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ABSTRACT
Prompt-tuning and instruction-tuning of language models have ex-
hibited significant results in few-shot Natural Language Processing
(NLP) tasks, such as Relation Extraction (RE), which involves iden-
tifying relationships between entities within a sentence. However,
the effectiveness of these methods relies heavily on the design of
the prompts. A compelling question is whether incorporating exter-
nal knowledge can enhance the language model’s understanding
of NLP tasks. In this paper, we introduce wiki-based prompt con-
struction that leverages Wikidata as a source of information to craft
more informative prompts for both prompt-tuning and instruction-
tuning of language models in RE. Our experiments show that using
wiki-based prompts enhances cutting-edge language models in RE,
emphasizing their potential for improving RE tasks. Our code and
datasets are available at GitHub 1.
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(a) Fine-tuning SLMs on RE. (b) Prompt-tuning of SLMs on RE.

(c) Instruction-tuning of LLMs on RE.
Figure 1: Three paradigms for solving RE task: Fine-tuning SLMs with a clas-
sification head (1a), prompting input sentences with templates for MLM-based
prediction (1b), and instruction-tuning LLMs to generate relation-containing
responses (1c).

on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3605098.3635949

1 INTRODUCTION
Relation Extraction (RE) is a fundamental task in Natural Language
Processing (NLP), identifying and categorizing semantic relation-
ships between entities mentioned in the text. RE is important in
many NLP tasks such as information extraction, knowledge base
construction, knowledge graph creation, and question answering
by enabling the extraction of structured information from unstruc-
tured textual data [3, 27, 28].

Most prior research on RE focuses on adapting Standard-scale
Language Models (SLMs) such as BERT [9] to downstream RE
tasks [18, 45]. In this paradigm, we fine-tune SLMs on RE tasks,
utilizing a classification head to predict the relation between en-
tities (Figure 1a). Although this approach is practical, it involves
challenges such as being time-consuming, requiring lots of anno-
tated data, and lack of generalization, especially in few-shot RE.
One method to overcome these limitations is to prompt-tune SLMs
by reframing the RE task as a Masked Language Modeling (MLM)
problem. This reframing is achieved by employing a textual prompt
template to fill a blank in a given prompt, predicting the relation
between entities (Figure 1b) [6, 11, 13]. The predicted blank is then
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linked to actual relation labels using a verbalizer [35]. Although
prompt-tuning shows impressive results in few-shot RE, model
performance heavily relies on costly prompt and verbalizer engi-
neering to discover the optimal prompt template and answer space
for RE [17, 25].

Recently, there has been a significant increase in model sizes
with Large-scale Language Models (LLMs) such as GPT-3 [5], and
Llama 2 [39] each containing billions of parameters. Unlike prompt-
tuning approaches, these generative models can be applied directly
to tasks without explicit verbalization. However, a significant chal-
lenge with LLMs is their focus on word prediction within context,
which may not align with the user’s desire to understand and fol-
low their instructions [50]. To address this, Supervised Fine-Tuning
(SFT) of LLMs known as instruction-tuning has been proposed, in-
volving fine-tuning LLMs on datasets containing human-written
instructions and context to align the model’s behavior more closely
with the user’s expectations [31]. Figure 1c illustrates the process
of instruction-tuning LLMs for RE tasks. This approach generates
responses that encapsulate the relation between entities within the
given input sentence by utilizing the task instruction input sentence
as a prompt.

Despite the considerable success of prompt-tuned SLMs and
instruction-tuned LLMs across various applications and scenar-
ios, including standard and few-shot settings, they have been de-
nounced for memorizing facts and knowledge in the training cor-
pus [15]. This issue becomes particularly pronounced in semanti-
cally complex tasks such as RE, requiring domain-specific knowl-
edge and expertise for generalization. To address these limitations
and further enhance the effectiveness of RE models, we propose
a novel methodology that leverages external knowledge sources,
particularly Wikidata 2, to construct informative prompts for RE
tasks. We refer to these prompts as wiki-based prompts, aiming to
provide additional context and information to assist the model in
understanding and extracting relations between entities in text.

In this paper, we introduce the detailed methodology for con-
structing wiki-based prompts, integrating them into the prompt-
tuning process of SLMs, and exploring their effectiveness in the
instruction-tuning of LLMs. In summary, we present the following
contributions:

• We propose wiki-based prompts, a novel approach for en-
hancing RE tasks, leveraging external knowledge fromWiki-
data to create informative prompts.

• We introduce a methodology for prompt-tuning of SLMs
using these wiki-based prompts, addressing the challenge of
efficient prompt template construction.

• We extend the exploration to instruction-tuned LLMs and
demonstrate the application of wiki-based prompts com-
bined with SFT techniques to align LLMs more closely with
human instruction for RE tasks.

• We employ advanced SFT strategies, including Low-Rank
Adaptation (LoRA) SFT [16] and Direct Preference Optimiza-
tion (DPO) [32], to enhance the performance of LLMs in RE
tasks, particularly in the context of few-shot RE.

• We conduct comprehensive experiments and evaluations on
four publicly available RE datasets to assess the effectiveness

2https://www.wikidata.org

of our wiki-based prompts and the impact of instruction-
tuning and SFT techniques on RE tasks, showcasing im-
proved generalization and performance.

The paper is structured as follows: Section 2 introduces RE using
SLMs and LLMs. In Section 3, we present our wiki-based prompt
construction, detailing its incorporation into prompt-tuning for
SLMs and instruction-tuning for LLMs. Section 4 covers experi-
mental details, results, dataset information, and evaluation metrics.
Section 5 overviews related work in RE and language models. Fi-
nally, Section 6 summarizes contributions, discusses findings, and
suggests future research directions.

