
Deep Learning for Poets (Part II)

Amir H. Payberah
payberah@kth.se

19/12/2018



1 / 150



2 / 150



Linear Algebra Review
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Vector

I A vector is an array of numbers.

I Notation:
• Denoted by bold lowercase letters, e.g., x.
• xi denotes the ith entry.

x =


x1
x2
...
xn


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Matrix and Tensor

I A matrix is a 2-D array of numbers.

I A tensor is an array with more than two axes.

I Notation:
• Denoted by bold uppercase letters, e.g., A.
• aij denotes the entry in ith row and jth column.
• If A is m× n, it has m rows and n columns.

A =


a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n

...
...

...
. . .

...
am,1 am,2 am,3 . . . am,n


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Matrix Addition and Subtraction

I The matrices must have the same dimensions.

A =

[
a b

c d

]
+

[
e f

g h

]
=

[
a + e b + f

c + g d + h

]
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Matrix Product

I The matrix product: C = AB.

I If A is of shape m× n and B is of shape n× p, then C is of shape m× p.

cij =
∑
k

aikbkj

I Properties

• Associative: (AB)C = A(BC)

• Not commutative: AB 6= BA

[https://en.wikipedia.org/wiki/Matrix multiplication]
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Matrix Transpose

I Swap the rows and columns of a matrix.

A =

a b

c d

e f

⇒ Aᵀ =

[
a c e

b d f

]

I Properties

• Aij = Aᵀ
ji

• If A is m× n, then Aᵀ is n× m

• (A + B)ᵀ = Aᵀ + Bᵀ

• (AB)ᵀ = BᵀAᵀ
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Inverse of a Matrix

I If A is a square matrix, its inverse is called A−1.

AA−1 = A−1A = I

I Where I, the identity matrix, is a diagonal matrix with all 1’s on the diagonal.

I2 =

[
1 0

0 1

]
I3 =

1 0 0

0 1 0

0 0 1


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Lp Norm for Vectors

I We can measure the size of vectors using a norm function.

I Norms are functions mapping vectors to non-negative values.

I L1 norm
||x||1 =

∑
i

|xi|

I L2 norm

||x||2 = (
∑
i

|xi|2)
1
2 =

√
x21 + x22 + · · ·+ x2n

I Lp norm
||x||p = (

∑
i

|xi|p)
1
p
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Probability Review
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Random Variables

I Random variable: a variable that can take on different values randomly.

I Random variables may be discrete or continuous.

I Notation:
• Denoted by an upper case letter, e.g., X
• Values of a random variable X are denoted by lower case letters, e.g., x and y.
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Probability Distributions

I Probability distribution: how likely a random variable is to take on each of its possible
states.

I E.g., the random variable X denotes the outcome of a coin toss.

• The probability distribution of X would take the value 0.5 for X = head, and 0.5 for
Y = tail (assuming the coin is fair).

I The way we describe probability distributions depends on whether the variables are
discrete or continuous.
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Discrete Variables

I Probability mass function (PMF): the probability distribution of a discrete random
variable X.

I Notation: denoted by a lowercase p.
• E.g., p(x) = 1 indicates that X = x is certain
• E.g., p(x) = 0 indicates that X = x is impossible

I Properties:
• The domain D of p must be the set of all possible states of X
• ∀x ∈ D(X), 0 ≤ p(x) ≤ 1
•
∑

x∈D(X) p(x) = 1

15 / 150



Discrete Variables

I Probability mass function (PMF): the probability distribution of a discrete random
variable X.

I Notation: denoted by a lowercase p.
• E.g., p(x) = 1 indicates that X = x is certain
• E.g., p(x) = 0 indicates that X = x is impossible

I Properties:
• The domain D of p must be the set of all possible states of X
• ∀x ∈ D(X), 0 ≤ p(x) ≤ 1
•
∑

x∈D(X) p(x) = 1

15 / 150



Discrete Variables

I Probability mass function (PMF): the probability distribution of a discrete random
variable X.

I Notation: denoted by a lowercase p.
• E.g., p(x) = 1 indicates that X = x is certain
• E.g., p(x) = 0 indicates that X = x is impossible

I Properties:
• The domain D of p must be the set of all possible states of X
• ∀x ∈ D(X), 0 ≤ p(x) ≤ 1
•
∑

x∈D(X) p(x) = 1

15 / 150



Independence

I Two random variables X and Y are independent, if their probability distribution can
be expressed as their products.

∀x ∈ D(X), y ∈ D(Y), p(X = x, Y = y) = p(X = x)p(Y = y)

I E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of
landing on the head side of the coin and rolling a 3 on the die is:

p(X = head, Y = 3) = p(X = head)p(Y = 3) =
1

2
× 1

6
=

1

12

16 / 150



Independence

I Two random variables X and Y are independent, if their probability distribution can
be expressed as their products.

∀x ∈ D(X), y ∈ D(Y), p(X = x, Y = y) = p(X = x)p(Y = y)

I E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of
landing on the head side of the coin and rolling a 3 on the die is:

p(X = head, Y = 3) = p(X = head)p(Y = 3) =
1

2
× 1

6
=

1

12

16 / 150



Independence

I Two random variables X and Y are independent, if their probability distribution can
be expressed as their products.

∀x ∈ D(X), y ∈ D(Y), p(X = x, Y = y) = p(X = x)p(Y = y)

I E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of
landing on the head side of the coin and rolling a 3 on the die is:

p(X = head, Y = 3) = p(X = head)p(Y = 3) =
1

2
× 1

6
=

1

12

16 / 150



Conditional Probability

I Conditional probability: the probability of an event given that another event has
occurred.

p(Y = y | X = x) =
p(Y = y, X = x)

p(X = x)

I E.g., if 60% of the class passed both labs and 80% of the class passed the first labs,
then what percent of those who passed the first lab also passed the second lab?

