Gossip Peer Sampling in Real World

Amir H. Payberah (amir@sics.se)

Gossip Peer Sampling

Peer Sampling Service

- The peer sampling service provides each node with a list of nodes in the system.
- We would like that nodes are selected following a uniform random sample of all nodes in the system.

Gossip Peer Sampling Service

- One solution to achieve the uniform random selection is that every node knows all other nodes of the system.
 - Not scalable
- Use a gossip-based dissemination of membership information to build an unstructured overlay.
 - There are many variants of the basic gossip-based membership dissemination idea, but it is not clear whether any of these variants actually lead to uniform sampling.

Generic Framework

- First, a node Q is selected to exchange membership information with by node P.
- Node P pushes its view to Q.
- If a reply is expected, the view is pulled from Q.
- They merge their current view and the received one, and select a new view.

Gossip Protocol (1/4)

Gossip Protocol (2/4)

Gossip Protocol (3/4)

Gossip Protocol (4/4)

Design Space

- Peer Selection
 - Rand
 - Tail
- View Propagation
 - Push
 - Push-Pull
- View Selection
 - Blind
 - Healer
 - Swapper

Impact of NAT on Gossip Peer Sampling Protocols

Natted Gossip Protocol (1/4)

Natted Gossip Protocol (2/4)

Natted Gossip Protocol (3/4)

Natted Gossip Protocol (4/4)

Network Partition

View size: 15

View size: 27

Stale References

Randomness

Classic NAT Types

- Full Cone (FC): The most permissive type of NAT.
- Restricted Cone (RC): Imposes restrictions on the IP addresses of external peers that can send messages to natted peers.
- Port Restricted Cone (PRC): Imposes restrictions on the IP addresses and ports of external peers that can send messages to natted peers.
- Symmetric (SYM): The most restrictive type of NAT.

NAT Types

- NATs differ in:
 - Way they assign public IP addresses (IP)
 - Way assign ports (Port)
 - Filtering rules (Filtering)

Classic NAT Types – FC

- IP: Same public IP to all sessions started from a given natted IP address and port.
- Port: Same port to all sessions started from a given natted IP address and port.
- Filtering: These sessions all share the same filtering rule, which states that the NAT must forward all incoming messages.

Classic NAT Types – RC

- IP: The same as FC.
- Port: The same as FC.
- Filtering: The sessions started from a given natted peer's IP address and port towards a target IP address, share the same filtering rule: the NAT device only forwards messages coming from this IP address.

Classic NAT Types – PRC

- IP: The same as FC.
- Port: The same as FC.
- Filtering: The sessions started from a given natted peer's IP address and port towards a target IP address and port, share the same filtering rule: the NAT device only forwards messages coming from this IP address and port.

Classic NAT Types – Symmetric

- IP: The same as FC.
- Port: Different port for each session started from a given natted IP address and port.
- Filtering: The same as PRC.

NATCracker Perspective

- Mapping policy: Decides when to bind a new port.
 - Endpoint Independent (EI)
 - Host Dependent (HD)
 - Port Dependent (PD)
- Allocation policy: Decides which port should be bound.
 - Port Preservation (PP)
 - Port Contiguity (PC)
 - Random (RD)
- Filtering policy: Decides whether a packet from the outside world to a public endpoint of a NAT gateway should be forwarded to the corresponding private endpoint.
 - Endpoint Independent (EI)
 - Host Dependent (HD)
 - Port Dependent (PD)

NAT Traversal Techniques

- Hole punching (UDP)
- Relaying
 - When the destination node is behind a SYM NAT and the source node is either behind a PRC NAT or a SYM NAT.
 - When the destination node is behind a PRC NAT and the source node is behind a SYM NAT.

NAT Traversal Techniques – Hole Punching (UDP)

NAT Traversal Techniques – Relaying

Three Proposed Solutions

ARRG: Real-World Gossiping

Niels Drost, Elth Ogston, Rob V. van Nieuwpoort and Henri E. Bal Vrije Universiteit Amsterdam

(HPDC'07)

Design Space

- Peer Selection
 - Rand
 - Blind
- View Propagation
 - Push
 - Push-Pull
- View Selection
 - Blind
 - Healer
 - Swapper

The ARRG Protocol

- Actualized Robust Random Gossiping (ARRG).
- It uses Fallback Cache to solve the network connectivity problem.
- The Fallback Cache acts as a backup for the normal membership cache present in the gossiping algorithm.
- Each time a successful gossip exchange is done, the target of this gossip is added to the Fallback Cache.
- Whenever a gossip attempt fails, the Fallback Cache is used to select an entry to gossip with instead of the one selected by the original algorithm.

Example (1/4)

Example (2/4)

n4

Example (3/4)

Example (4/4)

NAT-resilient Gossip Peer Sampling

Anne-Marie Kermarrec, Alessio Pace, Vivien Quema, Valerio Schiavoni INRIA - CNRS

(ICDCS'09)

Design Space

- Peer Selection
 - Rand
 - Blind
- View Propagation
 - Push
 - Push-Pull
- View Selection
 - Blind
 - Healer
 - Swapper

The Nylon Protocol

- The main idea of Nylon is to implement reactive hole punching.
- A peer only performs hole punching towards peers it gossip with.
- Hole punching is implemented using a chain of RVPs that forward the OPEN HOLE message until it reaches the gossip target.

The Nylon Protocol

- Each node maintains a routing table that maintains the mapping between a natted node from its view and its associated RVP.
- For each node P in the routing table, the RVP is the node it shuffled with to obtain the reference to P.
- RVPs do not proactively refresh holes.
 - Therefore, a time to live (TTL) is associated to each RVP entries in routing tables.

Example (1/3)

n1 and n2 become RVP for each other.

Example (2/3)

n2 and n3 become RVP for each other.

Example (3/3)

Through this chain n3 can shuffle with n1.

n3 performs hole punching toward n1 by sending an OPEN HOLE message to n2 that will forward it to n1.

Balancing Gossip Exchanges in Networks with Firewalls

Joao Leitao, Robbert van Renesse, Luis Rodrigues INESC-ID/IST - Cornell University

(IPTPS'10)

Design Space

- Peer Selection
 - Rand
 - Blind
- View Propagation
 - Push
 - Push-Pull
- View Selection
 - Blind
 - Healer
 - Swapper
 - **•** ?

The Protocol

- Each node maintains:
 - A quota value (initially with a value of 1).
 - Nodes increase their quota when they initiate a gossip exchange.
 - A single-entry cache for connections created by other nodes.
 - The connection cache keeps alive the last connection used by another peer to initiate a
 gossip exchange.
- When a node receives a gossip request, engages in gossip exchange if:
 - Has a quota value above zero.
 - Has an empty connection cache.
 - The gossip message has been already forwarded TTL times.

Example (1/8)

Example (2/8)

Example (3/8)

Example (4/8)

Example (5/8)

Example (6/8)

Example (7/8)

Example (8/8)

Question?