2 BACKGROUND
Relation extraction (RE) aims to identify and classify the relationship
between a subject and an object entities mentioned in a sentence.
In an RE dataset, an example typically is a pair of (X𝑖 ,Y𝑖 ), where
X𝑖 = {𝑥1, 𝑥2, · · · , 𝑠, · · · , 𝑜, · · · , 𝑥𝑛}, is an input sentence containing
𝑛 tokens, and 𝑠 and 𝑜 indicate subject and object entities, respec-
tively. Y𝑖 ∈ Y is the corresponding relation label showing the
relationship between 𝑠 and 𝑜 , and Y is a set of pre-defined relation
labels such as org:founded, per:charges, and org:subsidiary.
A popular approach for RE tasks is to use language models. In this
section, we review two types of language models for the RE tasks:
Standard-scale Language Models (SLMs), such as BERT [9] and
RoBERTa [26], and Large-scale Language Models (LLMs), such as
Llama 2 [39] and GPT-3 [5].

2.1 SLMs for RE
Fine-tuning SLMs on downstream RE tasks is a common approach
to training a model for RE tasks [18, 45, 47, 51]. In this approach,
an SLM S, pre-trained on massive unlabeled text data, is fine-tuned
on a labeled RE dataset. During the fine-tuning step, each input
sentence is converted into a sequence of tokens with a special
classification token and an end-of-sequence token. The SLM S
then encodes all sentence tokens into hidden vectors and uses a
label-specific classifier to compute the probability distribution of
the classification token hidden vector over the relation label space
(as illustrated in Figure 1a).

However, fine-tuning SLMs on few-shot RE tasks, where very
few examples of each relation label Y𝑖 are available in the dataset,
is challenging. This is mainly due to the gap between pre-training
and fine-tuning objectives. Prompt-tuning of SLMs is an approach
to bridge this gap by reformulating the downstream RE task as a
Masked Language Modeling (MLM) problem using a textual prompt
template. This way, the fine-tuning stage becomes more similar to
the problem solved during pre-training. To do so, we use a prompt
template T (.) to convert an input sentence X𝑖 to a format suitable
for the SLM S to perform MLM. For example, the prompt template
for RE can be T (X𝑖 ) = The relation between [subject] and
[object] is [MASK]. We also need a verbalizer M to map the
predicted word for [MASK] to a relation label Y𝑖 ∈ Y (as illustrated
in Figure 1b).

Although prompt-tuning of SLMs has shown promising results
on RE tasks, particularly on few-shot RE, the effectiveness of the
learning process significantly relies on finding the optimal prompt
template and verbalizer. This search for an optimal prompt template
and verbalizer can hinder this paradigm [17, 24].



Wiki-based Prompts for Enhancing Relation Extraction using Language Models SAC ’24, April 8–12, 2024, Avila, Spain

2.2 LLMs for RE
LLMs, such as GPT-3 [5] and Llama 2 [39], are usually very good
at generating grammatically correct and semantically meaningful
text. However, despite their outstanding performance, they can
produce false information, bias, and toxic text [4]. One approach
to address this issue is to prompt LLMs with task-specific solved
examples, helping them learn patterns and perform a range of few-
shot NLP tasks [5]. Another approach is to fine-tune LLMs using
human-written instructions (a.k.a instruction-tuning) [8, 29, 31].
Nevertheless, instruction-tuning requires appropriate annotated
human-written instruction data. Moreover, fine-tuning LLMs with
billions of parameters on instruction data is computationally expen-
sive. In the rest of this section, we explore how to create instruction
RE data and efficiently fine-tune LLMs on instruction RE data using
Parameter-Efficient Fine-Tuning (PEFT). Furthermore, we investi-
gate the effective alignment of LLMs based on human preference
responses employing Direct Preference Optimization (DPO).

2.2.1 Instruction-tuning of LLMs for RE. By providing LLMs
with specific instructions, we can guide them toward producing
more accurate and informative text. Each example in the instruction
data contains three parts: (1) Instruction I, which is a text that
describes the RE task, for example, I: find the relation between
the two entities in the sentence, (2) Context or Input X𝑖 ,
which is the context of the RE task, including the input sentence,
for example, X𝑖 : {"Steve Jobs is the founder of Apple."},
and (3) Response or Output Y𝑖 , which is an appropriate response
for relation label between entities mentioned in the Input X𝑖 , for
example, Y𝑖 : [Apple, founded by, Steve Jobs] (Figure 1c).

An LLML receives a task instruction I alongside the correspond-
ing context X𝑖 and produces the response Y𝑖 , i.e., L(I,X𝑖 ) = Y𝑖 .
The LLM L then is fine-tunned by tweaking its parameters to re-
duce the loss function, which is typically the cross-entropy loss
between the predicted Y𝑖 and the ground-truth response. We call
this approach of fine-tuning LLMs as Supervised Fine-Tuning (SFT).

2.2.2 Fine-tuning of LLMs More Efficiently. One approach
to reducing the computational cost of fine-tuning LLMs is using
Parameter-Efficient Fine-Tuning (PEFT) techniques, such as pre-
fix tuning [21], LLaMA-Adapter [48], and Low-rank adaptation
(LoRA) [16]. These techniques reduce the computational cost by
only updating a subset of the LLM’s parameters. For example, the
fundamental idea behind LoRA lies in the ability of LLMs to acquire
knowledge from inputs with reduced dimensionality [16].

Another approach to improving the efficiency of fine-tuning
LLMs is to use Reinforcement Learning (RL). RL from Human Feed-
back (RLHF) is a standard final step of SFT of LLMs [31]. It ensures
that the LLM’s response follows provided instructions and refrains
from generating inaccurate information [31]. However, RLHF can be
unstable, primarily due to the complexity of hand-crafting effective
reward functions while preventing deviations from the original SFT
of LLM [32, 43]. Direct Preference Optimization (DPO) [32] is a novel
training paradigm to align SFT of LLMs from human preferences.
This approach eliminates the need to train a reward function by
identifying a mapping from the LLM policy to the reward function
that maximizes the expected reward of the LLM.

3 METHOD
This section outlines our approach to enhancing RE using our new
way of constructing prompts, which we call wiki-based prompts,
within the context of SLMs and LLMs. Here, we first explain how
to construct wiki-based prompts utilizing the Wikidata knowledge
graph. Next, we explore how to enhance the prompt-tuning of SLMs
by integrating our wiki-based prompts. Finally, we investigate the
efficient RE using instruction-tuning LLMs and align them with an
RL-based technique, all facilitated by our wiki-based prompts.