• E.g., X and Y random variables for the first and the second labs, respectively.

p(Y = lab2 | X = lab1) =
p(Y = lab2, X = lab1)

p(X = lab1)
=

0.6

0.8
=

3

4
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Expectation

I The expected value of a random variable X with respect to a probability distribution
p(X) is the average value that X takes on when it is drawn from p(X).

Ex∼p[X] =
∑
x

p(x)x

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
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Variance and Standard Deviation

I The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X− E[X])2]

Var(X) =
∑
x

p(x)(x− E[X])2

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
• Var(X) = 0.3(1− 1.9)2 + 0.5(2− 1.9)2 + 0.2(3− 1.9)2 = 0.49

I The standard deviation, shown by σ, is the square root of the variance.
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Probability and Likelihood (1/2)

I Let X : {x(1), x(2), · · · , x(m)} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter θ.

• For six tosses of a coin, X : {h, t, t, t, h, t}, h: head, and t: tail.
• Suppose you have a coin with probability θ to land heads and (1− θ) to land tails.

I p(X | θ = 2
3

) is the probability of X given θ = 2
3

.

I p(X = h | θ) is the likelihood of θ given X = h.

I Likelihood (L): a function of the parameters (θ) of a probability model, given specific
observed data, e.g., X = h.

L(θ | X) = p(X | θ)
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Probability and Likelihood (2/2)

I The likelihood differs from that of a probability.

I A probability p(X | θ) refers to the occurrence of future events.

I A likelihood L(θ | X) refers to past events with known outcomes.

21 / 150



Probability and Likelihood (2/2)

I The likelihood differs from that of a probability.

I A probability p(X | θ) refers to the occurrence of future events.

I A likelihood L(θ | X) refers to past events with known outcomes.

21 / 150



Probability and Likelihood (2/2)

I The likelihood differs from that of a probability.

I A probability p(X | θ) refers to the occurrence of future events.

I A likelihood L(θ | X) refers to past events with known outcomes.

21 / 150



Likelihood and Log-Likelihood (1/2)

I If samples in X are independent we have:

L(θ | X) = p(X | θ) = p(x(1), x(2), · · · , x(m) | θ)

= p(x(1) | θ)p(x(2) | θ) · · · p(x(m) | θ) =
m∏

i=1

p(x(i) | θ)

I E.g., six tosses of a coin, with the following model:
• Data: X : {h, t, t, t, h, t}
• Possible outcomes: h with probability of θ, and t with probability (1− θ).

L(θ | X) = p(X | θ)

= p(X = h | θ)p(X = t | θ)p(X = t | θ)p(X = t | θ)p(X = h | θ)p(X = t | θ)

= θ(1− θ)(1− θ)(1− θ)θ(1− θ)

= θ2(1− θ)4
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• Data: X : {h, t, t, t, h, t}
• Possible outcomes: h with probability of θ, and t with probability (1− θ).

L(θ | X) = p(X | θ)

= p(X = h | θ)p(X = t | θ)p(X = t | θ)p(X = t | θ)p(X = h | θ)p(X = t | θ)

= θ(1− θ)(1− θ)(1− θ)θ(1− θ)

= θ2(1− θ)4
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Likelihood and Log-Likelihood (2/2)

I The probability product is prone to numerical underflow.

L(θ | X) = p(X | θ) =
m∏

i=1

p(x(i) | θ)

I To overcome this problem we can use the logarithm of the likelihood.

logL(θ | X) = log

m∏
i=1

p(x(i) | θ) =
m∑

i=1

logp(x(i) | θ)
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Negative Log-Likelihood

I Likelihood: L(θ | X) =
∏m

i=1 p(x(i) | θ)

I Log-Likelihood: logL(θ | X) = log
∏m

i=1 p(x(i) | θ) =
∑m

i=1 logp(x(i) | θ)

I Negative Log-Likelihood: −logL(θ | X) = −
∑m

i=1 logp(x(i) | θ)

I Negative log-likelihood is also called the cross-entropy
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Cross-Entropy

I Coss-entropy: quantify the difference (error) between two probability distributions.

I How close is the predicted distribution to the true distribution?

H(p, q) = −
∑
x

p(x)log(q(x))

I Where p is the true distribution, and q the predicted distribution.
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Cross-Entropy - Example

I Six tosses of a coin: X : {h, t, t, t, h, t}

I The true distribution p: p(h) = 2
6

and p(t) = 4
6

I The predicted distribution q: h with probability of θ, and t with probability (1− θ).

I Cross entropy: H(p, q) = −
∑

x p(x)log(q(x))
= −p(h)log(q(h))− p(t)log(q(t)) = −2

6
log(θ)− 4

6
log(1− θ)

I Likelihood: θ2(1− θ)4

I Negative log likelihood: −log(θ2(1− θ)4) = −2log(θ)− 4log(1− θ)
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Linear Regression
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Let’s Start with an Example
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The Housing Price Example (1/3)

I Given the dataset of m houses.

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369
...

...
...

I Predict the prices of other houses, as a function of the size of living area and number
of bedrooms?
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The Housing Price Example (2/3)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

...
...

...

x(1) =

[
2104

3

]
y(1) = 400 x(2) =

[
1600

3

]
y(2) = 330 x(3) =

[
2400

3

]
y(3) = 369

X =


x(1)ᵀ

x(2)ᵀ

x(3)ᵀ

...

 =


2104 3

1600 3

2400 3

...
...

 y =


400

330

369

...


I x(i) ∈ R2: x

(i)
1 is the living area, and x

(i)
2 is the number of bedrooms of the ith

house in the training set.
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The Housing Price Example (3/3)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369
...

...
...

