Deep Learning for Poets (Part I)

Amir H. Payberah
payberah@Qkth.se
19/12/2018

Linear and Logistic

TensorFlow -
regression

Deep Feedforward

Networks CNN, RNN, Autoencoders

Linear and Logistic

TensorFlow -
regression

Deep Feedforward

CNN, RNN, Autoencoders
Networks

Chihuahua or Muffin

Raw Chicken or Donald Trump

Artificial Intelligence Challenge

» Artificial intelligence (Al) can solve problems that can be described by a list of formal
mathematical rules.

Artificial Intelligence Challenge

» Artificial intelligence (Al) can solve problems that can be described by a list of formal
mathematical rules.

» The challenge is to solve the tasks that are hard for people to describe formally.

Artificial Intelligence Challenge

» Artificial intelligence (Al) can solve problems that can be described by a list of formal
mathematical rules.

» The challenge is to solve the tasks that are hard for people to describe formally.

» Let computers to learn from experience.

History of Al

[the left figure: http://mythologian.net/hephaestus-the-blacksmith-of-gods]
[the right figure: http://elderscrolls.wikia.com/wiki/Talos]

p (D TR

pfin's x l):(t.#f - :
"'737;'."” 7
D)

» A science fiction play by Karel Capek, in 1920.

» A factory that creates artificial people named robots.

|-
| 4
]
i

[https://dev.to/lschultebraucks/a-short-history-of-artificial-intelligence-7hm]

1950: Turing Test

» In 1950, Turing introduced the Turing test.

» An attempt to define machine intelligence.

B

Computer Human Human
respondent questioner respondent

[https://searchenterpriseai.techtarget.com/definition/Turing-test]

1956: The Dartmouth Workshop

» Probably the first workshop of Al.
» Researchers from CMU, MIT, IBM met together and founded the Al research.

[https://twitter.com/lordsaicom/status/898139880441696257]

1958: Perceptron

» A supervised learning algorithm for binary classifiers.

» Implemented in custom-built hardware as the Mark 1 perceptron.

[https://en.wikipedia.org/wiki/Perceptron]

1974-1980: The First Al Winter

» The over optimistic settings, which were not occurred
» The problems:

e Limited computer power
e Lack of data
e Intractability and the combinatorial explosion

Social excitement
and concem

Success of
AlphaGo,
Libratus, etc.

Boom 1 Boom 2 Boom 3

“GOFAI" “Expert Systems” “Machine Learning”

Deep Learning
Autonomous
Vehicles

Winter 1 Winter 2

Autonomous
Weapons

knowledge
engineering

Al for Social Good "7
FGCS, SCI, MCC, Alvey, ESPRIT

W on
Stanford oy, sy Felgenbaur, rooks
I L I

19605 1970s 1980s 1990s 20008 20108

[http://www.technologystories.org/ai-evolution]

1980’s: Expert systems

» The programs that solve problems in a specific domain.

» Two engines:
» Knowledge engine: represents the facts and rules about a specific topic.
 Inference engine: applies the facts and rules from the knowledge engine to new facts.

Knowledge
Nomepert | atTiTTIITIIIISI . from an expert
it : Expert System PRy
H -
Query : h

Inference
Engine

User Interface

g
Knowledge | %
Base :

[https://www.igcseict.info/theory/7_2/expert]

1987-1993: The Second Al Winter

» After a series of financial setbacks.

» The fall of expert systems and hardware companies.

Social excitement
and concern

Success of
AlphaGo,
Libratus, etc.

Boom 1 Boom 2 Boom 3
“GOFAI" “Expert Systems” “Machine Learning”

Deep Learning

Autonomous
Vehicles
Winter 1 Winter 2

Autonomous
Weapons

knowledge
engineering
DENDRAL, MYCIN
s, ssa) PROLOG Lisp
FGCS, SCI, MCC, Alvey, ESPRIT
Stanford WeCahy Minky Feigenbaum, Brooks
1 1 I
1960s 1970s 1980s. 1990s 20008 20108

Al for Social Good"?|

MIT,CMU, Simon Newe,

[http://www.technologystories.org/ai-evolution]

1997: IBM Deep Blue

[http://marksist.org/icerik/Tarihte-Bugun/1757/11-Mayis-1997-Deep-Blue-adli-bilgisayar]

2012: AlexNet - Image Recognition

» The ImageNet competition in image classification.