3.1 Wiki-based Prompt Construction
In our RE approach, we leverage Wikidata, a comprehensive knowl-
edge graph, to devise our wiki-based prompts designed for RE tasks.
Wikidata is a structured knowledge base that contains knowledge
about entities, their properties, and their relationships. We use this
knowledge to create more informative and relevant prompts for
RE tasks. By combining techniques such as entity markers and the
wealth of knowledge graph information, we aim to elevate the per-
formance of RE models. Below, we discuss our approach to creating
such prompts.

3.1.1 Entity Markers. Inspired by [51], we integrate entity mark-
ers, represented by specialized token pairs, into our prompt con-
struction process to explicitly highlight subject and object entities
within the input sentence. We use [E1] and [/E1] tokens for sub-
jects, and [E2] and [/E2] tokens for objects. For instance, by trans-
forming the input sentence X𝑖 = {"Steve Jobs is the founder
of Apple."} using the subject marker [E1] and the object marker
[E2], we create the entity marked input sentence X𝑖 = {"[E2]
Steve Jobs [/E2] is the founder of [E1] Apple [/E1]."},
highlighting the entities of interest for RE.

3.1.2 Wikidata for Prompt Construction. To construct the
wiki-based prompt, we leverage the extensive knowledge in Wiki-
data by querying the instance_of attribute from Wikidata and inte-
grating this attribute into the prompts. The instance_of attribute
provides a categorical perspective categorizing entities based on
their types. For example, for an entity representing Steve Jobs,
the instance_of attribute can be person, which helps to classify
the entity as a human being (see Figure 2). We specifically focus
on the instance_of attribute for its foundational and semantically
rich classification, effectively characterizing entities based on their
types for relation extraction. This categorical approach is chosen
for its interpretability and direct relevance to the RE task despite
the wealth of information available in Wikidata.

To ensure clarity and consistency in our categorization process
while minimizing the potential for misleading the language model,
we have developed a schema for the instance_of attribute sourced
from Wikidata. This schema provides a structured framework for
refining the categorical perspective, resulting in more reliable cate-
gorization outcomes. For example, within our schema, entities with
instance_of attribute such as calendar year, decade, and aspect
of history are classified as sub-categories of time or entities with
instance_of attribute such as enterprise, business, and airline
are classified as sub-categories of organization. Since fine-tuning
the model on particular entity types can make the model extremely
sensitive to variations in data, leading to suboptimal performance
when faced with novel or less common entity types, schema-based
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classification can help the model remain robust across a broader
spectrum of inputs. Moreover, by using a more general category,
such as organization, we ensure uniformity in the treatment of
related entities across various data sources and contexts.

If the instance_of attribute cannot be retrieved from Wikidata,
we seamlessly substitute it with querying the entity_description
attribute that provides concise explanations and summaries of
the entities, including vital attributes, relationships, and contex-
tual information. For instance, for an item indicating the concept
of Computer, the instance_of attribute is null; thus, we refer to
the entity_description in Wikidata, "general-purpose device
for performing arithmetic or logical operations". This
adaptive strategy ensures the high-quality creation of wiki-based
prompts for effective RE.

One challenge here is to disambiguate entity mentions to iden-
tify the correct referent of entity mentions in a text. For example,
the entity mention Apple in a sentence could refer to the Apple
fruit or the Apple corporation. To address this issue, we employ
BLINK [22], a Python library utilizing Wikipedia 3 as a knowledge
base. To create the wiki-based prompts, we establish connections
between entity mentions and their corresponding Wikidata entities
by extracting Wikipedia page titles using BLINK and linking them
to the relevant Wikidata items. This association allows us to exploit
each entity’s rich knowledge graph information. Figure 2 shows
detailed examples of the wiki-based prompt construction.

3.2 Prompt-tuning of SLMs Using Wiki-based
Prompts

After constructing wiki-based prompts, we use them in the prompt-
tuning process of SLMs. As discussed in Section 2.1, this process
requires defining (1) the prompt template and (2) the verbalizer.
Here, we explain how to create these two components.

3.2.1 Prompt Template Creation. Developing a prompt tem-
plate is crucial to achieving excellent performance in the prompt-
tuning of SLMs. Applying the prompt template to the input sen-
tence X yields the prompted input sentence X𝑝𝑟𝑜𝑚𝑝𝑡 . Based on the
idea of creating wiki-based prompts, discussed in Section 3.1, our
wiki-based prompt template, denoted as T , comprises four critical
components (see Figure 2):

• The entity-marked input sentence (details in Section 3.1.1).
• The subject entity with its Wikidata knowledge extracted
using instance_of or entity_description.

• The object entity with its Wikidata knowledge extracted
using instance_of or entity_description.

• A [MASK] token that enables the SLM S to perform MLM
and predict the appropriate word for the [MASK] token as a
placeholder of relation label between the entities.

Consider the given input sentences X1 = {Steve Jobs is
the founder of Apple.} with subject entity Apple, object en-
tity Steve Jobs, and relation org:founded_by and X2 = {Marcus
Berg was born in Sweden.}, with subject entity Marcus Berg,
object entity Sweden, and relation per:country_of_birth. Apply-
ing wiki-based prompt template T (.) to these sentences yields the
prompted input sentences illustrated in Figure 2. By integrating

3https://en.wikipedia.org/

Wikidata knowledge extracted using instance_of or entity_description,
our prompts infuse additional context and relevant information,
enhancing understanding by SLMs and enabling superior general-
ization, particularly in scenarios with limited resources.

3.2.2 Verbalizer Creation. We aim to use the predicted word
for the [MASK] token by the SLM S to get the relation label be-
tween the entities. However, the predicted word for [MASK] may
not be the same as the actual label; thus, we need a verbalizer
to map the predicted word to an actual label. However, in most
prompt-tuning approaches, the verbalizer is manually designed by
humans [35], making it challenging to develop effective verbalizers
for a particular task automatically. It becomes more challenging in
RE tasks, where relation labels with rich semantic knowledge (e.g.,
per:place_of_birth) are not usually encapsulated into a single
discrete token. Therefore, we might consider multiple [MASK] to-
kens for each relation label in the prompted input and define the
verbalizer M : V → Y, such that it maps a set of predicted words
inV for [MASK] tokens to actual relation labels Y.

