subscribe
system that significantly decreases the number of relay mes-
sages, and scales to an unbounded number of nodes and
topics. This is achieved by the novel approach of enabling
rendezvous routing on unstructured overlays. We construct
a hybrid system by injecting structure into an otherwise
unstructured network. The resulting structure resembles a
navigable small-world network, which spans along clusters
of nodes that have similar subscriptions. The properties of
such an overlay make it an ideal platform for efficient data
dissemination in large-scale systems. We perform extensive
simulations and evaluate Vitis by comparing its performance
against two base-line publish/subscribe systems: one that is
oblivious to node subscriptions, and another that exploits the
subscription similarities. Our measurements show that Vitis
significantly outperforms the base-line solutions on various
subscription and churn scenarios, from both synthetic models
and real-world traces.

I. INTRODUCTION

Publish/subscribe systems are nowadays widely used over

the Internet. News syndication (RSS feeds), multi-player

games, social networks such as Twitter or Facebook, media

streaming applications, e.g., Spotify, or IPTV, are a few

examples of such systems. Users of these systems express

their interest in certain data, by subscribing to a number

of topics, which can be daily news, a friend’s tweets, a

music playlist, or a channel on IPTV. Should any new data

be published on a topic, the subscribers are notified and

provided with the content. Depending on the application, this

service could be bandwidth intensive and/or time critical,

as in live streaming applications, or may include a large

number of topics, as it is the case for Spotify playlists or

social networks.

Currently, the majority of these systems use a client/server

model and rely on dedicated machines to provide subscribe
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Figure 1. The biased neighbor selection puts together nodes with similar
subscriptions. Due to bounded node degree, instead of a single cluster per
topic, several disjoint clusters are formed. For example, red and blue topics
have three and two clusters, respectively.

services. However, with a rapidly growing number of users

on the Internet, and a highly increasing number of topics, it

is becoming necessary to use decentralized models for pro-

viding such a service at a reasonable cost. Therefore, a lot of

work has been done to design peer-to-peer publish/subscribe

systems.

To provide the subscribe service, a range of solutions

has been proposed. On the one extreme, nodes construct

a separate overlay per topic, i.e., each node becomes a

member of as many overlays as the number its subscriptions

(e.g, Rappel [1] or Tera [2]). Although a node in these

systems only receives the events that it has subscribed for,

the number of the node’s connections and, therefore, the

overlay management cost grow linearly with the number

of topics the node subscribes to. This, potentially, renders

the system unscalable, when nodes subscribe to very large

number of topics, e.g., thousands of topics, as is the case in

some real world applications, e.g., [3].

At the other extreme, nodes use a bounded number of

connections to manage all their subscriptions simultaneously

(e.g, Scribe [4] or Bayeux [5]). These solutions, however,

suffer from high traffic overhead, that is, nodes have to send

and receive data in which they have no interest. As we will

demonstrate later, in order to make sure all the subscribers

of a topic receive their intended data, many nodes that are

not subscribed for that topic have to get involved in data

dissemination. Note that, although peer-to-peer users are

generally willing to contribute their resources to the system,

they might lose incentive to cooperate, if the amount of

traffic they forward exceeds their expectations. For example,
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Figure 2. The resulting overlay is a single navigable small-world overlay
(a), through which disjoint clusters of a topics connect together (b or c). The
navigable small-world overlay enables relaying through the nodes, which
are not subscribed to the topic, themselves.

a user of IPTV might permanently leave the overlay if it has

to constantly forward a large media stream in which it has

no interest. Therefore, it is crucial to decrease the traffic

overhead of the nodes.

In this paper, we introduce Vitis, a topic-based pub-

lish/subscribe solution, that fills in the gap between the

aforementioned extremes, while taking the best properties

from both sides: bounded node degree and low traffic

overhead. Vitis nodes run a gossip-based peer sampling

service [6], to exploit the subscription similarities and select

as neighbors, nodes with whom they share the most topics.

Without the limitation on the node degree, a separate overlay

per topic could eventually be formed. However, due to the

bounded node degree, there is no guarantee that all the

nodes, which are interested in a topic, connect together. In

fact, any number of clusters for the same topic can emerge

in different parts of the overlay (Figure 1). We denote a

cluster for a topic as a maximal connected subgraph of the

overlay, which includes a set of nodes that are all interested

in that topic. Nodes inside a cluster are reachable from

one another. In order to make sure a published event for

a topic is delivered to all the subscribers, all the clusters

of that topic must be linked together via other nodes. The

path that connects different clusters of the same topic is

called relay path. Such a path, includes nodes that are not

interested in the topic themselves. We refer to these nodes

as relay nodes, hereafter. The challenge is to decrease the

number of required relay nodes, while making sure that all

the clusters associated with a topic (and therefore, all the

nodes interested in that topic) are linked together.

To enable relaying between the clusters, we introduce a

novel technique for rendezvous routing [7] on top of an

unstructured overlay. For that, Vitis nodes form a navigable

small-world overlay (Figure 2), which is shown to have

the best decentralized routing performance [8]. Then, nodes

in each cluster select a number of representative nodes,

as gateways. The number of gateways for a cluster is

proportional to the diameter of the subgraph that represents

the cluster. Gateway nodes are responsible for employing the

navigable small-world overlay to connect to other clusters

for the same topic. They perform a greedy lookup for the

topic id, and all meet at the same node, i.e., rendezvous node.