I Predict the prices of other houses ŷ as a function of the size of their living areas x1,
and number of bedrooms x2, i.e., ŷ = f(x1, x2)

I E.g., what is ŷ, if x1 = 4000 and x2 = 4?

I As an initial choice: ŷ = fw(x) = w1x1 + w2x2
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Linear Regression (1/2)

I Our goal: to build a system that takes input x ∈ Rn and predicts output ŷ ∈ R.

I In linear regression, the output ŷ is a linear function of the input x.

ŷ = fw(x) = w1x1 + w2x2 + · · ·+ wnxn

ŷ = wᵀx

• ŷ: the predicted value
• xi: the ith feature value
• wj: the jth model parameter (w ∈ Rn)
• n: the number of features
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Linear Regression (2/2)

I Linear regression often has one additional parameter, called intercept b:

ŷ = wᵀx + b

I Instead of adding the bias parameter b, we can augment x with an extra entry that
is always set to 1.

ŷ = fw(x) = w0x0 + w1x1 + w2x2 + · · ·+ wnxn, where x0 = 1
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Linear Regression - Model Parameters

I Parameters w ∈ Rn are values that control the behavior of the model.

I w are a set of weights that determine how each feature affects the prediction.
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How to Learn Model Parameters w?
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Linear Regression - Cost Function (1/2)

I One reasonable model should make ŷ close to y, at least for the training dataset.

I Residual: the difference between the dependent variable y and the predicted value ŷ.

r(i) = y(i) − ŷ(i)
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Linear Regression - Cost Function (2/2)

I Cost function J(w)
• For each value of the w, it measures how close the ŷ(i) is to the corresponding y(i).
• We can define J(w) as the mean squared error (MSE):

J(w) = MSE(w) =
1

m

m∑
i

(ŷ(i) − y(i))2

= E[(ŷ− y)2] =
1

m
||ŷ− y||22
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How to Learn Model Parameters?

I We want to choose w so as to minimize J(w).

I Two approaches to find w:
• Normal equation
• Gradient descent
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Normal Equation
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Derivatives and Gradient (1/3)

I The first derivative of f(x), shown as f′(x), shows the slope of the tangent line to
the function at the poa x.

I f(x) = x2 ⇒ f′(x) = 2x

I If f(x) is increasing, then f′(x) > 0

I If f(x) is decreasing, then f′(x) < 0

I If f(x) is at local minimum/maximum,
then f′(x) = 0
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Derivatives and Gradient (2/3)

I What if a function has multiple arguments, e.g., f(x1, x2, · · · , xn)

I Partial derivatives: the derivative with respect to a particular argument.
• ∂f

∂x1
, the derivative with respect to x1

• ∂f
∂x2

, the derivative with respect to x2

I ∂f
∂xi

: shows how much the function f will change, if we change xi.

I Gradient: the vector of all partial derivatives for a function f.

∇xf(x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn


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Derivatives and Gradient (3/3)

I What is the gradient of f(x1, x2, x3) = x1 − x1x2 + x23?

∇xf(x) =

 ∂
∂x1

(x1 − x1x2 + x23)
∂
∂x2

(x1 − x1x2 + x23)
∂
∂x3

(x1 − x1x2 + x23)

 =

1− x2
−x1
2x3


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Normal Equation (1/2)

I To minimize J(w), we can simply solve for where its gradient is 0: ∇wJ(w) = 0

ŷ = wᵀx

X =


[x

(1)
1 , x

(1)
2 , · · · , x(1)n ]

[x
(2)
1 , x

(2)
2 , · · · , x(2)n ]

...

[x
(m)
1 , x

(m)
2 , · · · , x(m)n ]

 =


x(1)ᵀ

x(2)ᵀ

...

x(m)ᵀ

 ŷ =


ŷ(1)

ŷ(2)

...

ŷ(m)


ŷ = wᵀXᵀ or ŷ = Xw
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
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ŷ(m)


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ŷ = wᵀXᵀ or ŷ = Xw
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Normal Equation (2/2)

I To minimize J(w), we can simply solve for where its gradient is 0: ∇wJ(w) = 0

J(w) =
1

m
||ŷ− y||22,∇wJ(w) = 0

⇒ ∇w
1

m
||ŷ − y||22 = 0

⇒ ∇w
1

m
||Xw − y||22 = 0

⇒ ∇w(Xw − y)ᵀ(Xw − y) = 0

⇒ ∇w(wᵀXᵀXw − 2wᵀXᵀy + yᵀy) = 0

⇒ 2XᵀXw − 2Xᵀy = 0

⇒ w = (XᵀX)−1Xᵀy
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||ŷ− y||22,∇wJ(w) = 0

⇒ ∇w
1

m
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Normal Equation - Example (1/4)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

I Predict the value of ŷ, when x1 = 4000 and x2 = 4.

I We should find w0, w1, and w2 in ŷ = w0 + w1x1 + w2x2.

I w = (XᵀX)−1Xᵀy.
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Normal Equation - Example (2/4)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


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Normal Equation - Example (3/4)

w = (XᵀX)−1Xᵀy

XᵀX =

 1 1 1 1 1

2104 1600 2400 1416 3000

3 3 3 2 4




1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 =

 5 10520 15

10520 23751872 33144

15 33144 47



(XᵀX)−1 =

 4.90366455e+ 00 7.48766737e− 04 −2.09302326e+ 00

7.48766737e− 04 2.75281889e− 06 −2.18023256e− 03

−2.09302326e+ 00 −2.18023256e− 03 2.22674419e+ 00



Xᵀy =

 1 1 1 1 1

2104 1600 2400 1416 3000

3 3 3 2 4




400

330

369

232

540

 =

 1871

4203712

5921


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Normal Equation - Example (4/4)

w = (XᵀX)−1Xᵀy =

 4.90366455e+ 00 7.48766737e− 04 −2.09302326e+ 00

7.48766737e− 04 2.75281889e− 06 −2.18023256e− 03

−2.09302326e+ 00 −2.18023256e− 03 2.22674419e+ 00

 1871
4203712
5921


=

 −7.04346018e + 01
6.38433756e − 02
1.03436047e + 02



I Predict the value of y, when x1 = 4000 and x2 = 4.

