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Big Data

small data big data
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I Big Data refers to datasets and flows large
enough that has outpaced our capability to
store, process, analyze, and understand.
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Where Does
Big Data Come From?
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Big Data Market Driving Factors

The number of web pages indexed by Google, which were around
one million in 1998, have exceeded one trillion in 2008, and its
expansion is accelerated by appearance of the social networks.∗

∗“Mining big data: current status, and forecast to the future” [Wei Fan et al., 2013]
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Big Data Market Driving Factors

The amount of mobile data traffic is expected to grow to 10.8
Exabyte per month by 2016.∗

∗“Worldwide Big Data Technology and Services 2012-2015 Forecast” [Dan Vesset et al., 2013]
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Big Data Market Driving Factors

More than 65 billion devices were connected to the Internet by
2010, and this number will go up to 230 billion by 2020.∗

∗“The Internet of Things Is Coming” [John Mahoney et al., 2013]
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Big Data Market Driving Factors

Many companies are moving towards using Cloud services to
access Big Data analytical tools.
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Big Data Market Driving Factors

Open source communities
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How To Store and Process
Big Data?
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Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.
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Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.
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Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.
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Big Data Analytics Stack
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Hadoop Big Data Analytics Stack
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Spark Big Data Analytics Stack
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Outline
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Outline
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What is Filesystem?

I Controls how data is stored in and retrieved from disk.
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Distributed Filesystems

I When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.
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HDFS

I Hadoop Distributed FileSystem

I Appears as a single disk

I Runs on top of a native filesystem, e.g., ext3

I Fault tolerant: can handle disk crashes, machine crashes, ...

I Based on Google’s filesystem GFS
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HDFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.
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HDFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.
• HBase addresses this issue.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.
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HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode
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HDFS Daemons (2/2)
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Files and Blocks (1/2)

I Files are split into blocks.

I Blocks
• Single unit of storage: a contiguous piece of information on a disk.
• Transparent to user.
• Managed by Namenode, stored by Datanode.
• Blocks are traditionally either 64MB or 128MB: default is 64MB.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 28 / 154



Files and Blocks (2/2)

I Same block is replicated on multiple machines: default is 3
• Replica placements are rack aware.
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on the different rack.

I Namenode determines replica placement.
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HDFS Client

I Client interacts with Namenode
• To update the Namenode namespace.
• To retrieve block locations for writing and reading.

I Client interacts directly with Datanode
• To read and write data.

I Namenode does not directly write or read data.
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HDFS Write

I 1. Create a new file in the Namenode’s Namespace; calculate block
topology.

I 2, 3, 4. Stream data to the first, second and third node.

I 5, 6, 7. Success/failure acknowledgment.
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HDFS Read

I 1. Retrieve block locations.

I 2, 3. Read blocks to re-assemble the file.
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Outline
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Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 34 / 154



Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 34 / 154



Relational Databases Management Systems (RDMBSs)

I RDMBSs: the dominant technology for storing structured data in
web and business applications.

I SQL is good
• Rich language
• Easy to use and integrate
• Rich toolset
• Many vendors

I They promise: ACID
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ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure.
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RDBMS Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes
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Let’s Scale RDBMSs

I RDBMS were not designed to be distributed.

I Possible solutions:
• Replication
• Sharding
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Let’s Scale RDBMSs - Replication

I Master/Slave architecture

I Scales read operations
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Let’s Scale RDBMSs - Sharding

I Dividing the database across many machines.

I It scales read and write operations.

I Cannot execute transactions across shards (partitions).
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Scaling RDBMSs is Expensive and Inefficient

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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NoSQL

I Avoidance of unneeded complexity

I High throughput

I Horizontal scalability and running on commodity hardware

I Compromising reliability for better performance
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NoSQL Cost and Performance

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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RDBMS vs. NoSQL

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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NoSQL Data Models
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NoSQL Data Models

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]
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Key-Value Data Model

I Collection of key/value pairs.

