Gossip Peer Sampling in Real World

Amir H. Payberah (amir@sics.se)

SWEDISH
INSTITUTE OF .

COMPUTER

SCIENCE

1/55

Amir H. Payberah — 22 June 2010

Gossip Peer Sampling

Peer Sampling Service

e The peer sampling service provides each node with a list of nodes in
the system.

e We would like that nodes are selected following a uniform random
sample of all nodes in the system.

Amir H. Payberah — 22 June 2010
/ 3/55

Gossip Peer Sampling Service

e One solution to achieve the uniform random selection is that every

node knows all other nodes of the system.
" Not scalable

e Use a gossip-based dissemination of membership information to

build an unstructured overlay.
" There are many variants of the basic gossip-based membership
dissemination idea, but it is not clear whether any of these variants
actually lead to uniform sampling.

Amir H. Payberah — 22 June 2010
4/55

Generic Framework

e First, a node Q is selected to exchange membership information with by
node P.

e Node P pushes its view to Q.
e If a reply is expected, the view is pulled from Q.

e They merge their current view and the received one, and select a new
view.

Amir H. Payberah — 22 June 2010
/ 5/55

ﬁ

Gossip Protocol (1/4)

- Y-

ﬁ

Gossip Protocol (2/4)

- Y-

gossip

ﬁ

Gossip Protocol (3/4)

- Y-

reply

Gossip Protocol (4/4)

-

=)

-

-

ﬁ

Design Space

e Peer Selection
" Rand
= Tail

e View Propagation
" Push
= Push-Pull

e \iew Selection
= Blind
" Healer
= Swapper

_ Amir H. Payberah — 22 June 2010 -

Impact of NAT on Gossip Peer
Sampling Protocols

Natted Gossip Protocol (1/4)

(|
¥ o

gossip

12/55

Natted Gossip Protocol (2/4)

(|
¥ o

reply

13/55

Natted Gossip Protocol (3/4)

Natted Gossip Protocol (4/4)

=

gossip

15/55

Average biggest graph size (%)

100

a0

a0

70

60

50

40

30

20

=]

8 RLLRLLLLLY LLLALLLLR] LALLLLLLE] LLALLLLLL LLLELLLL LALLELALE LLLLLLALL] LALLLLLLL LALLLALLE RLLLLALL

Network Partition

push/pull rand, healer

pushi/pull,rand blind ---¢---
push/pull rand, swapper

"
pu: ull tail healer -@-

shipull tail, blind - 8-
P”Sﬁufﬁ'"ll,mjl,swappel a

50 60 70 &0
Percentage of NATs

View size: 15

80

View size: 27

ushfpull rand healer —+—
ppu@ﬁ!pull,raﬂ’d,blind -
pushipull rand swapper ---#---
pushipull tail, healer --@
push/pull tail blind ---m--
pushipull tail swapgper ---@--

100 &
%0 £
80 £

3
70E

& E

@ 3

§ w

>

T mf

o E

K= E

5 E

@ 40'

g 3

S E

2 wf
o E
10
05|||||||||
40

50

Amir H. Payberah — 22 June 2010

70 &0 90

Percentage of NATs

16/55

Stale References

Avarage percentage of stale refarences

a0 — pushipull rand, healer - view size = 27 —8—

70 |

Percentage of NATs

Amir H. Payberah — 22 June 2010

70

a0

100

17/55

Randomness

pusruu:pull,rand,lhealer “view size =15 —8—
pushfpull rand, healer - view size =27 —a

expected -------

Average percentage of non-stala natted refarences
3

ol
e T
|

D.ﬂ-l—i-ﬁ—T_ﬁl__lllllllll NEETERETE RTRNRTRRT FNRTRETE NS RETRRRTR STRRTRRET] FRTRRTREN] RRRTRRTEN!
0

10 20 30 40 50 60 70 80
Percentage of NATs

Amir H. Payberah — 22 June 2010

90

100

18/55

Classic NAT Types

e Full Cone (FC): The most permissive type of NAT.

e Restricted Cone (RC): Imposes restrictions on the IP addresses of external
peers that can send messages to natted peers.

e Port Restricted Cone (PRC): Imposes restrictions on the |IP addresses and
ports of external peers that can send messages to natted peers.

e Symmetric (SYM): The most restrictive type of NAT.

Amir H. Payberah — 22 June 2010

19/55

ﬁ

NAT Types

e NATSs differ in:
" Way they assign public IP addresses (IP)
" Way assign ports (Port)
" Filtering rules (Filtering)

_ Amir H. Payberah — 22 June 2010 .

Classic NAT Types — FC

e |P: Same public IP to all sessions started from a given natted IP
address and port.

e Port: Same port to all sessions started from a given natted IP
address and port.

e Filtering: These sessions all share the same filtering rule, which
states that the NAT must forward all incoming messages.

