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Artificial Intelligence Challenge

I Artificial intelligence (AI) can solve problems that can be described by a list of formal
mathematical rules.

I The challenge is to solve the tasks that are hard for people to describe formally.

I Let computers to learn from experience.
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History of AI
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Greek Myths

I Hephaestus, the god of blacksmith, created a metal automaton, called Talos.

[the left figure: http://mythologian.net/hephaestus-the-blacksmith-of-gods]

[the right figure: http://elderscrolls.wikia.com/wiki/Talos]
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Formal Reasoning

I Mechanizing the process of human thought.
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1920: Rossum’s Universal Robots (R.U.R.)

I A science fiction play by Karel Čapek, in 1920.

I A factory that creates artificial people named robots.

[https://dev.to/lschultebraucks/a-short-history-of-artificial-intelligence-7hm]
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1950: Turing Test

I In 1950, Turing introduced the Turing test.

I An attempt to define machine intelligence.

[https://searchenterpriseai.techtarget.com/definition/Turing-test]

12 / 87



1956: The Dartmouth Workshop

I Probably the first workshop of AI.

I Researchers from CMU, MIT, IBM met together and founded the AI research.

[https://twitter.com/lordsaicom/status/898139880441696257]
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1958: Perceptron

I A supervised learning algorithm for binary classifiers.

I Implemented in custom-built hardware as the Mark 1 perceptron.

[https://en.wikipedia.org/wiki/Perceptron]
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1974–1980: The First AI Winter

I The over optimistic settings, which were not occurred

I The problems:
• Limited computer power
• Lack of data
• Intractability and the combinatorial explosion

[http://www.technologystories.org/ai-evolution]
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1980’s: Expert systems

I The programs that solve problems in a specific domain.

I Two engines:
• Knowledge engine: represents the facts and rules about a specific topic.
• Inference engine: applies the facts and rules from the knowledge engine to new facts.

[https://www.igcseict.info/theory/7 2/expert]
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1987–1993: The Second AI Winter

I After a series of financial setbacks.

I The fall of expert systems and hardware companies.

[http://www.technologystories.org/ai-evolution]
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1997: IBM Deep Blue

I The first chess computer to beat a world chess champion Garry Kasparov.

[http://marksist.org/icerik/Tarihte-Bugun/1757/11-Mayis-1997-Deep-Blue-adli-bilgisayar]
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2012: AlexNet - Image Recognition

I The ImageNet competition in image classification.

I The AlexNet Convolutional Neural Network (CNN) won the challenge by a large
margin.
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2016: DeepMind AlphaGo

I DeepMind AlphaGo won Lee Sedol, one of the best players at Go.

I In 2017, AlphaGo Zero that learned Go by playing against itself.

[https://www.zdnet.com/article/google-alphago-caps-victory-by-winning-final-historic-go-match]
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2017: DeepStack

I A game of imperfect information.
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2018: Google Duplex

I An AI system for accomplishing real-world tasks over the phone.

I A Recurrent Neural Network (RNN) built using TensorFlow.
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AI Generations

I Rule-based AI

I Machine learning

I Deep learning

[https://bit.ly/2woLEzs]
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AI Generations - Rule-based AI

I Hard-code knowledge

I Computers reason using logical inference rules

[https://bit.ly/2woLEzs]
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AI Generations - Machine Learning

I If AI systems acquire their own knowledge

I Learn from data without being explicitly programmed

[https://bit.ly/2woLEzs]
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AI Generations - Deep Learning

I For many tasks, it is difficult to know what features should be extracted

I Use machine learning to discover the mapping from representation to output

[https://bit.ly/2woLEzs]
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Why Does Deep Learning Work Now?

I Huge quantity of data

I Tremendous increase in computing power

I Better training algorithms
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Machine Learning and Deep Learning
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Learning Algorithms

I A ML algorithm is an algorithm that is able to learn from data.

I What is learning?

I A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. (Tom M. Mitchell)
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Learning Algorithms - Example 1

I A spam filter that can learn to flag spam given examples of spam emails and examples
of regular emails.

I Task T: flag spam for new emails

I Experience E: the training data

I Performance measure P: the ratio of correctly classified emails

[https://bit.ly/2oiplYM]
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Learning Algorithms - Example 2

I Given dataset of prices of 500 houses, how can we learn to predict the prices of other
houses, as a function of the size of their living areas?

I Task T: predict the price

I Experience E: the dataset of living areas and prices

I Performance measure P: the difference between the predicted price and the real price

[https://bit.ly/2MyiJUy]
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Types of Machine Learning Algorithms

I Supervised learning
• Input data is labeled, e.g., spam/not-spam or a stock price at a time.
• Regression vs. classification

I Unsupervised learning
• Input data is unlabeled.
• Find hidden structures in data.
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From Machine Learning to Deep Learning

I Deep Learning (DL) is part of ML methods based on learning data representations.

I Mimic the neural networks of our brain.