» The AlexNet Convolutional Neural Network (CNN) won the challenge by a large
margin.

IMJAGENET

2016: DeepMind AlphaGo

>

» In 2017, AlphaGo Zero that learned Go by playing against itself.

DeepMind AlphaGo won Lee Sedol, one of the best players at Go.

0 Google DeepMind
o

hall

[https://www.zdnet.com/article/google-alphago-caps-victory-by-winning-final-historic-go-match]

2017: DeepStack

» A game of imperfect information.

2018: Google Duplex

» An Al system for accomplishing real-world tasks over the phone.

» A Recurrent Neural Network (RNN) built using TensorFlow.

DUPLEX

o ALKING Al
&
(@
A

Al Generations

> Rule-based Al
» Machine learning

> Deep learning

Artificial Machine Deep
Intelligence Learning Learning

</
Engineering Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012s 2017's

[https://bit.1ly/2woLEzs]

Al Generations - Rule-based Al

» Hard-code knowledge

» Computers reason using logical inference rules

Artificial Machine Deep
Intelligence Learning Learning
5 ;
Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017’s

[https://bit.ly/2woLEzs]

Al Generations - Machine Learning

» If Al systems acquire their own knowledge

» Learn from data without being explicitly programmed

Artificial Machine Deep
Intelligence Learning Learning
5 ;
Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017’s

[https://bit.ly/2woLEzs]

Al Generations - Deep Learning

» For many tasks, it is difficult to know what features should be extracted

» Use machine learning to discover the mapping from representation to output

Artificial Machine Deep
Intelligence Learning Learning
5 ;
Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017’s

[https://bit.ly/2woLEzs]

Why Does Deep Learning Work Now?

» Huge quantity of data
» Tremendous increase in computing power

> Better training algorithms

GPUs

Weight Initialization Non-Linearity

Machine Learning and Deep Learning

Learning Algorithms

» A ML algorithm is an algorithm that is able to learn from data.

» What is learning?

Learning Algorithms

» A ML algorithm is an algorithm that is able to learn from data.

» What is learning?

» A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. (Tom M. Mitchell)

T wn

WO F
ECON/
fOR

/)
4

Learning Algorithms - Example 1

> A spam filter that can learn to flag spam given examples of spam emails and examples
of regular emails.

' o e ;
l_[Good Emails Bad Emails

[https://bit.1ly/20iplYM]

Learning Algorithms - Example 1

>

A spam filter that can learn to flag spam given examples of spam emails and examples
of regular emails.

v

Task T: flag spam for new emails

v

Experience E: the training data

v

Performance measure P: the ratio of correctly classified emails

EmailLists

' i ;
l_[Good Emails Bad Emails

[https://bit.1ly/20iplYM]

Learning Algorithms - Example 2

> Given dataset of prices of 500 houses, how can we learn to predict the prices of other
houses, as a function of the size of their living areas?

[https://bit.ly/2MyiJuy]

Learning Algorithms - Example 2

>

Given dataset of prices of 500 houses, how can we learn to predict the prices of other
houses, as a function of the size of their living areas?

v

Task T: predict the price

v

Experience E: the dataset of living areas and prices

v

Performance measure P: the difference between the predicted price and the real price

[https://bit.ly/2MyiJuy]

Types of Machine Learning Algorithms

» Supervised learning

e Input data is labeled, e.g., spam/not-spam or a stock price at a time.
» Regression vs. classification

» Unsupervised learning

 Input data is unlabeled.
e Find hidden structures in data.

From Machine Learning to Deep Learning

» Deep Learning (DL) is part of ML methods based on learning data representations.

» Mimic the neural networks of our brain.