ŷ = −7.04346018e + 01 + 6.38433756e− 02× 4000 + 1.03436047e + 02× 4 ≈ 599
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Normal Equation in TensorFlow (1/2)

import numpy as np

import tensorflow as tf

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()

X_train = housing.data

y_train = housing.target.reshape(-1, 1) # reshaping is done to convert y from vector to matrix

# add the bias input feature i.e. a column of 1’s

m = len(y_train)

X_train = np.c_[np.ones(m), X_train]
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Normal Equation in TensorFlow (2/2)

# create TensorFlow Constants to store data

X = tf.constant(X_train, tf.float32, name="X")

y = tf.constant(y_train, tf.float32, name="y")

# use Normal Equation, i.e., w = (X^T.X)^-1.X.y

X_T = tf.transpose(X)

temp = tf.matrix_inverse(tf.matmul(X_T, X))

w = tf.matmul(tf.matmul(temp, X_T), y)

# create TensorFlow Session

with tf.Session() as sess:

weights = w.eval()

print(weights)
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Normal Equation - Computational Complexity

I The computational complexity of inverting XᵀX is O(n3).
• For an m× n matrix (where n is the number of features).

I But, this equation is linear with regards to the number of instances in the training
set (it is O(m)).

• It handles large training sets efficiently, provided they can fit in memory.
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Gradient Descent
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Gradient Descent (1/2)

I Gradient descent is a generic optimization algorithm capable of finding optimal so-
lutions to a wide range of problems.

I To tweak parameters w iteratively in order to minimize a cost function J(w).
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Gradient Descent (2/2)

I Suppose you are lost in the mountains in a dense fog.

I You can only feel the slope of the ground below your feet.

I A strategy to get to the bottom of the valley is to go downhill in the direction of the
steepest slope.
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Gradient Descent - Iterative Optimization Algorithm

I Choose a starting point, e.g., filling w with random values.

I If the stopping criterion is true return the current solution, otherwise continue.

I Find a descent direction, a direction in which the function value decreases near the
current point.

I Determine the step size, the length of a step in the given direction.
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Gradient Descent - Key Points

I Stopping criterion

I Descent direction

I Step size (learning rate)
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Gradient Descent - Stopping Criterion

I The cost function minimum property: the gradient has to be zero.

∇wJ(w) = 0
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Gradient Descent - Descent Direction (1/2)

I Direction in which the function value decreases near the current point.

I Find the direction of descent (slope).

I Example:
J(w) = w2

∂J(w)

∂w
= 2w = −2 at w = −1
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Gradient Descent - Descent Direction (2/2)

I Follow the opposite direction of the slope.
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Gradient Descent - Learning Rate

I Learning rate: the length of steps.

I If it is too small: many iterations to converge.

I If it is too high: the algorithm might diverge.
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Gradient Descent - How to Learn Model Parameters w?

I Goal: find w that minimizes J(w) =
∑m

i=1(wᵀx(i) − y(i))2.

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(w)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(w)
∂w

(should be done for all parameters simultanously)
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Gradient Descent - Different Algorithms

I Batch gradient descent

I Stochastic gradient descent

I Mini-batch gradient descent

[https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3]
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Batch Gradient Descent
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Batch Gradient Descent (1/2)

I Repeat the following steps, until the stopping criterion is satisfied:

1. Determine a descent direction ∂J(w)
∂w for all parameters w.

J(w) =
m∑

i=1

(wᵀx(i) − y(i))2

∂J(w)

∂wj
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
j 2

2. Choose a step size η

3. Update the parameters: w
(next)
j = wj − η ∂J(w)

∂wj
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3. Update the parameters: w
(next)
j = wj − η ∂J(w)

∂wj
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Batch Gradient Descent (2/2)

I Batch Gradient Descent: at each step the calculation is over the full training set X.

J(w) =
m∑

i=1

(wᵀx(i) − y(i))2

I As a result it is slow on very large training sets, i.e., large m.

I But, it scales well with the number of features n.
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Batch Gradient Descent - Example (1/5)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

ŷ = w0 + w1x1 + w2x2

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


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Batch Gradient Descent - Example (2/5)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540



∂J(w)

∂w0
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
0

=
2

5
[(w0 + 2104w1 + 3w2 − 400) + (w0 + 1600w1 + 3w2 − 330)+

(w0 + 2400w1 + 3w2 − 369) + (w0 + 1416w1 + 2w2 − 232) + (w0 + 3000w1 + 4w2 − 540)]
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Batch Gradient Descent - Example (3/5)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540



∂J(w)

∂w1
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
1

=
2

5
[2104(w0 + 2104w1 + 3w2 − 400) + 1600(w0 + 1600w1 + 3w2 − 330)+

2400(w0 + 2400w1 + 3w2 − 369) + 1416(w0 + 1416w1 + 2w2 − 232) + 3000(w0 + 3000w1 + 4w2 − 540)]
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Batch Gradient Descent - Example (4/5)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540



∂J(w)

∂w2
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
2

=
2

5
[3(w0 + 2104w1 + 3w2 − 400) + 3(w0 + 1600w1 + 3w2 − 330)+

3(w0 + 2400w1 + 3w2 − 369) + 2(w0 + 1416w1 + 2w2 − 232) + 4(w0 + 3000w1 + 4w2 − 540)]
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Batch Gradient Descent - Example (5/5)

w
(next)
0 = w0 − η

∂J(w)

∂w0

w
(next)
1 = w1 − η

∂J(w)

∂w1

w
(next)
2 = w2 − η

∂J(w)

∂w2
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Stochastic Gradient Descent
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Stochastic Gradient Descent

I Batch gradient descent problem: it’s slow, because it uses the whole training set to
compute the gradients at every step.