This approach is comparable to Scribe or Bayeux, but the

difference is that nodes are efficiently grouped together in

advance, and instead of each node independently performing

the rendezvous routing, only few nodes, i.e., gateway nodes,

establish the relay paths. In section III-B we elaborate on

how the gateway nodes are selected and how the relay paths

are established. We also show that the event propagation

delay, in terms of the number of hops, is bounded to

O(log2 N), in our system. The resulting structure resembles

a grapevine, with clusters of grape hanging from the canes,

thus, inspired the name Vitis.

We evaluated the performance of Vitis through extensive

large-scale simulations, with synthetic data as well as real-

world subscription traces from Twitter [9], and churn traces

from Skype [10]. We compare our system, with two base-

line solutions: (i) a rendezvous routing system which is

based on a structured overlay, with a bounded node degree,

and oblivious to node subscriptions, and (ii) an unstructured

solution that exploits the subscription correlation between

nodes, without any bound on node degree. The results show

that the traffic overhead in Vitis is between 40% to 75%

less than the first base-line solution. We also show that,

with a bounded node degree, Vitis always deliver the events

to all the subscribers, while the hit ratio degrades in the

second base-line solution, when the node degree can not

grow indefinitely.

In the next section we describe the related work and

position Vitis in the field. In section III we go into the details

of the solution and in section IV we present the results of

our experiments. We conclude the work in section V.

II. RELATED WORK

The traditional architectures for publish/subscribe systems

are the client-server and broker-based models. In systems

based on either of these models, the subscriptions are

submitted to a server (or broker). Also publishers send

their events to this server (or broker), where the events are

matched to the user subscriptions and forwarded to the users,

accordingly. Solutions such as Siena [11], Gryphon [12],

Hermes [13] or Corona [14] are in this category.

A more recent architecture for designing publish/subscribe

systems, replaces the client-server or broker-based models

with peer-to-peer overlays. This enables Internet-scale ap-

plications with many users as well as many topics. The

peer-to-peer overlays can be roughly classified into two



main categories: structured and unstructured. Solutions such

as Scribe [4] and Bayeux [5] are examples of structured

overlay networks, while Tera [2], Rappel [1], StAN [15]

and SpiderCast [16] fall into the second category, where a

gossip-based approach is utilized. There are also solutions,

like Quasar [17] or our solution, Vitis, which use gossiping

to construct a hybrid of structured and unstructured overlays

for event dissemination.

Regardless of how the overlay is constructed, the main

challenge is to guarantee that nodes will receive all the

events they have subscribed for, while not being overloaded

with a large number of connections or excessive overhead.

Tera [2], Rappel [1], StAN [15], and SpiderCast [16] con-

struct a separate overlay for each topic. When a node sub-

scribes to a topic, it becomes a member of that topic overlay.

Therefore, published events for that topic are only distributed

among the subscriber nodes and the traffic overhead is

eliminated. However, nodes should join as many overlays as

the number of topics they subscribe to. Thus, the node degree

and overlay maintenance overhead grow linearly with the

number of node subscriptions. This is, however, impractical

for Internet-scale applications, when users subscribe to a

large number of topics. We address this problem in Vitis, as

nodes maintain a bounded number of connections, regardless

of the number of their subscriptions.

To mitigate the scalability problem, SpiderCast [16] takes

advantage of the similarity of interest between different

nodes. The authors of SpiderCast argue that due to user

subscription correlations, a single link can connect a node

to more than one topic overlay. Thus, the number of

required connections per node decreases. Since the user

subscriptions are shown to be typically correlated in the

real-world traces [18], [19], this idea works nicely with

a limited number of node subscriptions. Nevertheless, the

performance and scalability of SpiderCast is unknown, when

the number of subscriptions is large or when there is churn

in the environment. Moreover, any node in SpiderCast needs

to have prior knowledge of at least 5% of other nodes in the

system. In contrast, Vitis nodes do not need such a linear-

scale amount of information about the other nodes in the

system, and can subscribe to unbounded number of topics. In

Section IV, we compare a SpiderCast-like system with Vitis

and show that SpiderCast nodes suffer from maintaining

a large number of connections, in order to receive all the

events they have subscribed for.

There are also solutions that account for scalability by

bounding the number of required connections per node,

for example Quasar [17], which is a gossip-based solution,

or Scribe [4] and Bayeux[5], which are DHT-based. In

Quasar [17], each node exchanges with its nearby neighbors,

an aggregated form of subscription information of itself and

its neighbors a few hops away. Therefore, a gradient of group

members for each topic emerges in the overlay. When a node

publishes an event, targeted for a group, it sends multiple

copies of the event in random directions along the overlay,

and the event is probabilistically routed towards the group

members. Quasar obviates the need for an overlay structure

that encodes group membership information. However, it

is inherently a probabilistic design model, even in a static

environment. It also incurs high traffic overhead, since it

is oblivious to nodes’ subscriptions and involves many

uninterested nodes in the event dissemination. In Vitis, on

the other hand, we reach a full hit ratio, while minimizing

the traffic overhead by organizing similar nodes into clusters.

In Scribe [4] or Bayeux[5], nodes are organized into

a Distributed Hash Table (Pastry [11] and Tapestry [20],

respectively), where each node maintains O(logN) connec-

tions. Then, a spanning tree is built for each topic, with a

rendezvous node at the root, which delivers the events to

the nodes that join the tree. This approach, however, forces

many nodes to relay the events for which they have not

subscribed, as they happen to be on the path towards the

rendezvous node. Consequently, such systems suffer from

a huge amount of traffic overhead. Vitis nodes also have

a bounded node degree and form a tree-like structure per

topic. However, unlike Scribe or Bayeux, the leaves in these

trees are not single nodes, but groups of nodes, which are

subscribed for that topic. We show through simulations, that

an efficient clustering of nodes with similar interests, results

in trees with far less intermediary nodes, and hence, much

smaller traffic overhead.