Cell body

/Z\\ Synaptic terminals

Golgi apparatus
Endoplasmic

reticulum

Mitochondrion \\ Dendrite

/ ‘\;Dendmm branches
\

[A. Geron, 0’Reilly Media, 2017]

Deep Learning Frameworks

Deep Learning Frameworks

>

TensorFlow and Keras ? KeraS

PyTorch TensorFlow

v

Caffe

v

TensorFlow

Let's Start with an Example

Hello World

c=axb

Hello World

c=axb

d=a+b

Hello World

d=a+b

e=c+d

Hello World

c=axb
d=a+b
e=c+d

N
5 £k \ 5
L input | K
NS
-
€

Two Phases of Tensorflow

» Working with TensorFlow involves two main phases.

- =
l’ \\
5 £y] 5
“1nputll .K
- 5
e .
”_-.\ 3, /
e
3 { input: 3 e
LS 1
-
d

Two Phases of Tensorflow

» Working with TensorFlow involves two main phases.

1. Build a graph

¢
S
15
. o \
23
PrETey 3, /
d

Two Phases of Tensorflow

» Working with TensorFlow involves two main phases.

1. Build a graph
2. Execute it

¢
S
15
. o \
23
PrETey 3, /
d

Phase 1: Build a Graph

2
m Y
« h

s
+ input)
A

’

’

[/
1 Input ‘I
\ ’

’

Saoe

C
D)
15
- ~.
0 -
s 8
: ’) 3 e)
d

a g
I'—-~~\
3 & input)
\ ’
A d
L
1""\\ >< .
‘.
3 + input | 3
s.__v’
L b d

> import temnsorflow as tf: it forms an empty default graph.

import temnsorflow as tf

a g
I'—-~~\
3 & input)
\ ’
A d
L
1""\\ >< .
‘.
3 + input | 3
\._‘f’
L b d

> import temnsorflow as tf: it forms an empty default graph.

import temnsorflow as tf

a = tf.constant(5)
tf.constant (3)

o
]

Phase 1: Build a Graph

a g
I’—-~~\
s
3 i input)
\ ’
. ;
L
1"““ >< .
‘.
3 « input) 3
1 d
s.__f’
d

> import temnsorflow as tf: it forms an empty default graph.

import temnsorflow as tf

a = tf.constant(5)
b = tf.constant(3)

c = tf.multiply(a, b)
d = tf.add(a, b)
e = tf.add(c, d)

a ©
I'—-~~\
.
3 i input)
A ’
A d
L
1""\\ X .
.
3 | input
‘\. I
Seor
L b d

a ©
I'—-~~\

: { input)
A ’
. 3
I"-~‘\

3 { input)) 3
‘\. I

Seor
g b d

» Now run the computations: create and run a session.

a ¢
"— ~\\

3 + input) 3 15
- 3 \

"HH' .
e

3 { input) 3 e
) ’
wyr

Ly a

» Now run the computations: create and run a session.

sess = tf.Session()
print(sess.run(e))
sess.close()

a @
I'— “\
5 [1 3
iy input K
. 5
"HH' .
e
3 & input) 3 e
1 ’
S
b d

» Now run the computations: create and run a session.

sess = tf.Session()
print(sess.run(e))
sess.close()

Alternative way
with tf.Session() as sess:
print(sess.run(e))

The Complete Code

import temsorflow as tf

Butilding the Graph
tf.constant (5)
b = tf.constant(3)

)
1

c = tf.multiply(a, b)
d = tf.add(a, b)
e = tf.add(c, d)

Ezecuting the Graph
with tf.Session() as sess:
print(sess.run(e))

Visualize the Code

import temnsorflow as tf

Butlding the Graph
tf.constant (5)
b = tf.constant(3)

»
I

c = tf.multiply(a, b)
= tf.add(a, b)
e = tf.add(c, d)

[o¥
I

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

Ezecuting the Graph
with tf.Session() as sess:
print(sess.run(e))

Visualize the Code

import temnsorflow as tf

Butlding the Graph
tf.constant (5)
b = tf.constant(3)

»
I

c = tf.multiply(a, b)
= tf.add(a, b)
e = tf.add(c, d)

[o¥
I

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

Ezecuting the Graph
with tf.Session() as sess:
print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006

Let's Give Name to Variables

import temnsorflow as tf

Butlding the Graph
tf.constant (5, name="a")
b = tf.constant (3, name="b")

»
I

¢ = tf.multiply(a, b, name="c_mul")
= tf.add(a, b, name="d_add")
e = tf.add(c, d, name="e_add")

[o¥
I

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

Ezecuting the Graph
with tf.Session() as sess:
print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006

Tensor Objects

What is Tensor?