For instance, to apply a manually crafted verbalizer suggested
by [13] to a given sentence X = {Marcus Berg was born in
Sweden}, and the label Y = per:country_of_birth, we must as-
sume multiple [MASK] tokens for this label. Thus, the input sen-
tence X can be transformed into X𝑝𝑟𝑜𝑚𝑝𝑡 = {Marcus Berg was
born in Sweden. [MASK] Marcus Berg [MASK] [MASK] [MASK]
[MASK] Sweden.}. Considering the predicted words as {Marcus
Berg was born in Sweden. person Marcus Berg was born
in country Sweden}, the verbalizer M should map the predicted
words 𝑣𝑖 ∈ V = [person, was, born, in, country] to the
relation label per:place_of_birth.

This challenge encourages the exploration of trainable and adapt-
able verbalizers as alternative methods to overcome the above limi-
tations and align more effectively in RE tasks [12, 21]. A solution
proposed by KnowPrompt [6] suggests that instead of mapping
multiple masked tokens to one actual relation label, consider vir-
tual label words as special tokens and make a one-to-one mapping
between the virtual label words and the actual relation labels. The
virtual label words are tokens not defined in the vocabulary. These
are trainable tokens that we define and integrate into the vocabu-
lary so SLM can learn to represent them. We consider these virtual
tokens V𝑐 = {𝑣1, · · · , 𝑣𝑚} as a subset of V , where 𝑚 represents
the number of relation labels. Each 𝑣𝑖 ∈ V𝑐 is a virtual label word
within the continuous vocabulary space. The optimization of these
virtual label words involves the adjustment of the weights within
the word-embedding layer of the SLM S. We initialize V𝑐 by av-
eraging the tokens in each relation label. This initial setup may
provide a more knowledgeable starting point for the verbalization
process [6].

3.2.3 Training Objective. The fine-tuning process involves two
optimization stages: (1) optimizing the virtual label words and (2)
optimizing the SLM S parameters. During the first stage, we opti-
mize the virtual label words by maximizing probability distribution
𝑝 (V𝑐 ([MASK]) → Y′ |X𝑝𝑟𝑜𝑚𝑝𝑡 ;Y′ ∈ Y), where V𝑐 ([MASK]) is the
masked virtual word, Y′ is the predicted label, and X𝑝𝑟𝑜𝑚𝑝𝑡 indi-
cates the prompted input sentence. We optimize this by minimizing
the cross-entropy loss between the ground-truth label Y and the
predicted label Y′. Subsequently, after acquiring optimal virtual
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Figure 2: Overview of wiki-based prompt construction for prompt-tuning of SLMs; QID refers to the unique ID of items within Wikidata.

Figure 3: Illustration of instruction data for RE. The text highlighted in
red represents the list of pre-defined relation labels in the natural language
format. Tokens highlighted in blue color indicate the markers showing the
subject and object entities and their corresponding types.

label words from the preceding optimization stage, we utilize the
same loss function to fine-tune all the S parameters.

3.3 Instruction-tuned LLMs Using Wiki-based
Prompts

Due to the challenges of prompt-tuning SLMs for RE, including
verbalizer creation and optimization, we extended our exploration
to instruction-tuned LLMs to advance RE tasks with wiki-based
prompts. This section summarizes the methodology for incorporat-
ing instruction-following LLMs into our solution for the RE task.
We discuss the integration of wiki-based prompts (discussed in Sec-
tion 3.1) and detail the creation of an instruction RE dataset from
the standard RE dataset. We then describe the subsequent SFT of
Llama 2 [39] using PEFT. Finally, we investigate DPO and aligning

SFT of LLMs using the RL-based SFT step with human preference
data.

3.3.1 Creating Instruction Data. A crucial step in instruction-
tuning is creating an instruction RE dataset to fine-tune LLMs on
RE downstream tasks [31]. As discussed in Section 2.2.1, aligned
with similar works on RE instruction tuning [44], we craft the in-
struction data by considering three items in each data example: (1)
Instruction that describes the RE task, (2) Context, which is the en-
tity marked input sentence with information of subject and object
entities sourced from Wikidata (see Secteion 3.1), and (3) Response,
which is the desired response indicating the subject and object
entities and the relation label between them. We create the Re-
sponse part of the data by transforming the original relation labels
into their natural language equivalents. By providing ChatGPT 4

with a list of original relation labels, such as [org:founded] and
[per:employee_of], we generate coequals such as [founded in]
and [work for]. Figure 3 depicts two examples of instruction data
where the instance_of attributes associated with subject and object
entities are incorporated into the context. In the instruction data
the subject and object entities are represented by [E1] and [E2]
tokens, respectively. Additionally, the instance_of attributes asso-
ciated with these entities are highlighted using a distinct [type]
token.

3.3.2 Instruction SFT of LLMs. Instruction-tuned LLMs are ex-
pansive language models that undergo SFT to tailor their responses
to specific instructions [31]. For SFT of LLMs, we should first pro-
vide it with annotated instruction RE data, constructed in Sec-
tion 3.3.1. However, fine-tuning all parameters of an LLM is com-
putationally expensive; thus, we need an alternative solution to

4https://openai.com/blog/chatgpt
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fine-tune only a subset of LLM parameters without sacrificing per-
formance. To this end, we applied LoRA [16] to SFT Llama 2 [39]
on instruction RE data.

LoRA decomposes the LLM’s weight update matrix into low-
dimensional matrices without losing crucial information. For ex-
ample, let Δ𝑊 represent the weight update for an 𝐴 × 𝐵 weight
matrix. This update can be decomposed into two matrices: Δ𝑊 =

𝑊𝐴𝑊𝐵 , where𝑊𝐴 is a 𝐴 × 𝑟 -dimensional matrix and𝑊𝐵 is a 𝑟 × 𝐵-
dimensional matrix. Here, 𝑟 signifies the rank (reduced vector)
dimension, which is considerably smaller than the dimension of the
model’s parameters. LoRA SFT adopts a low-rank strategy, where in
the low-rank context, matrices contain redundant rows or columns.
Therefore, instead of updating all the model weights, LoRA SFT
maintains the LLM’s parameters𝑊 untouched and solely focuses
on training the rank-decomposition matrices 𝐴 and 𝐵. This ap-
proach effectively reduces memory consumption and facilitates the
efficient fine-tuning of LLMs.