I Ordered Key-Value: processing over key ranges.

I Dynamo, Scalaris, Voldemort, Riak, ...
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Column-Oriented Data Model

I Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.

I BigTable, Hbase, Cassandra, ...

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 49 / 154



Document Data Model

I Similar to a column-oriented store, but values can have complex
documents, instead of fixed format.

I Flexible schema.

I XML, YAML, JSON, and BSON.

I CouchDB, MongoDB, ...

{

FirstName: "Bob",

Address: "5 Oak St.",

Hobby: "sailing"

}

{

FirstName: "Jonathan",

Address: "15 Wanamassa Point Road",

Children: [

{Name: "Michael", Age: 10},

{Name: "Jennifer", Age: 8},

]

}
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Graph Data Model

I Uses graph structures with nodes, edges, and properties to represent
and store data.

I Neo4J, InfoGrid, ...

[http://en.wikipedia.org/wiki/Graph database]
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CAP Theorem
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Consistency

I Strong consistency
• After an update completes, any subsequent access will return the

updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the

updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses

will return the last updated value.
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Quorum Model

I N: the number of nodes to which a data item is replicated.

I R: the number of nodes a value has to be read from to be accepted.

I W: the number of nodes a new value has to be written to before
the write operation is finished.

I To enforce strong consistency: R + W > N
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CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!
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Outline
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MapReduce

I A shared nothing architecture for processing large data sets with a
parallel/distributed algorithm on clusters.
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MapReduce Definition

I A programming model: to batch process large data sets (inspired
by functional programming).

I An execution framework: to run parallel algorithms on clusters of
commodity hardware.
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Simplicity

I Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

I Hide system-level details from programmers.

Simplicity!
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Programming Model
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MapReduce Dataflow

I map function: processes data and generates a set of intermediate
key/value pairs.

I reduce function: merges all intermediate values associated with the
same intermediate key.
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Example: Word Count

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 64 / 154



Example: Word Count - map

I The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)
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Example: Word Count - shuffle

I The shuffle phase between map and reduce phase creates a list of
values associated with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))
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Example: Word Count - reduce

I The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

I The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)
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Example: Word Count - map

public static class MyMap extends Mapper<...> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}
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Example: Word Count - reduce

public static class MyReduce extends Reducer<...> {

public void reduce(Text key, Iterator<...> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

while (values.hasNext())

sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}
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Example: Word Count - driver

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);

job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}
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Execution Engine
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MapReduce Execution (1/7)

I The user program divides the input files into M splits.
• A typical size of a split is the size of a HDFS block (64 MB).
• Converts them to key/value pairs.

I It starts up many copies of the program on a cluster of machines.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (2/7)

I One of the copies of the program is master, and the rest are workers.

I The master assigns works to the workers.
• It picks idle workers and assigns each one a map task or a reduce

task.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (3/7)

I A map worker reads the contents of the corresponding input splits.

I It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

I The intermediate key/value pairs produced by the map function are
buffered in memory.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 74 / 154



MapReduce Execution (4/7)

I The buffered pairs are periodically written to local disk.
• They are partitioned into R regions (hash(key) mod R).

I The locations of the buffered pairs on the local disk are passed back
to the master.

I The master forwards these locations to the reduce workers.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (5/7)

I A reduce worker reads the buffered data from the local disks of the
map workers.

I When a reduce worker has read all intermediate data, it sorts it by
the intermediate keys.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (6/7)

I The reduce worker iterates over the intermediate data.

I For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

I The output of the reduce function is appended to a final output file
for this reduce partition.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 77 / 154



MapReduce Execution (7/7)

I When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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What is Spark?

I An efficient distributed general-purpose data analysis platform.

I Focusing on ease of programming and high performance.
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Motivation

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.
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Solution

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.
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Spark vs. Hadoop
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Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
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Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.
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RDD Operators

I Higher-order functions: transformations and actions.