» The central unit of data in TensorFlow is the tensor.

What is Tensor?

» The central unit of data in TensorFlow is the tensor.

» An n-dimensional array of primitive values.

Tensor Objects

» tf.Tensor

Tensor Objects

» tf.Tensor

» Each Tensor object is specified by:
* Rank
e Shape
e Datatype

Tensor Objects - Rank

» The number of dimensions.

Tensor Objects - Rank

» The number of dimensions.

e rank 0: scalar, e.g., 5

Tensor Objects - Rank

» The number of dimensions.

e rank 0: scalar, e.g., 5
e rank 1: vector, e.g., [2, 5, 7]

Tensor Objects - Rank

» The number of dimensions.
e rank 0: scalar, e.g., 5
e rank 1: vector, e.g., [2, 5, 7]
e rank 2: matrix, e.g., [[1, 2], [3, 4], [5, 6]]

Tensor Objects - Rank

» The number of dimensions.

e rank 0: scalar, e.g., 5

e rank 1: vector, e.g., [2, 5, 7]

e rank 2: matrix, e.g., [[1, 2], [3, 4], [5, 6]]
e rank 3: 3-Tensor

Tensor Objects - Rank

» The number of dimensions.

e rank 0: scalar, e.g., 5

e rank 1: vector, e.g., [2, 5, 7]

e rank 2: matrix, e.g., [[1, 2], [3, 4], [5, 6]]
e rank 3: 3-Tensor

e rank n: n-Tensor

Tensor Objects - Rank

» The number of dimensions.
e rank 0: scalar, e.g., 5
e rank 1: vector, e.g., [2, 5, 7]
e rank 2: matrix, e.g., [[1, 2], [3, 4], [5, 6]]
e rank 3: 3-Tensor
e rank n: n-Tensor

» tf.rank determines the rank of a tf.Tensor object.

c = tf.constant([[4], [9], [16], [25]])

tf.rank(c) # rank 2

R
(]

Tensor Objects - Shape

» The number of elements in each dimension.

Tensor Objects - Shape

The number of elements in each dimension.

| 2

v

The get_shape () returns the shape of a tf.Tensor object.

= tf.constant([[[1, 2, 3], [4, 5, 611,
(f, 1, 11, [2, 2, 211D

(e}
I

n
(]

c.get_shape() # (2, 2, 3)

Tensor Objects - Data Types (1/2)

> We can explicitly choose the data type of a tf.Tensor object.

Tensor Objects - Data Types (1/2)

>

We can explicitly choose the data type of a tf.Tensor object.

v

tf.cast() changes the data type of a tf.Tensor object.

(e}
|

= tf.constant (4.0, dtype=tf.float64)

tf.constant([1, 2, 3], dtype=tf.float32)
tf.cast(x, tf.int64)

Tensor Objects - Data Types (2/2)

Data type Python type Description

DT_FLOAT tf.float32 32-bit floating point.

DT_DOUBLE tf.float64 64-bit floating point.

DT_INT8 tf.int8 8-bit signed integer.

DT_INT16 tf.int16 16-bit signed integer.

DT_INT32 tf.int32 32-bit signed integer.

DT_INT64 tf.int64 64-bit signed integer.

DT_UINT8 tf.uint8 8-bit unsigned integer.

DT_UINT16 tf.uint16 16-bit unsigned integer.

DT_STRING tf.string Variable-length byte array. Each element of a Tensor is a byte array.
DT_BOOL tf.bool Boolean.

DT_COMPLEX64 tf.complex64 Complex number made of two 32-bit floating points: real and imaginary parts.
DT_COMPLEX128 tf.complex128 Complex number made of two 64-bit floating points: real and imaginary parts.
DT_QINT8 tf.qint8 8-bit signed integer used in quantized ops.

DT_QINT32 tf.qint32 32-bit signed integer used in quantized ops.