I Stochastic gradient descent computes the gradients based on only a single instance.

• It picks a random instance in the training set at every step.

I The algorithm is much faster, but less regular than batch gradient descent.
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Stochastic Gradient Descent - Example (1/3)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

ŷ = w0 + w1x1 + w2x2

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


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Stochastic Gradient Descent - Example (2/3)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


∂J(w)

∂w0
=

2

m
(wᵀx(i) − y(i))x

(i)
0 =

2

5
[(w0 + 1600w1 + 3w2 − 330)]

∂J(w)

∂w1
=

2

m
(wᵀx(i) − y(i))x

(i)
1 =

2

5
[1416(w0 + 1416w1 + 2w2 − 232)]

∂J(w)

∂w2
=

2

m
(wᵀx(i) − y(i))x

(i)
2 =

2

5
[3(w0 + 2104w1 + 3w2 − 400)]
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Stochastic Gradient Descent - Example (3/3)

w
(next)
0 = w0 − η

∂J(w)

∂w0

w
(next)
1 = w1 − η

∂J(w)

∂w1

w
(next)
2 = w2 − η

∂J(w)

∂w2
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Mini-Batch Gradient Descent
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Mini-Batch Gradient Descent

I Batch gradient descent: at each step, it computes the gradients based on the full
training set.

I Stochastic gradient descent: at each step, it computes the gradients based on just
one instance.

I Mini-batch gradient descent: at each step, it computes the gradients based on small
random sets of instances called mini-batches.
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Comparison of Algorithms for Linear Regression
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Gradient Descent in TensorFlow - First Implementation

x_train = [1, 2, 3]

y_train = [1, 2, 3]

X = tf.placeholder(tf.float32)

y_true = tf.placeholder(tf.float32)

w = tf.Variable(5.)

b = tf.Variable(5.)

y_hat = tf.matmul(w, tf.transpose(x)) + b

cost = tf.reduce_mean(tf.square(y_hat - y_true))

learning_rate = 0.1

w_gradient = tf.reduce_mean((y_hat - y_true) * X) * 2

w_descent = w - learning_rate * w_gradient

w_update = tf.assign(w, w_descent)

b_gradient = tf.reduce_mean(y_hat - y_true) * 2

b_descent = b - learning_rate * b_gradient

b_update = tf.assign(b, b_descent)
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Gradient Descent in TensorFlow - Second Implementation

x_train = [1, 2, 3]

y_train = [1, 2, 3]

X = tf.placeholder(tf.float32)

y_true = tf.placeholder(tf.float32)

w = tf.Variable(5.)

b = tf.Variable(5.)

y_hat = tf.matmul(w, tf.transpose(x)) + b

cost = tf.reduce_mean(tf.square(y_hat - Y))

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

gvs = optimizer.compute_gradients(cost, [w, b])

apply_gradients = optimizer.apply_gradients(gvs)
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Gradient Descent in TensorFlow - Third Implementation

x_train = [1, 2, 3]

y_train = [1, 2, 3]

X = tf.placeholder(tf.float32)

y_true = tf.placeholder(tf.float32)

w = tf.Variable(5.)

b = tf.Variable(5.)

y_hat = tf.matmul(w, tf.transpose(x)) + b

cost = tf.reduce_mean(tf.square(y_hat - y_true))

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

op = optimizer.minimize(cost)
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Generalization
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Training Data and Test Data

I Split data into a training set and a test set.

I Use training set when training a machine learning model.
• Try to reduce this training error.

I Use test set to measure the accuracy of the model.
• Test error is the error when you run the trained model on test data (new data).
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Generalization

I Generalization: make a model that performs well on test data.

• Have a small test error.

I Challenges

1. Make the training error small.
2. Make the gap between training and test error small.
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More About The Test Error

I The test error is computed as the MSE of k test instances.

MSEtest =
1

k

k∑
i

(ŷ
(i)
test − y

(i)
test)2 = E[(ŷtest − ytest)2]

I A model’s test error can be expressed as the sum of bias and variance.

E[(ŷtest − ytest)2] = Bias[ŷtest, ytest]2 + Var[ŷtest] + ε2
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test)2 = E[(ŷtest − ytest)2]

I A model’s test error can be expressed as the sum of bias and variance.
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Bias and Underfitting

I Bias: the expected deviation from the true value of the function.

Bias[ŷtest, ytest] = E[ŷtest]− ytest

I A high-bias model is most likely to underfit the training data.
• High error value on the training set.

I Underfitting happens when the model is too simple to learn the underlying structure
of the data.
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Variance and Overfitting

I Variance: how much a model changes if you train it on a different training set.

Var[ŷtest] = E[(ŷtest − E[ŷtest])2]

I A high-variance model is most likely to overfit the training data.
• The gap between the training error and test error is too large.

I Overfitting happens when the model is too complex relative to the amount and
noisiness of the training data.
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The Bias/Variance Tradeoff (1/2)

I Assume a model with two parameters w0 (intercept) and w1 (slope): ŷ = w0 + w1x

I They give the learning algorithm two degrees of freedom.

I We tweak both the w0 and w1 to adapt the model to the training data.

I If we forced w0 = 0, the algorithm would have only one degree of freedom and would
have a much harder time fitting the data properly.
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The Bias/Variance Tradeoff (2/2)

I Increasing degrees of freedom will typically increase its variance and reduce its bias.