Another solution, Magnet [21], exploits similar ideas

of subscription correlation between the nodes, under the

bounded node degree assumption. However, Magnet is

purely based on a structured overlay and cannot fully capture

the correlation between subscriptions, for it is bounded

to one dimensional space, where the structured overlay is

constructed. Also, Magnet is less robust in volatile envi-

ronments, such as the Internet. In contrast, Vitis is not

restricted to any dimension while capturing the subscription

correlation (since clustering is done in an unstructured way)

and as we show in our experiments, it is very robust due to

the underlying gossip protocol.

Finally, there is recent work for resource location in

clouds [22], which can be interpreted as a publish/subscribe

system, though with quite clear differences. In [22], nodes

query for a resource with certain attributes, and are redi-

rected to a part of the cloud that contains the resources

with requested properties. This work also employs a peer

sampling service to build a structured and an unstructured

overlay. In the unstructured overlay, resources with similar

attributes are placed close to one another. However, [22] does

not guarantee, and in fact does not need, that all the nodes

with the queried properties are found. Nevertheless, in Vitis,

we make sure that all the subscribers are found and informed

of the published event. Moreover, [22] is not applicable for

event dissemination, for it enforces a significant load on the

nodes in the structured overlay.



III. VITIS

At a high level, Vitis borrows ideas from gossip based

sampling services [6] (Section III-A) and rendezvous routing

on structured overlays [7]. While benefiting from these ideas,

Vitis employs a technique for selecting nodes that share

topic interests (Section III-A2), and introduces a novel way

of constructing a dissemination structure that minimizes the

traffic overhead in the network (Section III-B).

Every Vitis node maintains a bounded-size routing table

(RT), which is a partial list of the existing nodes in the

system that the node uses for routing the messages. The

entries in the routing table are selected either as (i) small-

world connections, or (ii) similarity connections based on a

preference function. Hereafter, we refer to these two type

of connections as sw-neighbor and friends, respectively. We

also use the term neighbor to refer to any of the entries in

the routing table, either friend or sw-neighbor.

Moreover, each node has a profile, which includes a

unique node id, and the id of topics that the node subscribes

to. Node ids and topic ids share the same identifier space

and are generated by a globally known hash function that

generates ids that are uniformly distributed in the identifier

space, e.g, SHA-1. The topic id for topic t is denoted by

hash(t), hereafter. Subscribing to or unsubscribing from a

topic, is done by adding or removing the topic id to/from

the profile.

Every node periodically sends its profile to the nodes in

its routing table, to inform them of its own subscriptions.

This profile message also serves as a heartbeat message,

and helps the nodes to constantly maintain their routing

tables. When a node fails or leaves, its neighbors will stop

receiving heartbeat messages and consequently, its entry will

be removed from the routing table of its neighbors.

A. Neighbor Selection

Vitis utilizes a gossip-based peer sampling service to build

a hybrid overlay. Any of the existing implementations for

this service, e.g., [23], [6], [24], [25], can be used. When a

node joins the overlay (Algorithm 1), it contacts a bootstrap

node and receives a number of nodes to start communicating

with. Then, the node runs the peer sampling service and

periodically acquires fresh random samples of the existing

nodes.

The overlay construction mechanism in Vitis is inspired

by T-man [26], which is a generic protocol for topology

construction and management. Each node, p, periodically

exchanges its routing table (RT) with a neighbor, q, chosen

uniformly at random among the existing neighbors in the

routing table. Node p, then, merges its current routing table

with q’s routing table, together with a fresh list of the nodes,

provided by the underlying peer sampling service (Algo-

rithms 2, lines 2-7). The resulting list becomes the candidate

neighbors list for p. Next, p selects a number of neighbors

among the candidate neighbors and refreshes its current

Algorithm 1 Join

1: procedure JOIN

2: InitProfile() ⊲ subscribe to topics
3: InitRoutingTable() ⊲ get some neighbors from the bootstrap node
4: start PeerSamplingService()
5: do every δt ⊲ repeat periodically
6: ExchangeRT() ⊲ Algorithm 2
7: ExchangeProfile() ⊲ Algorithm 6

8: end procedure

Algorithm 2 T-Man - Active Thread

1: procedure EXCHANGERT

2: neighbor ← selectRandomNeighbor()

3: buffer ← getSampleNodes() ⊲ provided by the peer sampling service

4: buffer.merge(RT) ⊲ RT is the local routing table

5: Send [buffer] to neighbor

6: Recv newBuffer from neighbor

7: buffer.merge(newBuffer)

8: RT← selectNeighbors(buffer)

9: end procedure

Algorithm 3 T-Man - Passive Thread

1: procedure RESPONDTORTEXCHANGE

2: Recv buffer from neighbor

3: newBuffer← getSampleNodes()

4: newBuffer.merge(RT)

5: Send [newBuffer] to neighbor

6: newBuffer.merge(buffer)

7: RT← selectNeighbors(newBuffer)

8: end procedure

Algorithm 4 Select Neighbors

1: procedure SELECTNEIGHBORS(buffer)

2: successor← findSuccessor(buffer)

