
Large-Scale Graph Processing

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
May 13-15, 2014

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 1 / 116

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 2 / 116

Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 3 / 116

Large Graph

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 4 / 116

Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 5 / 116

Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 6 / 116

Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 7 / 116

Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 8 / 116

Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 8 / 116

Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 9 / 116

Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 9 / 116

Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 10 / 116

Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 10 / 116

Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 11 / 116

Data-Parallel vs. Graph-Parallel Computation

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 12 / 116

Data-Parallel vs. Graph-Parallel Computation

I Data-parallel computation
• Record-centric view of data.
• Parallelism: processing independent data on separate resources.

I Graph-parallel computation
• Vertex-centric view of graphs.
• Parallelism: partitioning graph (dependent) data across processing

resources, and resolving dependencies (along edges) through
iterative computation and communication.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 13 / 116

Outline

I Pregel

I GraphLab

I PowerGraph

I GraphX

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 14 / 116

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 15 / 116

Seven Bridges of Königsberg

I Finding a walk through the city that would cross each bridge once
and only once.

I Euler proved that the problem has no solution.

Map of Königsberg in Euler’s time, highlighting the river Pregel and the bridges.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 16 / 116

Pregel

I Large-scale graph-parallel processing platform developed at Google.

I Inspired by bulk synchronous parallel (BSP) model.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 17 / 116

Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.
• There are no special combining, replicating, or broadcasting fa-

cilities.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 18 / 116

Bulk Synchronous Parallel (2/2)

All vertices update in parallel (at the same time).

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 19 / 116

Vertex-Centric Programs

I Think like a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 20 / 116

Data Model

I A directed graph that stores the program state, e.g., the current
value.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 21 / 116

Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 22 / 116

Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 22 / 116

Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 22 / 116

Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 22 / 116

Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 23 / 116

Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 23 / 116

Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 23 / 116

Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 23 / 116

Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

I A number of predefined aggregators, e.g., min, max, sum.

I Aggregation operators should be commutative and associative.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 24 / 116

Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

I A number of predefined aggregators, e.g., min, max, sum.

I Aggregation operators should be commutative and associative.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 24 / 116

Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

I A number of predefined aggregators, e.g., min, max, sum.

I Aggregation operators should be commutative and associative.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 24 / 116

Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 25 / 116

Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 26 / 116

Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 27 / 116

Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 28 / 116

Example: PageRank

I Update ranks in parallel.

I Iterate until convergence.

R[i] = 0.15 +
∑

j∈Nbrs(i)
wjiR[j]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 29 / 116

Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] = 0.15 +
∑

j∈Nbrs(i)
wjiR[j]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 30 / 116

Partitioning the Graph

I The pregel library divides a graph into a number of partitions.

I Each consisting of a set of vertices and all of those vertices’ outgoing
edges.

I Vertices are assigned to partitions based on their vertex-ID (e.g.,
hash(ID)).

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 31 / 116

Implementation (1/4)

I Master-worker model.

I User programs are copied on machines.

I One copy becomes the master.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 32 / 116

Implementation (2/4)

I The master is responsible for
• Coordinating workers activity.
• Determining the number of partitions.

I Each worker is responsible for
• Maintaining the state of its partitions.
• Executing the user’s Compute() method on its vertices.
• Managing messages to and from other workers.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 33 / 116

Implementation (3/4)

I The master assigns one or more partitions to each worker.

I The master assigns a portion of user input to each worker.

• Set of records containing an arbitrary number of vertices and edges.

• If a worker loads a vertex that belongs to that worker’s partitions,
the appropriate data structures are immediately updated.

• Otherwise the worker enqueues a message to the remote peer that
owns the vertex.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 34 / 116

Implementation (3/4)

I The master assigns one or more partitions to each worker.

I The master assigns a portion of user input to each worker.

• Set of records containing an arbitrary number of vertices and edges.

• If a worker loads a vertex that belongs to that worker’s partitions,
the appropriate data structures are immediately updated.

• Otherwise the worker enqueues a message to the remote peer that
owns the vertex.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 34 / 116

Implementation (4/4)

I After the input has finished loading, all vertices are marked as active.

I The master instructs each worker to perform a superstep.

I After the computation halts, the master may instruct each worker
to save its portion of the graph.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 35 / 116

Combiner

I Sending a message between workers incurs some overhead: use com-
biner.