The specific steps of LoRA SFT are as follows: First, the LLM
parameters are projected onto a lower-dimensional subspace using
principal component analysis (PCA). Then, the projected param-
eters are fine-tuned using the instruction RE dataset. Finally, the
fine-tuned parameters are used to predict the relations in the test
dataset. A supervised learning algorithm, such as stochastic gra-
dient descent, optimizes projected parameters. The loss function
for an SFT algorithm is typically the cross-entropy loss between
the predicted and ground-truth relations. Although LoRA SFT can
improve the performance of LLMs on RE instruction tuning, further
alignment of the SFT of LLM with human preference data through
another SFT step is still necessary to achieve the most accurate
results.

3.3.3 DPO Training. Although SFT assists LLMs in understand-
ing the semantic meaning of prompts and generates meaningful
responses, the SFT focuses solely on instructing the model about
optimal responses and does not offer guidance on suboptimal alter-
natives [42]. Therefore, in addition to LoRA SFT, we also applied
DPO [32] to align the LLM with human preference responses. To
apply DPO, we first need to add the dispreferred responses to the
dataset. To do so, we call the pair of text responses Y𝑗 and Y𝐾 as
human preference data since one response is preferred to the other
by a human evaluator (Y𝑗 ≫ Y𝑘 ). Regarding relation extraction,
we assume the preferred responses Y𝑗 as ground-truth relation
labels. To achieve responses humans do not prefer, we assigned a
wrong and noisy response as dispreferred one Y𝑘 to each training
example where the wrong response refers to the responses with
wrong relation labels.

DPO does not require constructing an explicit reward function.
Instead, it measures how well the model aligns with the prefer-
ence dataset created by SFT LLM, as the reference model trained
on the ground-truth data (the model trained with LoRA SFT in
Section 3.3.2). In other words, instead of training a reward func-
tion, DPO directly optimizes a pre-trained LLM to maximize the
likelihood of generating responses that humans prefer by using
the SFT model as a reference model. The DPO reward is the differ-
ence between pre-trained and SFT of LLM’s generated response.
This allows us to skip the reward modeling step and directly use
the preference model (SFT LLM) to optimize the pre-trained LLM.

It is worth mentioning that the gradient of the loss function in-
creases the likelihood of the preferred response Y𝑗 and decreases
the likelihood of the dispreferred response Y𝑘 .

4 EVALUATION
In this section, we conduct experiments tomeasure and compare the
effectiveness of wiki-based prompts in fine-tuning both SLMs and
LLMs on downstream RE tasks across different scenarios, including
standard RE and few-shot RE.

4.1 Datasets and Implementation Details
We conducted our experiments using four distinct English-language
RE datasets, which are TACRED [49], TACREV [1], RE-TACRED [37],
and SemEval-2010 Task8 (SemEval) [14]. TACRED is a widely rec-
ognized RE dataset comprising 42 relation labels, including a label
for cases where no specific relation exists between subject and
object entities. TACREV is derived from TACRED and includes
re-labeled validation and test datasets while retaining the same
training data. RE-TACRED is a modified version of TACRED, which
is re-annotated with 40 labels. Finally, SemEval specializes in classi-
fying semantic relations between pairs of nominals, such as apple
and fruit, encompassing 19 possible relations.

We performed our experiments using an NVIDIA A100-SMX4-
40GB GPU. For SLM, we employed RoBERTa-large [26], a pre-
trained LM with 123 million parameters, and for LLM, we utilized
Llama 2-7b [39], a model with 7 billion parameters. All these models
are available at the Hugging Face page5. To apply LoRA SFT on
Llama 2, we applied the following hyper-parameter setting: 𝛼 = 16
as the scaling factor for the low-rank matrices, a dropout rate of
0.1 for the dropout probability of the LoRA layers, and a dimension
𝑟 = 64 for the low-rank matrices. The learning rate was 2𝑒 − 4,
and the number of training epochs was 3. Moreover, the maximum
sequence length was 2048, and all optimizations were performed
using the AdamW optimizer with a warm-up ratio of 3%.

4.2 Baselines
In our experiments, we compared our approach against several RE
frameworks to evaluate our approach’s effectiveness in RE tasks.
As baselines, we consider the following RE frameworks:

• Standard fine-tuning: (1) SpanBERT [18], a span-based pre-
trained LM designed to represent and predict text spans and
is fine-tuned on RE downstream tasks, (2) LUKE [45], a pre-
trained LM incorporates an entity-aware self-attention layer
to generate contextually rich word representations. This pre-
trained model is fine-tuned using the RE downstream task,
and (3) TYP Marker [51], an RE framework that enhances
performance using entity-typed markers during the fine-
tuning SLMs.

• Prompt tuning: (1) KnowPrompt [6], a prompt-based RE
framework that directly incorporates knowledge from rela-
tion labels into the prompt structure, enabling improved RE
performance, and (2) PTR [13], a prompt-based RE frame-
work that applies logic rules to construct prompt templates
with different sub-prompts.

5https://huggingface.co/models
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Table 1: RE methods and acronyms.
Acronym Methodology
SpanBERT Fine-tuned SpanBERT language model for RE tasks.
LUKE Fine-tuned LUKE language model for RE tasks.

TYP Marker Fine-tuned RoBERTa on RE tasks with typed markers.
PTR Rule-based Prompt-Tuning for RE.

KnowPrompt Framework optimizing knowledge shared among relation labels in Prompt-Tuning for RE.
Wiki-Tuning RoBERTa Prompt-Tuning approach for RE using wiki-based prompt construction.

Prompt-Tuning RoBERTa Prompt-Tuning approach for RE without specific techniques for prompt construction.
Wiki-based KnowPrompt Framework combining wiki-based prompts with knowledge optimization among relation labels for RE.
Wiki-SFT Instruction Supervised instruction-tuning of Llama 2-7b with wiki-based prompt construction for RE.