DT_QUINTS8 tf.quint8 8-bit unsigned integer used in quantized ops.

Tensor Objects - Name

» Each Tensor object has an identifying name.

c = tf.constant(4.0, dtype=tf.float64, name="input")

Tensor Objects - Name Scopes

» Hierarchically group nodes by their names.

Tensor Objects - Name Scopes

» Hierarchically group nodes by their names.

> tf.name _scope() together with.

Tensor Objects - Name Scopes

» Hierarchically group nodes by their names.

> tf.name _scope() together with.

with tf.name_scope("aut"):
cl
c2 =

= tf.constant (4, dtype=tf.int32, name="inputl") # aut/intputl
tf.constant (4.0, dtype=tf.float64, name="input2") # aut/inout2

Main Types of Tensors

» Constants, tf.constant

Main Types of Tensors

» Constants, tf.constant

» Variables, tf.Variable

Main Types of Tensors

» Constants, tf.constant

» Variables, tf.Variable

» Placeholders, tf.placeholder

Constants

Constants (1/3)

» tf.constant

» The value of a constant Tensor cannot be changed in the future.

Constants (1/3)

» tf.constant

» The value of a constant Tensor cannot be changed in the future.

tf.constant (<value>, dtype=None, shape=None, name="Const", verify_shape=False)

tf.constant([[0, 1], [2, 3]], name="b")

a

b = tf.constant([[4], [9], [16], [25]], name="c")

Constants (2/3)

» The initialization should be with a value, not with operation.

TensorFlow operation Description

tf.constant(value) Creates a tensor populated with the value or values specified by the argument value
tf.fill(shape, value) (reates a tensor of shape shape and fills it with value

tf.zeros(shape) Returns a tensor of shape shape with all elements set to 0
tf.zeros_like(tensor) Returns a tensor of the same type and shape as tensor with all elements set to 0
tf.ones(shape) Returns a tensor of shape shape with all elements set to 1
tf.ones_like(tensor) Returns a tensor of the same type and shape as tensor with all elements set to 1

tf.random_normal(shape, Outputs random values from a normal distribution
mean, stddev)

tf.truncated_nor Outputs random values from a truncated normal distribution (values whose magnitude
mal(shape, mean, is more than two standard deviations from the mean are dropped and re-picked)
stddev)

tf.random_uni Generates values from a uniform distribution in the range [minval, maxval)
form(shape, minval,

maxval)

tf.random_shuffle(ten Randomly shuffles a tensor along its first dimension

sor)

Constants (3/3)

» What's wrong with constants?

Constants (3/3)

» What's wrong with constants?

» Constants are stored in the graph definition.

» This makes loading graphs expensive when constants are big.

Constants (3/3)

>

What's wrong with constants?

v

Constants are stored in the graph definition.

v

This makes loading graphs expensive when constants are big.

v

Only use constants for primitive types.

v

Use variables for data that requires more memory.

Variables

Variables

» tf.Variable

» A variable is a Tensor whose value can be changed.

Variables

» tf.Variable

» A variable is a Tensor whose value can be changed.

> tf.get _variable creates a variable or returns it if it exists.

Variables

» tf.Variable
» A variable is a Tensor whose value can be changed.

> tf.get _variable creates a variable or returns it if it exists.

not recommended way to make a variable
tf.Variable(<initial-value>, name=<optional-name>)

w = tf.Variable([[0, 1], [2, 3]], name="matrix")
recommended

tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,
regularizer=None, trainable=True, collections=None)

w = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]1))

Initialize Variables

» Variables should be initialized before being used.

Initialize Variables

» Variables should be initialized before being used.

» Initialize all variables at once.

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

Initialize Variables

» Variables should be initialized before being used.

» Initialize all variables at once.

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

> Initialize only a subset of variables.

with tf.Session() as sess:
sess.run(tf.variables_initializer([a, b]l))

Initialize Variables

» Variables should be initialized before being used.

» Initialize all variables at once.