I Decreasing degrees of freedom increases its bias and reduces its variance.

I This is why it is called a tradeoff.

[https://ml.berkeley.edu/blog/2017/07/13/tutorial-4]
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Regularization (1/2)

I One way to reduce the risk of overfitting is to have fewer degrees of freedom.

I Regularization is a technique to reduce the risk of overfitting.

I For a linear model, regularization is achieved by constraining the weights of the
model.

J(w) = MSE(w) + λR(w)
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Regularization (2/2)

I Lasso regression (l1): R(w) = λ
∑n

i=1 |wi| is added to the cost function:

J(w) = MSE(w) + λ

n∑
i=1

|wi|

I Ridge regression (l2): R(w) = λ
∑n

i=1 w
2
i is added to the cost function.

J(w) = MSE(w) + λ

n∑
i=1

w2i

I ElasticNet: a middle ground between l1 and l2 regularization.

J(w) = MSE(w) + αλ

n∑
i=1

|wi|+ (1− α)λ
n∑

i=1

w2i
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Hyperparameters
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Hyperparameters and Validation Sets (1/2)

I Hyperparameters are settings that we can use to control the behavior of a learning
algorithm.

I The values of hyperparameters are not adapted by the learning algorithm itself.
• E.g., the α and λ values for regularization.

I We do not learn the hyperparameter.
• It is not appropriate to learn that hyperparameter on the training set.
• If learned on the training set, such hyperparameters would always result in overfitting.
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Hyperparameters and Validation Sets (2/2)

I To find hyperparameters, we need a validation set of examples that the training
algorithm does not observe.

I We construct the validation set from the training data (not the test data).

I We split the training data into two disjoint subsets:

1. One is used to learn the parameters.
2. The other one (the validation set) is used to estimate the test error during or after

training, allowing for the hyperparameters to be updated accordingly.
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Cross-Validation

I Cross-validation: a technique to avoid wasting too much training data in validation
sets.

I The training set is split into complementary subsets.

I Each model is trained against a different combination of these subsets and validated
against the remaining parts.
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Logistic Regression
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Let’s Start with an Example
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Example (1/4)

I Given the dataset of m cancer tests.

Tumor size Cancer

330 1

120 0

400 1
...

...

I Predict the risk of cancer, as a function of the tumor size?
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Example (2/4)

Tumor size Cancer

330 1

120 0

400 1

...
...

x =


330

120

400

...

 y =


1

0

1

...



I x(i) ∈ R: x
(i)
1 is the tumor size of the ith instance in the training set.
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Example (3/4)

Tumor size Cancer

330 1

120 0

400 1

...
...

x =


330

120

400

...

 y =


1

0

1

...


I Predict the risk of cancer ŷ as a function of the tumor sizes x1, i.e., ŷ = f(x1)

I E.g., what is ŷ, if x1 = 500?

I As an initial choice: ŷ = fw(x) = w0 + w1x1

I Bad model!
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I As an initial choice: ŷ = fw(x) = w0 + w1x1
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Example (4/4)

I A better model ŷ = 1
1+e−(w0+w1x1)

104 / 150



Sigmoid Function

I The sigmoid function, denoted by σ(.), outputs a number between 0 and 1.

σ(t) =
1

1 + e−t

I When t < 0, then σ(t) < 0.5

I when t ≥ 0, then σ(t) ≥ 0.5
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Binomial Logistic Regression
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Binomial Logistic Regression (1/2)

I Our goal: to build a system that takes input x ∈ Rn and predicts output ŷ ∈ {0, 1}.

I To specify which of 2 categories an input x belongs to.
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Binomial Logistic Regression (2/2)

I Linear regression

ŷ = w0x0 + w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I Binomial logistic regression

z = w0x0 + w1x1 + w2x2 + · · ·+ wnxn = wᵀx

ŷ = σ(z) =
1

1 + e−z
=

1

1 + e−wᵀx
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How to Learn Model Parameters w?
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Linear Regression - Cost Function

I One reasonable model should make ŷ close to y, at least for the training dataset.

I Cost function J(w): the mean squared error (MSE)

cost(ŷ(i), y(i)) = (ŷ(i) − y(i))2

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) =
1

m

m∑
i

(ŷ(i) − y(i))2
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Binomial Logistic Regression - Cost Function (1/5)

I Naive idea: minimizing the Mean Squared Error (MSE)

cost(ŷ(i), y(i)) = (ŷ(i) − y(i))2

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) =
1

m

m∑
i

(ŷ(i) − y(i))2

J(w) = MSE(w) =
1

m

m∑
i

(
1

1 + e−wᵀx(i)
− y(i))2

I This cost function is a non-convex function for parameter optimization.
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Binomial Logistic Regression - Cost Function (2/5)

I What do we mean by non-convex?

I If a line joining two points on the curve, crosses the curve.

I The algorithm may converge to a local minimum.

I We want a convex logistic regression cost function J(w).
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Binomial Logistic Regression - Cost Function (3/5)

I The predicted value ŷ = σ(wᵀx) = 1
1+e−wᵀx

I cost(ŷ(i), y(i)) = ?

I The cost(ŷ(i), y(i)) should be
• Close to 0, if the predicted value ŷ will be close to true value y.
• Large, if the predicted value ŷ will be far from the true value y.

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0
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−log(1− ŷ(i)) if y(i) = 0

113 / 150



Binomial Logistic Regression - Cost Function (3/5)

I The predicted value ŷ = σ(wᵀx) = 1
1+e−wᵀx
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Binomial Logistic Regression - Cost Function (4/5)

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0

when y = 1 when y = 0
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Binomial Logistic Regression - Cost Function (5/5)

I We can define J(w) as below

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) = −1
m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))
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−log(1− ŷ(i)) if y(i) = 0

J(w) =
1

m

m∑
i
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How to Learn Model Parameters w?