3: buffer.remove(successor)

4: selectedNeighbors.add(successor)

5: predecessor← findPredeccessor(buffer)

6: buffer.remove(predecessor)

7: selectedNeighbors.add(predecessor)

8: sw-neighbor ← buffer.select-sw-neighbor(RANDOM-DISTANCE)

9: buffer.remove(sw-neighbor)

10: selectedNeighbors.add(sw-neighbor)

11: for all node in buffer do

12: utility[node] ← calculateUtility(node, self)

13: end for

14: sortedNeighbors ← utility[].sort()

15: friends ← sortedNeighbors.top(RT-SIZE −3)

16: selectedNeighbors.add(friends)

17: return selectedNeighbors

18: end procedure

routing table. The same process will take place at node q

(Algorithm 3). The core idea of our topology construction

is captured in the neighbor selection mechanism, referred to

as selectNeighbors in Algorithms 2 and 3 and described in

Algorithm 4.

As mentioned previously, the routing table includes sw-

neighbors and friend links. We define a system parameter k

in Vitis, which determines the number of sw-neighbors in

the routing table. The lower k is, the higher the upper bound

on the routing cost is [27], while nodes are better grouped

together and the traffic overhead decreases. That is, there is

trade-off between the traffic overhead and the propagation



delay, which can be controlled by k. In Section IV we

investigate the impacts of this trade-off on the performance

of the system.

1) Sw-neighbor selection: In order to perform rendezvous

routing [7], Vitis nodes establish sw-neighbors by utilizing a

mechanism similar to Symphony [27]. Similar to Symphony,

Vitis constructs a navigable small-world overlay, which

guarantees a bounded routing cost that depends on the node

degree. It introduces a distance function in the identifier

space, where a neighbor for a node is selected with a

probability that is inversely proportional to the distance

between the two nodes.

The authors in [27] showed that selecting k links accord-

ing to this probability function, results in a routing cost

of the order O( 1
k
log2 N) messages. For example, if one

such neighbor is selected (as in Algorithm 4, line 8), the

routing time is bounded to O(log2 N). Note that, unlike

Symphony, in Vitis nodes establish their sw-neighbors via

periodic gossiping.

Moreover, our gossip protocol (Algorithms 2 and 3)

enables Vitis nodes to form a ring topology in the identifier

space. The ring is required for lookup consistency in the

overlay, which is, in turn, required for constructing the

relay paths (See Section III-B). Therefore, two entries of

the routing tables are always dedicated for maintaining the

neighbors on the ring. Each node selects two nodes with the

closest id to its own, in the two directions, among the nodes

it has learnt about so far, as its predecessor and successor on

the ring (Algorithm 4, lines 2 and 6). Although initially the

predecessors and successors may not be correctly assigned,

T-Man protocol guarantees that through periodic gossiping

the ring topology rapidly converges to a correct ring and is

constantly maintained, thereafter [26].

2) Friend selection: The remaining candidate neighbors

are ordered by a preference function. A node, then, selects

the highest ranked nodes from this list (Algorithm 4, lines

11-15). The preference function takes into account: (i) the

interest similarity of the nodes, as well as (ii) the event

publication rate for different topics. It can also be extended

to account for the underlying network topology and reduce

the cost of data transfer in the physical network. The

preference function, gives a pair-wise utility value to the

nodes, according to the following function:

utility(i, j) =

∑

t∈subs(i)
⋂

subs(j)

rate(t)

∑

t∈subs(i)
⋃

subs(j)

rate(t)
(1)

where subs(i) indicates the set of topics that node i has

subscribed to, and rate(t) is the publication rate of topic t.

If the distribution of published events on different topics

is uniform, nodes that have bigger interest overlap rel-

ative to the total number of their subscriptions, end up

as friends. For example, if node p subscribes to topics

{A,B,C}, node q subscribes to {C,D}, and node r sub-

scribes to {C,D,E, F,G,H}, then utility(p, q) = 0.25,

utility(p, r) = 0.125, and utility(q, r) = 0.33. That means,

node p will prefer q to r, although it shares exactly one topic

with both of them. Thus, node p less probably gets involved

in the event propagation of events on topics {E,F,G,H},

in which it has no interest. Likewise, nodes q and r prefer

to keep r and q in their local views, respectively.

If the publication rate varies for different topics, the

interest overlaps are weighted by the publication rates. For

example, if the publication rate for topic t goes to zero,

i.e., almost no event is published on t, then t is practically

ignored in the preference function. On the other hand, nodes

will give a high utility to one another, if they are interested

in a common topic that has a high rate of events.

B. Relay Path Construction

As we explained in Section III-A, the routing table size is

bounded, thus, not all neighbors with utility greater than zero

will be selected. As a result, instead of a unique cluster per

topic, multiple disjoint clusters can emerge in the overlay.

A cluster for topic t, is a maximally connected subgraph of

the nodes that are all interested in t. If topic t has n disjoint

clusters, these clusters are numbered and denoted as Ci[t],
where i is from 1 to n. To ensure that all n clusters of topic

t are connected, some other nodes that are not subscribed

to t have to get involved.

We define a rendezvous node for topic t, as a node

with the closest id to hash(t). Since Vitis constructs a

small-world overlay, any node is able to route to any other

node in the identifier space. To find the rendezvous node,

a node performs a lookup on hash(t), and all the nodes

on the lookup path become relay nodes for t. This path,

which we refer to as relay path, can include any kinds

of links, e.g., friend, sw-neighbor or ring links (Figure 3).