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

> Initialize only a subset of variables.

with tf.Session() as sess:
sess.run(tf.variables_initializer([a, b]l))

> Initialize a single variable.

w = tf.Variable(tf.zeros([784,10]))

with tf.Session() as sess:
sess.run(w.initializer)

Assign Values to Variables (1/3)

» What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))
w.assign(100)

with tf.Session() as sess:
sess.run(w.initializer)
print (sess.run(w))

Assign Values to Variables (1/3)

» What does it print?

=)
(]

tf.get_variable("scalar", initializer=tf.constant(2))
w.assign(100)

with tf.Session() as sess:
sess.run(w.initializer)
print (sess.run(w))

> Prints 2, because w.assign(100) creates an assign op.

w = tf.get_variable("scalar", initializer=tf.constant(2))
assign_op = w.assign(100)

with tf.Session() as sess:
sess.run(w.initializer)
sess.run(assign_op)
print(sess.run(w))

Assign Values to Variables (2/3)

» What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))
w_times_two = w.assign(2 * w)

with tf.Session() as sess:
sess.run(w.initializer)
print(sess.run(w_times_two))
print(sess.run(w_times_two))
print(sess.run(w_times_two))

Assign Values to Variables (3/3)

» assign add() and assign sub()

w = tf.get_variable("scalar", initializer=tf.constant(2))

with tf.Session() as sess:
sess.run(w.initializer)

increment by 10
print (sess.run(w.assign_add(10)))

decrement by 5
print(sess.run(w.assign_sub(5)))

Placeholders

Placeholders

» tf.placeholder

» Placeholders are empty variables that will be filled with data later on.

Placeholders

» tf.placeholder

» Placeholders are empty variables that will be filled with data later on.

tf.placeholder(dtype, shape=None, name=None)

x = tf.placeholder(tf.float32, shape=[None, 10])

B Feeding Placeholders (1/2)

% och koNsT
LY

v

What's wrong with this code?

a = tf.placeholder(tf.float32, shape=[3])

b

tf.constant([5, 5, 5], tf.float32)

G a+b

with tf.Session() as sess:
print(sess.run(c))

B8 Feeding Placeholders (2/2)

% och koNsT
LY

v

Supplement the values to placeholders using a dictionary.

a = tf.placeholder(tf.float32, shape=[3])

b

tf.constant([5, 5, 5], tf.float32)

G a+b

with tf.Session() as sess:
print(sess.run(c, feed_dict={a: [1, 2, 3]}))

Dataflow Graphs

» A graph is composed of two types of objects:

e Operations
e Tensors

a c
I’— ~\\ 5
S . 1
> ¢ input, &‘
- 5
@ .
o 3, /
3 L § input 3 3 ¢
‘__-"
d

|

Common TensorFlow Operations)

TensorFlow operator Shortcut Description

tf.add() a + b Adds aand b, element-wise.

tf.multiply() a * b Multiplies a and b, element-wise.

tf.subtract() a - b Subtracts a from b, element-wise.

tf.divide() a / b Computes Python-style division of a by b.

tf.pow() a ** b Returns the result of raising each element in a to its corresponding element b,
element-wise.

tf.mod() a % b Returns the element-wise modulo.

tf.logical_and() a & b Returns the truth table of a & b, element-wise. dtype must be tf.bool.

tf.greater() a > b Returns the truth table of a > b, element-wise.

tf.greater_equal() a >= b Retumsthe truth table of a >= b, element-wise.

tf.less_equal() a <= b Retums the truth table of a <= b, element-wise.

tf.less() a < b Retums the truth table of a < b, element-wise.

tf.negative() -a Returns the negative value of each element in a.

tf.logical_not() ~a Returns the logical NOT of each element in a. Only compatible with Tensor objects
with dtype of tf.bool.

tf.abs() abs(a) Returns the absolute value of each element in a.

tf.logical_or() a | b Returnsthe truth tableof a | b, element-wise. dtype must be tf.bool.

Managing Multiple Graphs (1/2)

» Calling import tensorflow creates the default graph.

Managing Multiple Graphs (1/2)

» Calling import tensorflow creates the default graph.

> We can also create additional graphs, by calling tf.Graph().

Managing Multiple Graphs (1/2)

» Calling import tensorflow creates the default graph.

> We can also create additional graphs, by calling tf.Graph().