Wiki-SFT DPO Instruction Supervised instruction-tuning of Llama 2-7b with wiki-based prompt construction, followed by DPO fine-tuning for RE.
Instruction-tuning Supervised instruction-tuning of Llama 2-7b for RE.

ICL-RE In-context learning framework for RE.

• In-context learning: ICL-RE [44], a framework that leverages
in-context learning and data generation techniques for few-
shot RE using GPT-3.5.

4.3 Evaluation Metrics
As the evaluation metric, we employed Micro-F1 used by the pre-
vious methods. However, due to the nature of instruction-tuned
LLMs, which generate text spans, we specifically used the span-
based Micro-F1 [10], where a predicted relation is considered correct
if the generated relation label matches the ground-truth relation
label and the model accurately predicts the text spans correspond-
ing to the subject and object entities. This evaluation approach
ensures that the relation label and the precise boundaries of the
subject and object entities are considered when assessing the model
performance in RE.

4.4 Results and Comparison
This section presents the results of various models across different
RE tasks, considering two distinct settings: standard RE and few-
shot RE. Standard RE entails scenarios where a rich-resource RE
dataset containing many annotated examples is available for model
training, while few-shot RE involves training models using a low-
resource RE dataset, where the availability of annotated examples
in the training dataset is limited. To evaluate the performance of
the models on the few-shot setting, we conduct random sampling
of 𝑘 instances (𝑘-shot) for each relation label from each dataset,
with 𝑘 values set at 8, 16, and 32. It is crucial to mention that each
randomly sampled 𝑘-shot dataset yields distinct results; thus, we
present the average performance across five different randomly
sampled datasets.

To enhance the clarity, we categorize the methods into four
learning approaches:

• Standard SFT : Traditional fine-tuning of pre-trained SLMs
on RE tasks.

• Prompt-Tuning: Fine-tuning pre-trained SLMs using prompts
with [MASK] token for RE tasks.

• Instruction-tuning: Fine-tuning LLMs on instruction-based
RE data to align model behavior.

• In-context learning: Utilizing prompts with few demonstra-
tions as examples for few-shot RE.

Table 1 shows the model details and their acronyms. We use
these acronyms throughout the results and comparison sections.
4.4.1 Standard RE. We initially assess the performance of fine-
tuned SLMs, prompt-tuned SLMs, and instruction-tuned LLMs us-
ing wiki-based prompts on standard RE datasets. In Table 2, we
present a comparative analysis of the results obtained from these

wiki-based approaches and baseline models. Furthermore, we incor-
porate wiki-based prompts into the KnowPrompt framework [6]
(Wiki-based KnowPrompt) to evaluate the efficacy of these infor-
mative prompts when applied to existing state-of-the-art models,
which was only feasible for KnowPrompt among baseline models.
It is important to note that fine-tuning the model in the ICL-RE [44]
was not performed; thus, we cannot evaluate this framework within
a standard RE setting.

As illustrated in Table 2, combining wiki-based prompts with
KnowPrompt demonstrates superior performance compared to the
other models, emphasizing the effectiveness of employing wiki-
based prompts. Moreover, using wiki-based prompts enhances the
performance of prompt-tuned SLMs and instruction-tuned LLMs
compared to scenarios where they are not used. Furthermore, while
wiki-based prompt-tuning on RoBERTa yields encouraging results
on various RE datasets, its performance falls slightly short of the
best-reported performances in some instances.

4.4.2 Few-shot RE. In the Few-shot RE evaluation, we conducted
extensive assessments tomeasure the usefulness of different prompt-
tuning approaches, including our wiki-based prompts. Since the
wiki-based prompt is primarily a method for constructing prompts,
it is applied within the prompt-tuning paradigm. Furthermore, we
extend our evaluation to include instruction-tuningwith wiki-based
prompts and compare them with in-context learning and standard
fine-tuning methods within the few-shot setting.

In Table 3, we present a comparative evaluation of the state-of-
the-art frameworks, encompassing prompt tuning, standard fine-
tuning, and instruction-tuning approaches. Here, we demonstrate
our innovative wiki-based prompt construction in the context of
few-shot RE. The results highlight the superiority of prompt-tuning
methods over standard fine-tuning and instruction-tuning tech-
niques. Specifically, KnowPrompt [6] consistently outperforms the
baselines. However, the standout performer is ourWiki-based Know-
Prompt model, which leverages wiki-based prompt construction in
combination with relation label knowledge constraints from the
KnowPrompt method. This synergy outperforms all the baselines
on three datasets by +0.9, +1.97, and +0.24 Micro-F1 on average.
These enhancements over the best-reported results demonstrate
the substantial advantages of incorporating wiki-based prompt con-
struction in the prompt tuning paradigm. Furthermore, ourWiki-
tuning RoBERTa indicates promising results in few-shot RE. No-
tably, it accomplishes this without the need for complex rule-based
sub-prompt construction or computationally expensive prompt
optimization, unlike some other prompt tuning approaches.

In the instruction-tuning paradigm, our Wiki-SFT instruction
indicates solid performance, averaging a Micro-F1 score from 24.4
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Table 2: Standard RE results. Text in red represents the achieved enhancement of using wiki-based prompts over the results of KnowPrompt [6].

Learning Paradigm Model TACRED TACREV RE-TACRED SemEval

Standard Supervised
Fine-tuning
(Micro-F1)

SpanBERT [18] 70.8 78.0 85.3 89.8
LUKE [45] 72.7 80.6 - -

TYP Marker [51] 74.6 83.2 91.1 -

Prompt-Tuning
(Micro-F1)

PTR [13] 72.4 81.4 90.9 89.9
KnowPrompt [6] 72.4 82.4 91.3 90.2

Wiki-Tuning RoBERTa 70.6 80.4 86.2 82.7
Prompt-Tuning RoBERTa 64.3 72.8 79.5 83.2
Wiki-based KnowPrompt 76.8 (+4.4) 84.1 (+1.7) 91.8 (+0.5) 88.7

Instruction Tuning LLM
(Span-based Micro-F1)

Wiki-SFT Instruction 57.9 60.3 63.1 66.3
Wiki-SFT DPO Instruction 59.3 61.7 65.0 69.4

Instruction-tuning 51.1 53.6 55.2 56.7

Table 3: Few-shot RE results. AVG indicates the averaged performance over the three few-shot settings and AVG indicates the averaged performance over the
three few-shot settings. Text in red represents the achieved enhancement of using wiki-based prompts over the best-reported result.