This is equivalent to the concept explored in Scribe [4] or

Bayeux [5], where nodes subscribe on the path towards the

rendezvous node and ultimately build a spanning tree.

In order to minimize the number of relay nodes for a

topic, instead of letting each subscriber node route to the

rendezvous node, as in, e.g., Scribe, nodes inside each cluster

select a number of representative nodes, as gateways, to

establish the relay path.

Algorithm 5 defines the gateway selection process. To

select a gateway for cluster Ci[t], each node in Ci[t]
initially proposes itself as gateway (Algorithm 5, line 3).

This proposal is piggybacked on the node profile that is

periodically sent to the neighbors (Algorithm 6). Likewise,

the node receives other proposals from its neighbors, and

revises its proposal for the next round (Algorithm 5, line

19). To avoid loops, each proposal also includes the node

which proposed the gateway. This node is denoted as parent

in Algorithm 5. Among the proposed gateways, the node



Algorithm 5 Update Profile

1: procedure UPDATEPROFILE

2: for all topic in profile.subscriptions do

3: prop ← initProposal(self, self, 0) ⊲ (GW, parent, hops)

4: for all neighbor in RT do

5: if neighbor.isInterested(topic) then

6: new ← neighbor.getProposal(topic)

7: if neighbor = new.parent OR new.parent 6∈ RT then

8: currentDis = distance(prop.GW, hash(topic))

9: newDis = distance(new.GW, hash(topic))

10: if newDis<currentDis AND new.hops+1 < d then

11: prop ← (new.GW,neighbor, new.hops+1)

12: end if

13: if new.GW=prop.GW AND new.hops+1 <prop.hops then

14: prop ← (new.GW, neighbor, new.hops+1)

15: end if

16: end if

17: end if

18: end for

19: profile.subscriptions.update(topic, prop)

20: if prop.GW = self then

21: RequestRelay(topic) ⊲ perform lookup(hash(t))

22: end if

23: end for

24: end procedure

selects as gateway the one that has the closest id to hash(t),
measured by distance function (Algorithm 5, lines 8 and

9). If the selected gateway, e.g., GW in Algorithm 5, is

different from the current proposal, the node increases a

counter inside the proposal for GW . This counter indicates

the distance of the node to the GW , in terms of hop counts.

If this distance exceeds a predefined threshold d, the node

ignores the proposal (Algorithm 5, line 10). A gateway

node, therefore, is responsible for the nodes, which are a

maximum of d hops away from it. Consequently, the number

of gateways per cluster becomes proportional to the diameter

of the cluster, and can be controlled by the distance threshold

d. That implies the worst case propagation delay inside a

cluster is bounded to d. Hence, the propagation delay in

Vitis is O(log2 N + d). Nevertheless, d is a constant that

does not depend on N and in all the practical scenarios,

it can be set to a value less than log2 N . Therefore, the

overall propagation delay is bounded to O(log2 N). As our

experiments show, in practice this value is much smaller

than this upper bound.

When a node recognizes itself as gateway for topic t

(Algorithm 5, line 20), it initiates the relay path construction

by performing a lookup on hash(t). Since all the lookups

end up at the rendezvous node (the lookup consistency is

ensured by the ring), all the clusters of topic t get connected.

It is important to note that nodes do not need to reach con-

sensus on gateways and multiple gateways can be selected

for each cluster. This results in establishment of several

relay paths from the same cluster and, therefore, more traffic

overhead. However, it does not affect the correctness of the

solution and is beneficial because: (i) the overlay becomes

more robust, in particular to the failure of gateway nodes or

relay nodes along the path, and (ii) the propagation delay

inside the cluster decreases, since the events are flooded
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Figure 3. Node p publishes a notification inside its own cluster. The
notification is flooded inside the cluster. It is also forwarded to the relay
node t through the gateway g. The notification moves along the relay path
up to the rendezvous node r, and then reaches the other existing clusters.
Next, it is flooded inside those clusters.

simultaneously in different parts of the cluster.

Should a gateway node fail or disconnect from the cluster

(e.g., due to a change of priorities that are enforced by the

preference function), its immediate neighbors would detect

the failure (after not receiving the heartbeat messages) and

stop proposing it as a gateway. Therefore, in the proceeding

rounds, those nodes select a different gateway.

C. Event Dissemination

Whenever a node publishes an event on a topic, it sends a

notification to those neighbors in its routing table, which are

interested in that topic, or act as a relay node for the topic.

A node that receives a notification, pulls the event from the

sender and forwards the notification to all its own interested

neighbors. As a result, the notification propagates inside

the cluster of the publisher node. When the notification is

received by the gateway node, it is forwarded along the

relay path. The notification goes up to the rendezvous node

and again down the other existing relay paths, if any other

cluster for that topic exists. It, then, reaches the gateway

node(s) of those clusters, and will be flooded inside those

clusters, accordingly. Figure 3 shows an example of how a

notification is disseminated in the overlay. Node p publishes

a new notification on topic t, and sends it to all its neighbors,

which are interested in t. When this notification is received

by the gateway node, g, it is forwarded on the relay path

towards the rendezvous node, i.e., node t. When node t

receives the notification, it sends it to the other existing relay

path. Consequently, node m is informed and propagates the

notification inside its own cluster. The event is pulled from

the same path as the notification propagated along.