> tf.get default _graph() tells which graph is currently set as the default graph.

Managing Multiple Graphs (1/2)

» Calling import tensorflow creates the default graph.
» We can also create additional graphs, by calling tf.Graph().
> tf.get default _graph() tells which graph is currently set as the default graph.

import tensorflow as tf

tf.Graph()
tf.constant (5)

g
a

print(a.graph is g)
Out: False

print(a.graph is tf.get_default_graph())
Out: True

Managing Multiple Graphs (2/2)

» Associate nodes to a right graph using with and as_default().

Managing Multiple Graphs (2/2)

» Associate nodes to a right graph using with and as_default().

import tensorflow as tf

tf.get_default_graph()
tf.Graph()

gl
g2

print(gl is tf.get_default_graph())
Out: True

Managing Multiple Graphs (2/2)

» Associate nodes to a right graph using with and as_default().

import temsorflow as tf

tf.get_default_graph()
tf.Graph()

gl
g2

print(gl is tf.get_default_graph())
Out: True

with g2.as_default():

print(gl is tf.get_default_graph())
Out: False

print(g2 is tf.get_default_graph())
Out: True

Session

Session

» A Session object encapsulates the environment.

Session

» A Session object encapsulates the environment.

» Operation objects are executed, and Tensor objects are evaluated.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format (outs))
sess.close()

Session

» A Session object encapsulates the environment.
» Operation objects are executed, and Tensor objects are evaluated.

» Session will also allocate memory to store the current values of variables.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format (outs))
sess.close()

Session

» A Session object encapsulates the environment.
» Operation objects are executed, and Tensor objects are evaluated.

» Session will also allocate memory to store the current values of variables.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format (outs))
sess.close()

can be written as follows
with tf.Session() as sess:
outs = sess.run(e)

print("outs = {}".format (outs))

Feeding

» A graph can be parameterized to accept external inputs via placeholders.

of ’@‘ 'Lu
£41 Feeding

% och koNsT
LY

» A graph can be parameterized to accept external inputs via placeholders.

» To feed a placeholder, the input data is passed to the session.run().

]
|

= tf.placeholder (tf.float32)
tf.placeholder (tf.float32)
Z=X+y

(o
1

with tf.Session() as sess:
print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]1}))

of ’@‘ 'Lu
£41 Feeding

% och koNsT
LY

v

A graph can be parameterized to accept external inputs via placeholders.

v

To feed a placeholder, the input data is passed to the session.run().

v

Each key corresponds to a placeholder variable name.

]
|

= tf.placeholder (tf.float32)
tf.placeholder (tf.float32)
Z =X + y

<
1

with tf.Session() as sess:
print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]1}))

» To fetch a list of outputs of nodes.

with tf.Session() as sess:
fetches = [a, b, c, d, e]
outs = sess.run(fetches)

print ("outs = {}".format (outs))

3 —r- 1nput .
--’
23
3 e
—-). 1nput .

Session.run() vs. Tensor.eval()

» Two ways to evaluate part of graph: Session.run and Tensor.eval.

Session.run() vs. Tensor.eval()

» Two ways to evaluate part of graph: Session.run and Tensor.eval.

> You can use sess.run() to fetch the values of many tensors in the same step.

Session.run() vs. Tensor.eval()

>

Two ways to evaluate part of graph: Session.run and Tensor.eval.

v

You can use sess.run() to fetch the values of many tensors in the same step.

tf.constant (42.0)

tf.constant (37.0)

tu = tf.multiply(t, u)
= tf.multiply(u, t)

[}
non

ut

Session.run() vs. Tensor.eval()

» Two ways to evaluate part of graph: Session.run and Tensor.eval.

> You can use sess.run() to fetch the values of many tensors in the same step.

tf.constant (42.0)
u = tf.constant(37.0)
tu = tf.multiply(t, u)
ut = tf.multiply(u, t)

t

with sess.as_default():
tu.eval() # runs one step
ut.eval() # runs one step

Session.run() vs. Tensor.eval()

» Two ways to evaluate part of graph: Session.run and Tensor.eval.