Model TACRED TACREV RE-TACRED SemEval
k=8 k=16 k=32 AVG k=8 k=16 k=32 AVG k=8 k=16 k=32 AVG k=8 k=16 k=32 AVG

Standard Supervised
Fine-tuning (Micro-F1)

SpanBERT [18] 8.4 17.5 19.8 15.23 5.2 5.7 6.3 5.73 14.6 28.7 31.6 24.96 38.7 59.6 75.2 57.86
TYP Marker [51] 26.5 29.9 30.2 28.86 26.7 29.5 31.4 29.3 44.8 54.1 58.3 52.4 - - - -

Prompt-Tuning
(Micro-F1)

PTR [13] 28.1 30.7 32.1 30.30 28.7 31.4 32.4 30.83 51.5 56.2 62.1 56.6 70.5 81.3 84.2 78.66
KnowPrompt [6] 30.7 31.9 33.7 32.1 31.7 33.1 34.7 33.16 55.3 63.3 65.0 61.2 74.3 82.9 84.8 80.66

Wiki-Tuning RoBerta† 24.8 26.1 29.4 26.76 27.6 30.1 33.5 30.4 43.7 51.4 59.7 51.60 56.3 69.7 73.1 66.36
Prompt-Tuning RoBERTa† 21.6 24.2 27.5 24.43 23.2 25.1 29.3 25.86 32.6 36.7 41.4 36.9 50.30 56.5 68.2 58.33
Wiki-based KnowPrompt 31.2 32.6 35.2 33.00 (+0.9) 33.4 35.7 36.3 35.13 (+1.97) 55.9 61.4 65.2 60.83 75.7 83.6 83.4 80.90 (+0.24)

Instruction Tuning
(Span-based Micro-F1)

Wiki-SFT Instruction 17.6 26.5 29.1 24.4 19.2 30.9 32.6 27.56 22.1 38.7 42.3 34.36 30.2 39.8 44.3 38.1
Instruction-tuning 16.7 19.3 23.7 19.90 17.0 26.6 29.1 24.23 17.7 26.3 32.5 25.50 26.4 31.2 37.9 31.83

Wiki-SFT DPO Instruction 23.3 29.7 33.3 28.76 26.0 31.9 34.5 30.80 33.8 46.2 49.1 43.03 29.8 33.4 38.1 33.76
In-context Learning
(Span-based Micro-F1)

ICL-RE (5-shot) [44] 27.8 - 34.0 39.4

to 38.1 across different datasets. This underscores the value of the
wiki-based prompt construction, particularly when compared to the
instruction-tuning lacking wiki-based prompts. Meanwhile, it can
be observed that DPO optimization improves instruction-tuning by
around 4 to 9 percent on average, indicating the effectiveness of
aligning LLMs with human-preferred responses. Overall, these re-
sults collectively emphasize the potential of incorporating external
knowledge, particularly wiki-based prompts, to enhance few-shot
RE models significantly.

4.4.3 Training Time. As illustrated in Figure 4, the training run
time for different systems in our experiments provides valuable
insights into the computational demands for each approach. Among
these, theWiki-SFT instruction 8-shot model, tuned on the TACRED
8 shots dataset, completes in the shortest time at 483.89 seconds. The
Wiki-SFT instruction 16-shot and Wiki-SFT instruction 32-shot mod-
els closely follow, taking 953.18 and 1170.64 seconds, respectively.
The longer durations are attributed to larger training datasets, with
16 and 32 examples per relation label.

The Wiki-tuning RoBERTa model emphasizes the integration
of wiki-based prompts in the prompt-tuning paradigm, resulting
in a longer training time of 13,575.44 seconds due to verbalizer
optimization. TheWiki-SFT DPO instruction model, involving ad-
ditional fine-tuning with human-preferred responses, exhibits an
even more extended training period, lasting 16,016.31 seconds. This
increased duration can be attributed to the direct preference op-
timization process, which refines the model through multiple it-
erations, aligning it with human-preferred responses. Finally, the
Wiki-based KnowPrompt model has the longest training time, total-
ing 22,879.42 seconds, highlighting its computational intensity due
to prompt template and verbalizer optimization. These extended
training times emphasize the trade-offs between superior model
performance and increased computational burden.

Figure 4: Training Time

4.5 Discussion and Limitations
The results demonstrate the effectiveness of incorporating wiki-
based prompts in both prompt-tuning and instruction-tuning ap-
proaches for RE tasks. In standard RE evaluation, when combined
with the KnowPrompt framework, wiki-based prompts outperform
other models, highlighting their utility. In few-shot RE evalua-
tion, prompt-tuning consistently outperforms standard fine-tuning
and instruction-tuning, with the Wiki-based KnowPrompt model
achieving remarkable results. However, it is worth noting that
instruction-tuned LLMs, while not requiring the design of verbal-
izers as generative models, still face challenges in outperforming
other approaches in classification tasks like RE.

A significant obstacle is aleatoric uncertainty caused by class
definition overlap. This problem occurs when the semantics we
use for labels are not well-defined, and the model has difficulty
distinguishing between similar labels having similar semantics. For
instance, labels “born in city” and “born in country”. Although
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DPO fine-tuning shows potential in enhancing SFT instruction-
tuned LLMs, it does not outperform other models and incurs higher
computational costs and longer training times.