D. Overlay Maintenance

We use a mechanism similar to T-Man [26] and Scribe [4]

for maintaining the routing tables and relay paths, respec-



Algorithm 6 Exchange Profile - Active

1: procedure EXCHANGEPROFILE

2: profile ← UpdateProfile()

3: for all neighbor in RT do

4: if neighbor.age > THRESHOLD then ⊲ remove the stale neighbors

5: RT.remove(neighbor)

6: else

7: RT.neighbor.IncrementAge()

8: Send [profile] to neighbor

9: end if

10: end for

11: end procedure

Algorithm 7 Exchange Profile - Reactive

1: procedure RESPONDTOEXCHANGEPROFILE

2: Recv profile from neighbor

3: RT.update(neighbor, profile, 0) ⊲ 0 indicates the age of this neighbor

4: end procedure

tively. Every time a node sends its profile to its neighbors, it

increments the age of those neighbors (Algorithm 6). When

it receives back a response from the neighbor, it marks that

neighbor as fresh, by reseting its age to zero (Algorithm 7,

line 3). After a predefined threshold, the stale entries are

removed from the routing tables. This threshold determines

the failure detection speed. The lower the threshold, the

faster the failure detection is. However, if the threshold is too

low, then the rate of false positives, due to the congestion in

the network and varying link delays, increases. By increasing

the threshold, the responsiveness of the failure detection can

be traded off for more accuracy.

As we described earlier, the overlay is constructed by

gossiping. Through gossiping, clusters are formed, gateway

nodes are selected, and relay paths are established. The

overlay maintenance is conducted in exactly the same way.

When a node leaves the system or modifies its subscriptions,

the friend selection mechanism in the proceeding rounds

captures this change and routing tables are updated accord-

ingly. If the node is a gateway, then its direct neighbors in

the corresponding cluster will notice the change and revise

their proposals for selecting a new gateway. If the node is

a relay node or rendezvous node, the proceeding lookups

by their neighbors on the relay path, will return a substitute

node. Consequently, the overlay adapts to the changes in the

network, while nodes constantly acquire fresh information

through their neighbors.

IV. EXPERIMENTS

We implemented Vitis and two base-line solutions in

Peersim [28], a simulator for modeling large scale peer-to-

peer networks. The base-line solutions are:

• RVR: a structured RendezVous Routing solution that

builds a multicast tree per topic, equivalent to that of

Scribe [4] or Bayeux [5], with fixed node degree.

• OPT: an unstructured subscription aware solution that

constructs an Overlay Per Topic, while minimizing

node degrees by exploiting the subscription correla-

tions, similar to SpiderCast [16].

To make the three systems comparable they use the

same peer sampling service (Newscast [25]) and overlay

construction protocol (T-Man [26]).

We evaluate Vitis against RVR and OPT with subscription

patterns, generated from a synthetic model as well as real-

world Twitter traces [9]. We investigate the impact of

varying publication rates and routing table sizes on the

performance of the systems. Moreover, the robustness of

Vitis under churn is evaluated by utilizing traces from

Skype [10].

In our simulations, we measure the following metrics:

• Hit ratio: The fraction of events, on all topics, that are

received by the subscriber nodes;

• Traffic overhead: The proportion of relay (uninterest-

ing) traffic that nodes experience;

• Propagation delay: The average number of hops events

take to reach to all the subscriber nodes.

A. Experimental settings

We measure the performance of Vitis, RVR, and OPT with

10,000 nodes. Unless otherwise mentioned, k is set to 3, the

routing table size is set to 15, d is set to 5, and different

topics have the same rate of publication.

We generate three subscription patterns to model different

levels of interest correlation. This data generation model was

inspired by a work of Wong et al [29]. The subscription

patterns are:

• Random: nodes select 50 out of 5000 topics uniformly

at random;

• Low correlation: nodes group 5000 topics into 100

buckets and select 50 topics uniformly at random from

5 different buckets (10 topics from each bucket);

• High correlation: nodes group the 5000 topics into 100

buckets and select 50 topics uniformly at random from

2 buckets (25 topics from each bucket).

Note that, in all the above subscription patterns, the average

topic popularity, i.e., the population of nodes subscribed

to a topic, is uniform. Whereas, the distribution of interest

correlation, captured by Equation 1, is different in the three

patterns. Since RVR exhibits similar behavior with random

and correlated subscriptions, we draw only a single line

for it in the plots. Moreover, since SpiderCast is targeted

for real-world scenarios with high subscription correlation,

we investigate the performance of OPT only with Twitter

subscriptions.

B. Friends Vs. sw-neighbors

In this experiment, we investigate the performance impact

of varying the number of friends versus sw-neighbors. We

bound the node degree to 15, that is, each node has a routing

table of size 15, among which two links are dedicated for

the predecessor and the successor of the node. That means,
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Figure 4. Measurements with varying number of friends
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Figure 5. Distribution of traffic overhead

nodes have at least two sw-neighbors in all the experiments.

The rest of the links can be selected, either as a friend or

as sw-neighbor.

The results showed that both Vitis and RVR have 100%

hit ratio in all settings. As we observe in Figure 4(a),

when more friends are selected, the traffic overhead in Vitis

drops significantly. With correlated subscriptions, this traffic

reduced by a factor of 88%. Even when the subscriptions are

random, the traffic overhead in Vitis is less than one third

compared to that of RVR. That shows Vitis is able to exploit

even the slightest similarities between nodes subscriptions.