> You can use sess.run() to fetch the values of many tensors in the same step.

tf.constant (42.0)
u = tf.constant(37.0)
tu = tf.multiply(t, u)
ut = tf.multiply(u, t)

t

with sess.as_default():
tu.eval() # runs one step
ut.eval() # runs one step

with sess.as_default():
sess.run([tu, ut]) # evaluates both tensors in a single step

Saving and Restoring Models

Saving Models

» Save a model's parameters in disk.

Saving Models

» Save a model's parameters in disk.

» Create a Saver node at the end of the construction phase.

Saving Models

» Save a model's parameters in disk.

» Create a Saver node at the end of the construction phase.

> In the execution phase, call its save () method whenever you want to save the model.

Saving Models

» Save a model's parameters in disk.
» Create a Saver node at the end of the construction phase.
> In the execution phase, call its save () method whenever you want to save the model.

w = tf.Variable([[0, 0, 0]], dtype=tf.float32, name="weights")
[...]

init = tf.global_variables_initializer()
saver = tf.train.Saver()

Saving Models

» Save a model's parameters in disk.
» Create a Saver node at the end of the construction phase.

> In the execution phase, call its save () method whenever you want to save the model.

w = tf.Variable([[0, 0, 0]], dtype=tf.float32, name="weights")
[...]

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(init)
sess.run(train, {x: x_data, y_true: y_datal})
saver.save(sess, "/tmp/my_model_final.ckpt")

Restoring Models

» Create a Saver node at the end of the construction phase.

Restoring Models

» Create a Saver node at the end of the construction phase.

> At the begining of the execution phase call its restore () method.

Restoring Models

» Create a Saver node at the end of the construction phase.

> At the begining of the execution phase call its restore () method.
e Instead of initializing the variables using the init node.

Restoring Models

>

Create a Saver node at the end of the construction phase.

v

At the begining of the execution phase call its restore () method.
e Instead of initializing the variables using the init node.

w = tf.Variable([[0, O, 0]], dtype=tf.float32, name="weights")
[...]

init = tf.global_variables_initializer()
saver = tf.train.Saver()

B9 Restoring Models

% och koNsT
LY

v

Create a Saver node at the end of the construction phase.

v

At the begining of the execution phase call its restore () method.
e Instead of initializing the variables using the init node.

W
[...]

init = tf.global_variables_initializer()
saver = tf.train.Saver()

tf.Variable([[0, O, 0]], dtype=tf.float32, name="weights")

with tf.Session() as sess:
saver.restore(sess, "/tmp/my_model_final.ckpt")

[...]

TensorBoard

TensorBoard (1/2)

» TensorFlow provides a utility called TensorBoard.

TensorBoard (1/2)

» TensorFlow provides a utility called TensorBoard.

» To visualize your model, you need to write the graph definition and some training
stats to a log directory that TensorBoard will read from.

TensorBoard (2/2)

» Add the following code at the very end of the construction phase.

Main Graph Auxiiary Nodes

logdir = "."

mse_summary = tf.summary.scalar("MSE", cost)

file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
file_writer.close() =

TensorBoard (2/2)

» Add the following code at the very end of the construction phase.

» The first line writes the cost.

Main Graph Auxiiary Nodes

logdir = "."

mse_summary = tf.summary.scalar("MSE", cost)

file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
file_writer.close() =

TensorBoard (2/2)

» Add the following code at the very end of the construction phase.
» The first line writes the cost.

» The second line creates a FileWriter that writes summaries of the graph.

Main Graph Auxiiary Nodes

logdir = "."

mse_summary = tf.summary.scalar("MSE", cost)

file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
file_writer.close() =

TensorBoard (2/2)

>

Add the following code at the very end of the construction phase.

The first line writes the cost.

v

v

The second line creates a FileWriter that writes summaries of the graph.

v

Start the TensorBoard web server (port 6006): tensorboard --logdir

Main Graph Auxiiary Nodes

logdir = "."

mse_summary = tf.summary.scalar("MSE", cost)

file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
file_writer.close() =

Summary

Summary

>

Dataflow graph

v

Tensors: constants, variables, placeholders

Session

v

Save and restore models

v

Questions?