I Transformations: lazy operators that create new RDDs.

I Actions: launch a computation and return a value to the program
or write data to the external storage.
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Transformations vs. Actions
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RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}
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RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 90 / 154



RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 90 / 154



RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val list1 = sc.parallelize(Seq(("sics", "10"),

("kth", "50"),

("sics", "20")))

val list2 = sc.parallelize(Seq(("sics", "upsala"),

("kth", "stockholm")))

list1.join(list2)

// ("sics", ("10", "upsala"))

// ("sics", ("20", "upsala"))

// ("kth", ("50", "stockholm"))
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Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 93 / 154



SparkContext

I Main entry point to Spark functionality.

I Available in shell as variable sc.

I In standalone programs, you should make your own.

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

val sc = new SparkContext(master, appName, [sparkHome], [jars])
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Example

I Read data from a text file and count the total number of words..

val lines = sc.textFile("hamlet.txt")

val eachWordCounts = lines.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)
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Outline
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Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.
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DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.
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DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.
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DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.
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DSMS

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules
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Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.
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DStream

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])
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DStream Operations (1/2)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless/stateful operations): map, join, ...

• Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.
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DStream Operations (2/2)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)
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Example (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

DStream: a sequence of RDD representing a stream of data
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Example (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream
to create another DStream
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Example (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")
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Outline
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Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.
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Large Graph
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Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.
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Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?
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Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?
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Graph Algorithms Characteristics

I Unstructured problems: difficult to partition the data

I Data-driven computations: difficult to partition computation

I Poor data locality

I High data access to computation ratio
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Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.
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Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.
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Data-Parallel vs. Graph-Parallel Computation

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 120 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 121 / 154



Pregel

I Large-scale graph-parallel processing platform developed at Google.

I Inspired by bulk synchronous parallel (BSP) model.
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Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:

• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.
• There are no special combining, replicating, or broadcasting fa-

cilities.
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Bulk Synchronous Parallel (2/2)

All vertices update in parallel (at the same time).
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Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.
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Data Model

I A directed graph that stores the program state, e.g., the current
value.
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Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.
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Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.
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Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.
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Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m
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vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: PageRank

I Update ranks in parallel.

I Iterate until convergence.

R[i ] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j ]
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Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i ] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j ]
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Pregel Limitations

I Inefficient if different regions of the graph converge at different
speed.

I Can suffer if one task is more expensive than the others.

I Runtime of each phase is determined by the slowest machine.
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Data Model

I A directed graph that stores the program state, called data graph.
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Vertex Scope

I The scope of vertex v is the data stored in vertex v , in all adjacent
vertices and adjacent edges.
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Programming Model (1/3)

I Rather than adopting a message passing as in Pregel, GraphLab
allows the user defined function of a vertex to read and modify any
of the data in its scope.
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Programming Model (2/3)

I Update function: user-defined function similar to Compute in Pregel.

I Can read and modify the data within the scope of a vertex.

I Schedules the future execution of other update functions.
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Programming Model (3/3)

I Sync function: similar to aggregate in Pregel.

I Maintains global aggregates.

I Performs periodically in the background.
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Execution Model

I Each task in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v.

I After executing an update function (f, g, · · ·) the modified scope
data in Sv is written back to the data graph.
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Example: PageRank

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = 0.15 + total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i ] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j ]
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Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.
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Data-Parallel and Graph-Parallel Pipeline

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.
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GraphX vs. Data-Parallel/Graph-Parallel Systems
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GraphX

I New API that blurs the distinction between Tables and Graphs.

I New system that unifies Data-Parallel and Graph-Parallel systems.

I It is implemented on top of Spark.
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Unifying Data-Parallel and Graph-Parallel Analytics

I Tables and Graphs are composable views of the same physical data.

I Each view has its own operators that exploit the semantics of the
view to achieve efficient execution.
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Data Model
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Summary
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Questions?
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