As it is shown in Figure 4(b), nodes with correlated

subscriptions experience a better delivery time as well. The

propagation speed improves when more friend links are

selected. This is due to the fact that selecting more friends

results in a better clustering of nodes with similar subscrip-

tions. Thus, instead of having many small clusters, the over-

lay moves towards having fewer, but bigger clusters. Since
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Figure 6. Measurements with different routing table sizes

the events are very quickly disseminated inside clusters (by

flooding), most of delay is caused by the inter-cluster rout-

ing. Therefore with fewer clusters, the event dissemination

happens much faster. For random subscriptions, however,

the overlay ends up having multiple small clusters per topic.

Therefore, inter-cluster routing plays an important role for

delivering the events to the subscriber node. Since replacing

sw-neighbors with friend links degrades the navigability of

system, the improved traffic overhead in this case, comes at

the cost of higher propagation delay. However, as discussed

in section III-A, the propagation delay in our system is

bounded to O(log2 N).
Moreover, one might argue that although the average

traffic overhead is reduced in Vitis, a high load is imposed

upon gateway nodes, rendezvous nodes, or other relay nodes.

Therefore, we show the traffic overhead distribution among

the nodes in the overlay. Figure 5 shows that while the

fraction of nodes with 10% overhead is increased, the

fraction of nodes that have an overhead more than 20%,

drops to less than one third in Vitis, compared to that of

RVR. This shows that Vitis, not only reduces the average

traffic overhead, but also improves the distribution of this

traffic among the nodes.

In the rest of our experiments we set one predecessor, one

successor, and one sw-neighbor for each node. The rest of

the links are selected as friends.

C. Changing the routing table size

In this experiment we compare the performance of Vitis

to RVR, while changing the routing table size from 15 to
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Figure 7. Measurements with different publication rates

35. As it is shown in Figure 6(a), when nodes maintain

bigger routing tables, the traffic overhead, as well as the

propagation delay, decreases in both systems, though, for

different reasons. In RVR, this improvement is because the

rendezvous routing performs better, i.e., in fewer number

of hops, with more small-world links. Thus, more efficient

spanning trees with less intermediary nodes are constructed.

In Vitis, however, the number of sw-neighbors are fixed

and the additional entries in the routing tables are used for

adding friend links. Therefore, nodes are grouped together

more efficiently and fewer relay paths per topic are required.

This means inter-cluster routing constitutes a smaller part of

the event dissemination. This explains why event delivery

latency in Vitis with random subscriptions, outperforms the

RVR system, when the routing table size exceeds 30 entries.

D. Changing the publication rate

So far we have assumed a uniform distribution of pub-

lished events on each topic. However, the publication rate

of topics does not have to be uniform. In fact, usually there

are a few hot topics with a high rate of publications, while

other topics have a low publication rate. In this experiment,

we show how our solution adapts to different publication

rates. We employ a power-law function, with a parameter α,

to define the distribution of events rate on different topics.

We change α from 0.3 to 3, and evaluate the behavior of

Vitis versus RVR. Note that the X-axis in Figure 7 is in the

log scale. When α is close to 0.3, the distribution is similar

to a uniform distribution as in the previous experiments.

However, when α increases the distribution becomes more
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Figure 9. Summary of statistical analysis of available Twitter data set

skewed. In the extreme case, when α is 3, almost all the

events are published on a single topic.

When the publication rate for different topics becomes

more skewed, Equation 1 gives a higher utility value to the

nodes that are interested in the hot topics. Thus, such topics

end up having fewer and better connected clusters. This

effect is similar to when the correlation level is increased.

That is why in Figure 7, the performance of the scenario

with random subscriptions gets closer to that of the scenario

with high correlation, when α is increased.

Note that, while hot topics are prioritized, topics with

less events might experience higher traffic overhead and

propagation delay. However, since hot topics constitute most

of the published events, and they are propagated efficiently,

an overall improvement is achieved.

E. Real world subscriptions

In this experiment, we evaluate Vitis with both RVR and

OPT. We use a subscription pattern extracted from nearly 2.4

million Twitter users [9]. Each node in Twitter plays a dual

role, that is, it can follow (subscribe to) other nodes, and

it can be followed by others (as a topic). Thus, both topics

and nodes refer to the users of the system. We analyzed the

available data set and came up with the statistical results

reported in Figure 9. The distribution of nodes in-degree and

out-degree are modeled by a power-law distribution with an

estimated parameter of 1.65 (Figure 8).

We took a sample of nearly 10000 nodes, by performing

multiple breath first searches (BFS) [30]. Initially we ran-

domly selected a number of nodes from the dataset. Then

we added to this sample, all the subscriptions of these nodes,

i.e., nodes being followed by the selected nodes. Next, we

extracted all the relations (following or being followed)

between these nodes. Finally, we removed subscriptions to

the nodes outside the sample. In order to ensure that this
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Figure 10. Measurements with Twitter subscription patterns
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approach preserves the properties of the complete log, we

took several samples and the similarity of in-degree and out-

degree distribution of the samples and that of the full log

was confirmed.

Unlike our previous configurations, in these experiments

the number of subscriptions per node is not the same. We

changed the routing table size from 15 to 35 and investigated

the impact on the hit ratio, traffic overhead and propagation

delay. Moreover, we measured the hit ratio for a node, 10

seconds after the node joins the system. That means a node

is expected to receive the subscribed-to events, which are

published 10 seconds after its joining time.