I We want to choose w so as to minimize J(w).

I An approach to find w: gradient descent
• Batch gradient descent
• Stochastic gradient descent
• Mini-batch gradient descent
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Binomial Logistic Regression Gradient Descent (1/2)

I Goal: find w that minimizes J(w) = −1
m

∑m
i(y(i)log(ŷ(i))+(1−y(i))log(1− ŷ(i))).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(w)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(w)
∂w (simultaneously for all parameters)
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i(y(i)log(ŷ(i))+(1−y(i))log(1− ŷ(i))).
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Binomial Logistic Regression Gradient Descent (2/2)

I 1. Determine a descent direction ∂J(w)
∂w .

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) = −1
m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))

∂J(w)

∂wj
=

1

m

m∑
i

(ŷ(i) − y(i))xj

I 2. Choose a step size η

I 3. Update the parameters: w
(next)
j = wj − η ∂J(w)

∂wj
• 0 ≤ j ≤ n, where n is the number of features.
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Binomial Logistic Regression Gradient Descent - Example (1/4)

Tumor size Cancer

330 1

120 0

400 1

X =

 1 330

1 120

1 400

 y =

 1

0

1


I Predict the risk of cancer ŷ as a function of the tumor sizes x1.

I E.g., what is ŷ, if x1 = 500?
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Binomial Logistic Regression Gradient Descent - Example (2/4)

X =

 1 330

1 120

1 400

 y =

 1

0

1



ŷ = σ(w0 + w1x1) =
1

1+ e−(w0+w1x1)

J(w) = −
1

m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))

∂J(w)

∂w0
=

1

3

3∑
i

(ŷ(i) − y(i))x0

=
1

3
[(

1

1+ e−(w0+330w1)
− 1) + (

1

1+ e−(w0+120w1)
− 0) + (

1

1+ e−(w0+400w1)
− 1)]
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(ŷ(i) − y(i))x0

=
1

3
[(

1

1+ e−(w0+330w1)
− 1) + (

1

1+ e−(w0+120w1)
− 0) + (

1

1+ e−(w0+400w1)
− 1)]

120 / 150



Binomial Logistic Regression Gradient Descent - Example (3/4)
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Binomial Logistic Regression Gradient Descent - Example (4/4)

w
(next)
0 = w0 − η

∂J(w)

∂w0

w
(next)
1 = w1 − η

∂J(w)

∂w1
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Logistic Regression in TensorFlow - First Implementation

x_train = [1, 2, 3]

y_train = [1, 2, 3]

X = tf.placeholder(tf.float32)

y_true = tf.placeholder(tf.float32)

w = tf.Variable(5.)

b = tf.Variable(5.)

z = tf.matmul(w, tf.transpose(x)) + b

y_hat = tf.sigmoid(z)

cost = -y_true * tf.log(y_hat) - (1 - y_true) * tf.log(1 - y_hat)

cost = tf.reduce_mean(cost)

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

op = optimizer.minimize(cost)
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Logistic Regression in TensorFlow - Second Implementation

x_train = [1, 2, 3]
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X = tf.placeholder(tf.float32)
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Multinomial Logistic Regression

125 / 150



Multinomial Logistic Regression

I Multinomial classifiers can distinguish between more than two classes.

I Instead of y ∈ {0, 1}, we have y ∈ {1, 2, · · · , k}.
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Binomial vs. Multinomial Logistic Regression (1/2)

I In a binomial classifier, y ∈ {0, 1}, the estimator is ŷ = p(y = 1 | x;w).
• We find one set of parameters w.

wᵀ = [w0, w1, · · · , wn]

I In multinomial classifier, y ∈ {1, 2, · · · , k}, we need to estimate the result for each
individual label, i.e., ŷj = p(y = j | x;w).

• We find k set of parameters W.

W =


[w0,1, w1,1, · · · , wn,1]
[w0,2, w1,2, · · · , wn,2]

...
[w0,k, w1,k, · · · , wn,k]

 =


wᵀ

1

wᵀ
2

...
wᵀ

k


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Binomial vs. Multinomial Logistic Regression (2/2)

I In a binary class, y ∈ {0, 1}, we use the sigmoid function.

wᵀx = w0x0 + w1x1 + · · ·+ wnxn

ŷ = p(y = 1 | x;w) = σ(wᵀx) =
1

1 + e−wᵀx

I In multiclasses, y ∈ {1, 2, · · · , k}, we use the softmax function.

wᵀ
jx = w0,jx0 + w1,jx1 + · · ·+ wn,jxn, 1 ≤ j ≤ k

ŷj = p(y = j | x;wj) = σ(wᵀ
jx) =

ew
ᵀ
j x∑k

i=1 e
wᵀ
i x
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Sigmoid vs. Softmax

I Sigmoid function: σ(wᵀx) = 1
1+e−wᵀx

I Softmax function: σ(wᵀ
jx) = e

w
ᵀ
j x∑k

i=1 e
w
ᵀ
i x

• Calculate the probabilities of each target class over all possible target classes.
• The softmax function for two classes is equivalent the sigmoid function.
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Softmax Model Estimation and Prediction - Example (1/2)

I Assume we have a training set consisting of m = 4 instances from k = 3 classes.

x(1) → class1, y(1)ᵀ = [1 0 0]

x(2) → class2, y(2)ᵀ = [0 1 0]

x(3) → class3, y(3)ᵀ = [0 0 1]

x(4) → class3, y(4)ᵀ = [0 0 1]

Y =


1 0 0

0 1 0

0 0 1

0 0 1



I Assume training set X and random parameters W are as below:

X =


1 0.1 0.5
1 1.1 2.3
1 −1.1 −2.3
1 −1.5 −2.5

 W =

 0.01 0.1 0.1
0.1 0.2 0.3
0.1 0.2 0.3


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Softmax Model Estimation and Prediction - Example (2/2)

I Now, let’s compute the softmax activation:

ŷ
(i)
j = p(y(i) = j | x(i);wj) = σ(wᵀ

j x
(i)) =

e
wᵀ
j x(i)∑k

l=1 e
wᵀ
l x(i)

Ŷ =


ŷ(1)ᵀ

ŷ(2)ᵀ

ŷ(3)ᵀ

ŷ(4)ᵀ

 =


0.29 0.34 0.36
0.21 0.33 0.46
0.43 0.33 0.24
0.45 0.33 0.22

 the predicted classes =


3

3

1

1

 The correct classes =


1

2

3

3



I They are terribly wrong.

I We need to update the weights based on the cost function.

I What is the cost function?
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ŷ(1)ᵀ
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Multinomial Logistic Regression - Cost Function (1/2)

I The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

I Cost function: the cross-entropy between the correct classes and predicted class for
all classes.

J(wj) = −1
m

m∑
i=1

k∑
j=1

y
(i)
j log(ŷ

(i)
j )

I y
(i)
j is 1 if the target class for the ith instance is j, otherwise, it is 0.
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Multinomial Logistic Regression - Cost Function (2/2)

I If there are two classes (k = 2), this cost function is equivalent to the logistic
regression’s cost function.

J(w) = −1
m

m∑
i=1

[y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))]

133 / 150



How to Learn Model Parameters W?

I Goal: find W that minimizes J(W).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(W)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(W)
∂w (simultaneously for all parameters)

134 / 150



How to Learn Model Parameters W?

I Goal: find W that minimizes J(W).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(W)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(W)
∂w (simultaneously for all parameters)

134 / 150



How to Learn Model Parameters W?

I Goal: find W that minimizes J(W).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(W)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(W)
∂w (simultaneously for all parameters)

134 / 150



How to Learn Model Parameters W?

I Goal: find W that minimizes J(W).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(W)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(W)
∂w (simultaneously for all parameters)

134 / 150



How to Learn Model Parameters W?

I Goal: find W that minimizes J(W).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(W)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(W)
∂w (simultaneously for all parameters)

134 / 150



Performance Measures
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Evaluation of Classification Models (1/3)

I In a classification problem, there exists a true output y and a model-generated pre-
dicted output ŷ for each data point.

I The results for each instance point can be assigned to one of four categories:
• True Positive (TP)
• True Negative (TN)
• False Positive (FP)
• False Negative (FN)
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dicted output ŷ for each data point.

I The results for each instance point can be assigned to one of four categories:
• True Positive (TP)
• True Negative (TN)
• False Positive (FP)
• False Negative (FN)

136 / 150



Evaluation of Classification Models (2/3)

I True Positive (TP): the label y is positive and prediction ŷ is also positive.

I True Negative (TN): the label y is negative and prediction ŷ is also negative.
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Evaluation of Classification Models (3/3)

I False Positive (FP): the label y is negative but prediction ŷ is positive (type I error).

I False Negative (FN): the label y is positive but prediction ŷ is negative (type II error).
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Why Pure Accuracy Is Not A Good Metric?

I Accuracy: how close the prediction is to the true value.

I Assume a highly unbalanced dataset

I E.g., a dataset where 95% of the data points are not fraud and 5% of the data points
are fraud.

I A a naive classifier that predicts not fraud, regardless of input, will be 95% accurate.

I For this reason, metrics like precision and recall are typically used.
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Precision

I It is the accuracy of the positive predictions.

Precision = p(y = 1 | ŷ = 1) =
TP

TP + FP
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Recall

I Is is the ratio of positive instances that are correctly detected by the classifier.

I Also called sensitivity or true positive rate (TPR).

Recall = p(ŷ = 1 | y = 1) =
TP

TP + FN
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F1 Score

I F1 score: combine precision and recall into a single metric.

I The harmonic mean of precision and recall.

I F1 only gets high score if both recall and precision are high.

F1 =
2

1
precision

+ 1
recall
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Confusion Matrix

I The confusion matrix is K× K, where K is the number of classes.
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Confusion Matrix - Example

TP = 3, TN = 5, FP = 1, FN = 2

Precision =
TP

TP + FP
=

3

3 + 1
=

3

4

Recall (TPR) =
TP

TP + FN
=

3

3 + 2
=

3

5

FPR =
FP

TN + FP
=

1

5 + 1
=

5

6
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Precision-Recall Tradeoff

I Precision-recall tradeoff: increasing precision reduces recall, and vice versa.
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The ROC Curve

I True positive rate (TPR) (recall): p(ŷ = 1 | y = 1)

I False positive rate (FPR): p(ŷ = 1 | y = 0)

I The receiver operating characteristic (ROC) curves summarize the trade-off between
the TPR and FPR for a model using different probability thresholds.
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Summary

I Linear regression model ŷ = wᵀx
• Learning parameters w
• Cost function J(w)
• Learn parameters: normal equation, gradient descent (batch, stochastic, mini-batch)

I Generalization
• Overfitting vs. underfitting
• Bias vs. variance
• Regularization: Lasso regression, Ridge regression, ElasticNet

I Hyperparameters and cross-validation
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Summary

I Binomial logistic regression
• y ∈ {0, 1}
• Sigmoid function
• Minimize the cross-entropy

I Multinomial logistic regression
• y ∈ {1, 2, · · · , k}
• Softmax function
• Minimize the cross-entropy

I Performance measurements
• TP, TF, FP, FN
• Precision, recall, F1
• Threshold and ROC

149 / 150



Questions?
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