[A. Geron, O’Reilly Media, 2017]
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Deep Learning Frameworks
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Deep Learning Frameworks

I TensorFlow and Keras

I PyTorch

I Caffe

I ...
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Let’s Start with an Example
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Hello World

c = a× b

d = a + b

e = c + d
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Two Phases of Tensorflow

I Working with TensorFlow involves two main phases.

1. Build a graph
2. Execute it
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Phase 1: Build a Graph

I import tensorflow as tf: it forms an empty default graph.

import tensorflow as tf

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)
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Phase 2: Execute a Graph

I Now run the computations: create and run a session.

sess = tf.Session()

print(sess.run(e))

sess.close()

# Alternative way

with tf.Session() as sess:

print(sess.run(e))
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The Complete Code

import tensorflow as tf

# Building the Graph

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

# Executing the Graph

with tf.Session() as sess:

print(sess.run(e))
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Visualize the Code

import tensorflow as tf

# Building the Graph

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

# Executing the Graph

with tf.Session() as sess:

print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006
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Let’s Give Name to Variables

import tensorflow as tf

# Building the Graph

a = tf.constant(5, name="a")

b = tf.constant(3, name="b")

c = tf.multiply(a, b, name="c_mul")

d = tf.add(a, b, name="d_add")

e = tf.add(c, d, name="e_add")

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

# Executing the Graph

with tf.Session() as sess:

print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006
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Tensor Objects
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What is Tensor?

I The central unit of data in TensorFlow is the tensor.

I An n-dimensional array of primitive values.
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Tensor Objects

I tf.Tensor

I Each Tensor object is specified by:
• Rank
• Shape
• Datatype
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Tensor Objects - Rank

I The number of dimensions.

• rank 0: scalar, e.g., 5
• rank 1: vector, e.g., [2, 5, 7]
• rank 2: matrix, e.g., [[1, 2], [3, 4], [5, 6]]
• rank 3: 3-Tensor
• rank n: n-Tensor

I tf.rank determines the rank of a tf.Tensor object.

c = tf.constant([[4], [9], [16], [25]])

r = tf.rank(c) # rank 2
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Tensor Objects - Shape

I The number of elements in each dimension.

I The get shape() returns the shape of a tf.Tensor object.

c = tf.constant([[[1, 2, 3], [4, 5, 6]],

[[1, 1, 1], [2, 2, 2]]])

s = c.get_shape() # (2, 2, 3)
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Tensor Objects - Data Types (1/2)

I We can explicitly choose the data type of a tf.Tensor object.

I tf.cast() changes the data type of a tf.Tensor object.

c = tf.constant(4.0, dtype=tf.float64)

x = tf.constant([1, 2, 3], dtype=tf.float32)

y = tf.cast(x, tf.int64)
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Tensor Objects - Data Types (2/2)
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Tensor Objects - Name

I Each Tensor object has an identifying name.

c = tf.constant(4.0, dtype=tf.float64, name="input")
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Tensor Objects - Name Scopes

I Hierarchically group nodes by their names.

I tf.name scope() together with.

with tf.name_scope("aut"):

c1 = tf.constant(4, dtype=tf.int32, name="input1") # aut/intput1

c2 = tf.constant(4.0, dtype=tf.float64, name="input2") # aut/inout2
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Main Types of Tensors

I Constants, tf.constant

I Variables, tf.Variable

I Placeholders, tf.placeholder
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Constants
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Constants (1/3)

I tf.constant

I The value of a constant Tensor cannot be changed in the future.

tf.constant(<value>, dtype=None, shape=None, name="Const", verify_shape=False)

a = tf.constant([[0, 1], [2, 3]], name="b")

b = tf.constant([[4], [9], [16], [25]], name="c")
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Constants (2/3)

I The initialization should be with a value, not with operation.
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Constants (3/3)

I What’s wrong with constants?

I Constants are stored in the graph definition.

I This makes loading graphs expensive when constants are big.

I Only use constants for primitive types.

I Use variables for data that requires more memory.
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Variables
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Variables

I tf.Variable

I A variable is a Tensor whose value can be changed.

I tf.get variable creates a variable or returns it if it exists.

# not recommended way to make a variable

tf.Variable(<initial-value>, name=<optional-name>)

w = tf.Variable([[0, 1], [2, 3]], name="matrix")

# recommended

tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,

regularizer=None, trainable=True, collections=None)

w = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
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Initialize Variables

I Variables should be initialized before being used.

I Initialize all variables at once.

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

I Initialize only a subset of variables.

with tf.Session() as sess:

sess.run(tf.variables_initializer([a, b]))

I Initialize a single variable.

w = tf.Variable(tf.zeros([784,10]))

with tf.Session() as sess:

sess.run(w.initializer)
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Assign Values to Variables (1/3)

I What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))

w.assign(100)

with tf.Session() as sess:

sess.run(w.initializer)

print(sess.run(w))

I Prints 2, because w.assign(100) creates an assign op.

w = tf.get_variable("scalar", initializer=tf.constant(2))

assign_op = w.assign(100)

with tf.Session() as sess:

sess.run(w.initializer)

sess.run(assign_op)

print(sess.run(w))
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Assign Values to Variables (2/3)