Moreover, addressing another challenge associatedwith instruction-
tuned LLMs related to the quality of instruction-based RE datasets
is crucial. The performance of instruction-tuned LLMs relies heav-
ily on the quality and specificity of the provided instructions. Even
a single alteration in the instruction prompt can yield substantial
differences in results. Additionally, it is crucial to acknowledge chal-
lenges encountered in entity disambiguation, which can result in
incorrect categorization. Managing null values for the instance_of
attribute in Wikidata is a significant challenge. This limitation has
resulted in notable inconsistencies in entity categorization, signif-
icantly impacting performance in tasks such as SemEval, where
a substantial portion of Wikidata knowledge comprises entity de-
scriptions. This limitation highlights a broader concern regarding
the reliance on external knowledge bases for NLP tasks. Addressing
this issue underscores the necessity for ongoing research in refining
entity disambiguation techniques to enhance model performance
in tasks reliant on external knowledge sources.

5 RELATEDWORK
In this section, we first review the existing related work in RE and
then explore in more detail the literature that takes advantage of
prompt-tuning and instruction-tuning for RE.

5.1 Relation Extraction
RE has been the subject of extensive research in NLP. A popular
approach for RE has been the rule-based systems that use manually
crafted patterns and heuristics [30]. Earlier works explored neural
architectures such as BiLSTM [38], and RNN [7], indicating poten-
tial in capturing relationships. However, they often require substan-
tial labeled data, which can be scarce in specific domains. Recently,
pre-trained LMs (PLMs) have shown significant improvements in
RE by applying transformer-based architectures as the backbone
for learning text representation [36]. Another RE framework [51]
fine-tunes the transformer-based models with entity-typed mark-
ers to achieve better results on RE tasks. Despite the satisfactory
performance of PLMs in RE tasks, these approaches have limited
generalization capability in few-shot RE tasks.

5.2 Prompt-tuning
Recently, the concept of prompt-tuning, initiated with GPT-3 [5],
emerged to connect pre-training and fine-tuning objectives [11,
24, 25]. These methods reframe downstream tasks using textual
templates that align input sentences with pre-training examples, en-
abling better knowledge transfer. According to [19], a well-chosen
prompt can be as effective as hundreds of data points, making
prompt-tuning advantageous for few-shot tasks. Optimal perfor-
mance in this learning paradigm requires precise prompt designing
and selecting a set of label words (a.k.a verbalizer) [34].

PTR [13] is a prompt-tuning framework for RE tasks. PTR uses
logic rules to construct prompts automatically by combining multi-
ple sub-prompts and incorporating a manually crafted verbalizer.
Despite the success of PTR on few-shot RE, creating logic rules is
domain-dependent, demanding domain expertise and knowledge to
formulate these rules tailored to each domain. On the other hand,

various studies suggested that incorporating knowledge about sub-
ject and object entities in RE tasks can substantially enhance the
model’s performance [2, 20, 46]. Consequently, KnowPrompt [6],
another RE model, explored integrating knowledge inside the re-
lation labels into prompt creation. This approach creates virtual
entity-type tokens, specifying subject and object scopes based on
token frequencies in relation labels in the training dataset. These
tokens are optimized during two training stages for knowledge-
infused prompts.

Another approach is proposed by Liu et al. [23] to generate
knowledge prompts by employing a language model to extract
knowledge from the input text, subsequently using this acquired
knowledge to formulate the prompt. In contrast to these models
that rely on language models for the computationally expensive
and potentially unreliable task of generating or refining knowledge,
we leverage the extensive knowledge stored within the knowledge
base (e.g., Wikipedia or Wikidata) to construct informative prompts
for RE tasks automatically.

Furthermore, Brate et al. [33] explore the effects of enriching
prompts with additional contextual information leveraged from
the Wikidata knowledge graph on language model performance.
They specifically compare the performance of naive vs. knowledge
graph-engineered cloze prompts for entity genre classification in
the movie domain and enrichment of cloze-style prompts. In our
study, we extend this exploration by expanding the use of wiki-
based prompts to both prompt-tuning and instruction-tuning RE
models, demonstrating the effectiveness of this approach across
different RE settings.
5.3 Instruction-tuning
In recent years, LLMs like GPT-3 [5], and Llama 2 [39] have shown
remarkable progress across various NLP tasks. One approach to
aligning LLMs to the user’s expectation is instruction-tuning, where
the LLM is fine-tuned on pairs of human instructions and desired
outputs [31, 50]. Within the realm of RE, there is currently no re-
search that directly employs instruction-tuning for RE tasks. How-
ever, some studies have utilized instruction-tuning for Information
Extraction [8, 10, 40]. For instance, UIE [41] transforms IE tasks
into a seq2seq format and addresses them by fine-tuning the 11B
FlanT5 model [8] on the constructed instruction-based dataset. Nev-
ertheless, it is essential to note that a direct comparison between
this framework and our work is not feasible. This is primarily due
to the pre-annotation of entity types in sentences in the aforemen-
tioned framework. Our study employs our wiki-based approach
to construct informative prompts, specifically focusing on its ef-
fectiveness in constructing high-quality instruction-based RE data.

6 CONCLUSION
This paper has introduced a novel approach of wiki-based prompts
as a prompt construction approach to enhance Relation Extrac-
tion (RE) tasks by leveraging external knowledge from Wikidata to
craft informative prompts, called wiki-based prompt, for prompt-
tuning and instruction-tuning of language models. Our findings
demonstrate the effectiveness of incorporating wiki-based prompts
in both prompt-tuning and instruction-tuning approaches, with
theWiki-based KnowPrompt model standing out as a considerable
achievement in the few-shot RE evaluation. However, our study also
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revealed essential challenges and limitations in this field, including
aleatoric uncertainty due to relation label definition overlap, the
quality of instruction-based RE dataset, and accurate entity dis-
ambiguation. In conclusion, our work represents a significant step
forward in improving RE tasks using external knowledge sources.
Nevertheless, it also underscores the need for ongoing research
and refinement in addressing the aforementioned challenges and
limitations. Future research in this area should focus on reducing
prediction uncertainty, enhancing the quality of instruction-based
datasets, and refining entity disambiguation techniques to utilize
the full potential of wiki-based prompts in advancing the capa-
bilities of language models in RE tasks and beyond. Additionally,
further investigations should be conducted to evaluate the impact
of incorporating other knowledge bases such as DBpedia 6 into the
prompt construction to refine language models.
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