Amir H. Payberah — 22 June 2010

21/55

Classic NAT Types — RC

e |P: The same as FC.
e Port: The same as FC.

e Filtering: The sessions started from a given natted peer’s IP address
and port towards a target IP address, share the same filtering rule:
the NAT device only forwards messages coming from this IP
address.

Amir H. Payberah — 22 June 2010
/ 22/55

Classic NAT Types — PRC

e |P: The same as FC.
e Port: The same as FC.

e Filtering: The sessions started from a given natted peer’s IP address
and port towards a target IP address and port, share the same
filtering rule: the NAT device only forwards messages coming from
this IP address and port.

Amir H. Payberah — 22 June 2010
/ 23/55

ﬁ

Classic NAT Types — Symmetric

e |P: The same as FC.

e Port: Different port for each session started from a given natted IP
address and port.

e Filtering: The same as PRC.

_ Amir H. Payberah — 22 June 2010 -

NATCracker Perspective

e Mapping policy: Decides when to bind a new port.
" Endpoint Independent (El)
" Host Dependent (HD)
" Port Dependent (PD)

e Allocation policy: Decides which port should be bound.
" Port Preservation (PP)
" Port Contiguity (PC)
" Random (RD)

e Filtering policy: Decides whether a packet from the outside world to a public
endpoint of a NAT gateway should be forwarded to the corresponding private
endpoint.

" Endpoint Independent (El)

" Host Dependent (HD)
" Port Dependent (PD)

Amir H. Payberah — 22 June 2010
/ 25/55

NAT Traversal Techniques

e Hole punching (UDP)

e Relaying

" When the destination node is behind a SYM NAT and the source node is either behind
a PRC NAT or a SYM NAT.

" When the destination node is behind a PRC NAT and the source node is behind a
SYM NAT.

Amir H. Payberah — 22 June 2010
/ 26/55

NAT Traversal Techniques — Hole Punching (UDP)

Server § Server §

(18.181.0.31} {2) Forward B's (18.181.0.31) (2) Forward A's
Endpoinis to A Endpoinis o B

155.99.25.11:62000

Server S
(18.181.0.31)

138.76.29.7:31000

Session A-5 Session B-§ 10.1.1.3:4321 10.0.0.1:4321 Session A-§ Session B-§
18.181.0.31:1234— —18.181.0.31:1234 18.181.0.31:1234— —I8.181.0.31:1234
155.99.25.11:62000 I138.76.29. 731000 155.99.2511:62000 I3 76.29.7:3 100
Session A-B "
\-—--—_.-—-—-""_"“'\ ~—— 1559925 1162000
\\ 138.76,20.7:31000 \
NAT NAT NAT NAT NAT NAT
(1559925.11) (138.76.29.7) (1535.99.2511) (138.76.29.7) (155.99.25.11) (138.76.29.7)
ion A-§ A /L\ KL\
Session A-5 Session B-§ (3) Send to B at Send o A at Session A=5 Session A-B Session A-B Session B-§
18.181.0.31:1234 18.181.0.31:1234 (2) 138,76 20731000 (a) 155,99.25.11:62000 181810311234 | 1387620731000 155.092511:62000 | | 1§.181.0,31:1234
100 U-lfii 10.1,1.3:4321 e by 141.1.1,3-4321 (b 10.0.0.1:4321 10.1.0.1:4321 10,0.0.1:4321 101134321 101.1.3:4321
- 4) Ramuat o e S \\“JT'“/
& (b b
O jal ws ==X Xy g j=.
Client A Client B Client A Client B Client A Client B
(RN R B (11.1.3) (10.0.0.1) (10.1.1.3) (10.0.0.1) (10.1.1.3)

Amir H. Payberah — 22 June 2010
/ 27/55

NAT Traversal Techniques — Relaying

Server §
(18.181.0.31)
Session A-S Session B-S
18.181.0.31:1234— —18.181.0.31:1234
155.99,25,11:62000 138.76.29.7:31000

C Main Internet)

~—

NAT NAT
(155.99.25.11) (138.76.29.7)

Session A-§)) Session B-§
18.181.031:12347 Frivate Private \18.181.0.31:1234
10,0.0.1:4321, Network Network 10.1.1.3:4321
O o
Client A Chient B
(10.0.0.1) (10.1.1.3)

Amir H. Payberah — 22 June 2010
/ 28/55

Three Proposed Solutions

ARRG: Real-World Gossiping

Niels Drost, Elth Ogston, Rob V. van Nieuwpoort and Henri E. Bal
Vrije Universiteit Amsterdam

(HPDC'07)

Amir H. Payberah — 22 June 2010

ﬁ

Design Space

e Peer Selection
" Rand
= Blind

e View Propagation
" Push
* Push-Pull

e \iew Selection
" Blind
" Healer
= Swapper

_ Amir H. Payberah — 22 June 2010 -

The ARRG Protocol

e Actualized Robust Random Gossiping (ARRG).
e It uses Fallback Cache to solve the network connectivity problem.

e The Fallback Cache acts as a backup for the normal membership
cache present in the gossiping algorithm.

e Each time a successful gossip exchange is done, the target of this
gossip is added to the Fallback Cache.

e Whenever a gossip attempt fails, the Fallback Cache is used to
select an entry to gossip with instead of the one selected by the
original algorithm.