I What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))

w_times_two = w.assign(2 * w)

with tf.Session() as sess:

sess.run(w.initializer)

print(sess.run(w_times_two))

print(sess.run(w_times_two))

print(sess.run(w_times_two))

63 / 87



Assign Values to Variables (3/3)

I assign add() and assign sub()

w = tf.get_variable("scalar", initializer=tf.constant(2))

with tf.Session() as sess:

sess.run(w.initializer)

# increment by 10

print(sess.run(w.assign_add(10)))

# decrement by 5

print(sess.run(w.assign_sub(5)))
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Placeholders

65 / 87



Placeholders

I tf.placeholder

I Placeholders are empty variables that will be filled with data later on.

tf.placeholder(dtype, shape=None, name=None)

x = tf.placeholder(tf.float32, shape=[None, 10])
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Feeding Placeholders (1/2)

I What’s wrong with this code?

a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

c = a + b

with tf.Session() as sess:

print(sess.run(c))
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Feeding Placeholders (2/2)

I Supplement the values to placeholders using a dictionary.

a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

c = a + b

with tf.Session() as sess:

print(sess.run(c, feed_dict={a: [1, 2, 3]}))
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Dataflow Graphs
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Graph

I A graph is composed of two types of objects:
• Operations
• Tensors
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Common TensorFlow Operations)
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Managing Multiple Graphs (1/2)

I Calling import tensorflow creates the default graph.

I We can also create additional graphs, by calling tf.Graph().

I tf.get default graph() tells which graph is currently set as the default graph.

import tensorflow as tf

g = tf.Graph()

a = tf.constant(5)

print(a.graph is g)

# Out: False

print(a.graph is tf.get_default_graph())

# Out: True
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Managing Multiple Graphs (2/2)

I Associate nodes to a right graph using with and as default().

import tensorflow as tf

g1 = tf.get_default_graph()

g2 = tf.Graph()

print(g1 is tf.get_default_graph())

# Out: True

with g2.as_default():

print(g1 is tf.get_default_graph())

# Out: False

print(g2 is tf.get_default_graph())

# Out: True
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Session

I A Session object encapsulates the environment.

I Operation objects are executed, and Tensor objects are evaluated.

I Session will also allocate memory to store the current values of variables.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format(outs))

sess.close()

# can be written as follows

with tf.Session() as sess:

outs = sess.run(e)

print("outs = {}".format(outs))
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Feeding

I A graph can be parameterized to accept external inputs via placeholders.

I To feed a placeholder, the input data is passed to the session.run().

I Each key corresponds to a placeholder variable name.

x = tf.placeholder(tf.float32)

y = tf.placeholder(tf.float32)

z = x + y

with tf.Session() as sess:

print(sess.run(z, feed_dict={x: 3, y: 4.5}))

print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))
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Fetches

I To fetch a list of outputs of nodes.

with tf.Session() as sess:

fetches = [a, b, c, d, e]

outs = sess.run(fetches)

print("outs = {}".format(outs))
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Session.run() vs. Tensor.eval()

I Two ways to evaluate part of graph: Session.run and Tensor.eval.

I You can use sess.run() to fetch the values of many tensors in the same step.

t = tf.constant(42.0)

u = tf.constant(37.0)

tu = tf.multiply(t, u)

ut = tf.multiply(u, t)

with sess.as_default():

tu.eval() # runs one step

ut.eval() # runs one step

with sess.as_default():

sess.run([tu, ut]) # evaluates both tensors in a single step
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Saving and Restoring Models
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Saving Models

I Save a model’s parameters in disk.

I Create a Saver node at the end of the construction phase.

I In the execution phase, call its save() method whenever you want to save the model.

w = tf.Variable([[0, 0, 0]], dtype=tf.float32, name="weights")

[...]

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:

sess.run(init)

sess.run(train, {x: x_data, y_true: y_data})

saver.save(sess, "/tmp/my_model_final.ckpt")
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Restoring Models

I Create a Saver node at the end of the construction phase.

I At the begining of the execution phase call its restore() method.

• Instead of initializing the variables using the init node.

w = tf.Variable([[0, 0, 0]], dtype=tf.float32, name="weights")

[...]

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:

saver.restore(sess, "/tmp/my_model_final.ckpt")

[...]
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TensorBoard
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TensorBoard (1/2)

I TensorFlow provides a utility called TensorBoard.

I To visualize your model, you need to write the graph definition and some training
stats to a log directory that TensorBoard will read from.

83 / 87
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I TensorFlow provides a utility called TensorBoard.

I To visualize your model, you need to write the graph definition and some training
stats to a log directory that TensorBoard will read from.
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TensorBoard (2/2)

I Add the following code at the very end of the construction phase.

I The first line writes the cost.

I The second line creates a FileWriter that writes summaries of the graph.

I Start the TensorBoard web server (port 6006): tensorboard --logdir .

logdir = "."

mse_summary = tf.summary.scalar("MSE", cost)

file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

file_writer.close()
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Summary
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Summary

I Dataflow graph

I Tensors: constants, variables, placeholders

I Session

I Save and restore models
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Questions?
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