Figure 10(a) shows that the hit ratio in Vitis and RVR

is 100%, while OPT with a bounded node degree can not

achieve a full hit ratio. Even when the node degree is 35,

OPT can only hit 80% of the subscribers, on average. In

order to reach a 100% hit ratio, OPT needs to be free of any

bound on the node degree. We performed another experiment

to investigate the performance of OPT with unbounded node

degree, and plotted the node degree distribution in Figure 11.

As can be seen in this figure, more than two third of the

nodes have a degree higher than 15. Also, 0.3% of nodes

have a degree higher than 200 (Maximum observed degree

is 708), which is not shown in the figure. This implies

OPT-like solutions, that only rely on exploiting subscription

correlations, can not scale in real world scenarios.

In contrast, OPT outperforms Vitis and RVR with respect

to traffic overhead. Since OPT constructs a separate overlay

per topic, the events are only disseminated among the sub-

scribers and there is no traffic overhead at all. Figure 10(b)

shows the traffic overhead of the three systems. As it is

shown, Vitis and RVR has a higher level of overhead

compared to Figure 6(a), which is due to the increased

number of subscriptions (on average 80 subscriptions per

node). Also, the number of topics in this experiments is

doubled, since there are as many topics as the number of

nodes. Therefore, the average population of nodes that are

interested in a topic is less than the previous experiments.

However, even with only 15 links per node, Vitis has 30%

less traffic overhead compared to RVR. With 35 links per

node, the traffic overhead in Vitis decreases to 43%, which

is 40% better than RVR.

The propagation delay in all three systems exhibits a simi-

lar trend when the routing table size increases (Figure 10(c)),

while Vitis is more than 1.5 times faster than RVR and

1.7 times faster than OPT. Note that due to the navigable

structure, the delay in Vitis and RVR is bounded. However,

a topic overlay in OPT might be any arbitrary graph and

therefore there is no upper bound on the propagation delay.

F. Vitis under churn

In this experiment, we use a scenario with churn, i.e., a

scenario in which nodes can join or leave at any time. We

use a real world trace [10], which monitors a set of 4000

nodes participating in the Skype superpeer network for one

month beginning September 12, 2005. The routing table size

is bounded to 15, and a uniform publication rate for the

topics is considered. Like the previous experiment, the hit

ratio for a node is calculated 10 seconds after the node joins

the system. We compare Vitis with RVR and observe that,
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Figure 12. Measurements with Skype trace for churn in the network

due to the underlying gossip mechanism, both solutions react

nicely to the churn and adapt to the changes of network.

As Figure 12(a) shows, although both systems can tolerate

moderate churn, under flash crowds, i.e., a large number of

nodes join at nearly the same time, the hit ratio in RVR

goes down to 87%. That is because the stabilization time

takes longer, and while the structure is not converged to a

connected subgraph per topic, nodes may miss some events.

This effect is also observable in our system. However, the

worst case hit ratio is about 99%. This is because as soon

as a node finds a group-mate for a topic, it can receive

the corresponding events on that topic, without the need for

establishing a relay path independently.

We also observe in Figure 12(b) that the traffic overhead

in both systems does not change much over time. However,

under flash crowds, the traffic overhead in RVR drops

sharply. This is not an advantage though, because the relay

paths are not established properly and nodes are missing

their desired events (that is why the hit ratio drops as well).

In contrast, the traffic overhead in Vitis slightly increases

under flash crowds, because nodes inside the groups are not

yet informed about their group-mates and therefore several

gateway nodes start to build up the relay paths towards the

rendezvous point. After a while, however, when the churn

is moderate, the number of gateways and, consequently, the

traffic overhead decrease. Likewise, Figure 12(c) shows that

the propagation delay does not change in moderate churn.

However, the increased level of delay after the flash crowd

is due to the bigger size of the network.

V. CONCLUSION

We presented Vitis, a topic-based publish/subscribe sys-

tem, which scales with the number of nodes as well as the

number of topics in the overlay.

The main contribution of this paper is a novel hybrid

publish/subscribe overlay that exploits two ostensibly op-

posite mechanisms: unstructured clustering of similar peers

and structured rendezvous routing. We employ a gossiping

technique to embed a navigable small-world network, which

efficiently establishes connectivity among clusters of nodes

that exhibit similar subscriptions. We also give a theoretical

bound on the worst case delay.

We showed that Vitis fills in the gap in the range of

solutions, by simultaneously achieving both bounded node

degree and low traffic overhead. We evaluated Vitis, in simu-

lations, by comparing its performance against two base-line

solutions, which represent two main groups of the related

work: a structured overlay that uses rendezvous routing

(RVR), and a solution that takes advantage of subscription

similarities to constructs an overlay per topic (OPT).

We used synthetic data as well as real-world traces from

Twitter to model users subscriptions. We also used traces

from Skype to show that Vitis is robust in the presence of

churn. We showed that although exploiting subscription cor-

relations results in great advantages, solutions such as OPT,

which solely rely on such correlations, can not scale when

the number of node subscriptions increases. Consequently,

in real world scenarios, such solutions cannot guarantee

that the subscribers receive their intended data, unless the

node degrees are unbounded. In contrast, Vitis and RVR

always reach a perfect hit ratio. This, however comes at the

cost of some traffic overhead. We showed that, compared

to the rendezvous routing solution, Vitis reduces the traffic

overhead to less than 75% with synthetic data and 40% for

real-world traces, while it speeds up the event dissemination

in the overlay. Moreover, Vitis adapts to biased rates of

events that are published on different topics, and builds more

efficient groups for hot topics, thus, improving the overall

performance of the event dissemination.

REFERENCES
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