Amir H. Payberah — 22 June 2010
/ 32/55

ﬁ

Example (1/4)

n2
gossi -
&

-
-
_ .

Fallback Cache —» .

_ Amir H. Payberah — 22 June 2010 -

ﬁ

Example (2/4)

_ Amir H. Payberah — 22 June 2010 -

ﬁ

Example (3/4)

B N-

| gossip 3 %
Fallback Cache —» .

_ Amir H. Payberah — 22 June 2010 -

ﬁ

Example (4/4)

n2
gossi -
&
)
&

-
'U .

Fallback Cache —» .

_ Amir H. Payberah — 22 June 2010 -

NAT-resilient Gossip Peer Sampling

Anne-Marie Kermarrec, Alessio Pace, Vivien Quema, Valerio Schiavoni
INRIA - CNRS

(ICDCS'09)

Amir H. Payberah — 22 June 2010

ﬁ

Design Space

e Peer Selection
" Rand
= Blind

e View Propagation
" Push
* Push-Pull

e \iew Selection
= Blind
" Healer
= Swapper

_ Amir H. Payberah — 22 June 2010 -

The Nylon Protocol

e The main idea of Nylon is to implement reactive hole punching.
e A peer only performs hole punching towards peers it gossip with.

e Hole punching is implemented using a chain of RVPs that forward
the OPEN HOLE message until it reaches the gossip target.

Amir H. Payberah — 22 June 2010
/ 39/55

The Nylon Protocol

e Each node maintains a routing table that maintains the mapping
between a natted node from its view and its associated RVP.

e For each node P in the routing table, the RVP is the node it shuffled
with to obtain the reference to P.

e RVPs do not proactively refresh holes.
" Therefore, a time to live (TTL) is associated to each RVP entries in
routing tables.

Amir H. Payberah — 22 June 2010

40/55

Example (1/3)

Others: deny Others: deny

oving e - === _dest RV TIL

n1 and n2 become RVP for each other.

Amir H. Payberah — 22 June 2010

41/55

Example (2/3)

&

~
N " - Hole punching> - @

= =
oo

&

Others: deny n3: allow n3: allow

n2 and n3 become RVP for each other.

Amir H. Payberah — 22 June 2010

42/55

Example (3/3)

OPEN_HOLE OPEN_HOLE

n1 - n2 = n3

Others: deny n3: allow 140 n3: allow 140

Through this chain n3 can shuffle with n1.
n3 performs hole punching toward n1 by sending an OPEN_HOLE message to n2 that will forward it to n1.

Amir H. Payberah — 22 June 2010
/ 43/55

ﬁ

Balancing Gossip Exchanges in
Networks with Firewalls

Joao Leitao, Robbert van Renesse, Luis Rodrigues
INESC-ID/IST - Cornell University

(IPTPS'10)

ﬁ

Design Space

e Peer Selection
" Rand
= Blind

e View Propagation
" Push
* Push-Pull

e View Selection
= Blind
" Healer

= Swapper
=7

_ Amir H. Payberah — 22 June 2010 -

The Protocol

e Each node maintains:

" A quota value (initially with a value of 1).
e Nodes increase their quota when they initiate a gossip exchange.

" A single-entry cache for connections created by other nodes.
e The connection cache keeps alive the last connection used by another peer to initiate a
gossip exchange.

e When a node receives a gossip request, engages in gossip exchange
if:

" Has a quota value above zero.
" Has an empty connection cache.
" The gossip message has been already forwarded TTL times.

Amir H. Payberah — 22 June 2010
/ 46/55

ﬁ

Example (1/8)

ni n2
- u -
> =
L] L]
1 1

Amir H. Payberah — 22 June 2010

ﬁ

Example (2/8)

n gossip n2 n3
|
&> = =
L] L] L]
1

2 1

Amir H. Payberah — 22 June 2010

ﬁ

Example (3/8)

Amir H. Payberah — 22 June 2010

ﬁ

Example (4/8)

n2 , n3
| gossip)
- -
(nt1]]

2 0 2

Amir H. Payberah — 22 June 2010

ﬁ

Example (5/8)

: 3
gossip gossip 1 |
-«g '
]

2

_ Amir H. Payberah — 22 June 2010 -

ﬁ

Example (6/8)

- ‘ gossip gossip

-
~~~~~~
- -
------------

_ Amir H. Payberah — 22 June 2010 -




ﬁ

Example (7/8)

Amir H. Payberah — 22 June 2010




ﬁ

Example (8/8)

ni
reply n2 reply n3
-
& &> &>
) ©) )
1 0 2

_ Amir H. Payberah — 22 June 2010 -




Question?




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