I This can be reduced in some cases: sometimes vertices only care
about a summary value for the messages it is sent (e.g., min, max,
sum, avg).

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 36 / 116

Fault Tolerance (1/2)

I Fault tolerance is achieved through checkpointing.

I At start of each superstep, master tells workers to save their state:
• Vertex values, edge values, incoming messages
• Saved to persistent storage

I Master saves aggregator values (if any).

I This is not necessarily done at every superstep: costly

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 37 / 116

Fault Tolerance (2/2)

I When master detects one or more worker failures:

• All workers revert to last checkpoint.

• Continue from there.

• That is a lot of repeated work.

• At least it is better than redoing the whole job.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 38 / 116

Pregel Summary

I Bulk Synchronous Parallel model

I Vertex-centric

I Superstep: sequence of iterations

I Master-worker model

I Communication: message passing

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 39 / 116

Pregel Limitations

I Inefficient if different regions of the graph converge at different
speed.

I Can suffer if one task is more expensive than the others.

I Runtime of each phase is determined by the slowest machine.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 40 / 116

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 41 / 116

Data Model

I A directed graph that stores the program state, called data graph.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 42 / 116

Vertex Scope

I The scope of vertex v is the data stored in vertex v , in all adjacent
vertices and adjacent edges.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 43 / 116

Execution Model (1/4)

I Rather than adopting a message passing as in Pregel, GraphLab
allows the user defined function of a vertex to read and modify any
of the data in its scope.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 44 / 116

Execution Model (2/4)

I Update function: user-defined function similar to Compute in Pregel.

I Can read and modify the data within the scope of a vertex.

I Schedules the future execution of other update functions.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 45 / 116

Execution Model (3/4)

I After executing an update function (f, g, · · ·) the modified scope
data in Sv is written back to the data graph.

I Each task in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 46 / 116

Execution Model (4/4)

I Sync function: similar to aggregate in Pregel.

I Maintains global aggregates.

I Performs periodically in the background.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 47 / 116

Example: PageRank

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = 0.15 + total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i] = 0.15 +
∑

j∈Nbrs(i)
wjiR[j]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 48 / 116

Data Consistency (1/3)

I Overlapped scopes: race-condition in simultaneous execution of two
update functions.

I Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

I Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-
cent to v.

I Vertex consistency: during the execution f(v), no other function
will be applied to v.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 49 / 116

Data Consistency (1/3)

I Overlapped scopes: race-condition in simultaneous execution of two
update functions.

I Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

I Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-
cent to v.

I Vertex consistency: during the execution f(v), no other function
will be applied to v.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 49 / 116

Data Consistency (1/3)

I Overlapped scopes: race-condition in simultaneous execution of two
update functions.

I Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

I Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-
cent to v.

I Vertex consistency: during the execution f(v), no other function
will be applied to v.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 49 / 116

Data Consistency (1/3)

I Overlapped scopes: race-condition in simultaneous execution of two
update functions.

I Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

I Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-
cent to v.

I Vertex consistency: during the execution f(v), no other function
will be applied to v.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 49 / 116

Data Consistency (2/3)

Consistency vs. Parallelism

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of

California), 2013.]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 50 / 116

Data Consistency (3/3)

I Proving the correctness of a parallel algorithm: sequential consistency

I Sequential consistency: if for every parallel execution, there exists a
sequential execution of update functions that produces an equivalent
result.

I A simple method to achieve serializability is to ensure that the scopes
of concurrently executing update functions do not overlap.

• The full consistency model is used.
• The edge consistency model is used and update functions do not modify

data in adjacent vertices.
• The vertex consistency model is used and update functions only access

local vertex data.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 51 / 116

Data Consistency (3/3)

I Proving the correctness of a parallel algorithm: sequential consistency

I Sequential consistency: if for every parallel execution, there exists a
sequential execution of update functions that produces an equivalent
result.

I A simple method to achieve serializability is to ensure that the scopes
of concurrently executing update functions do not overlap.

• The full consistency model is used.
• The edge consistency model is used and update functions do not modify

data in adjacent vertices.
• The vertex consistency model is used and update functions only access

local vertex data.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 51 / 116

Data Consistency (3/3)

I Proving the correctness of a parallel algorithm: sequential consistency

I Sequential consistency: if for every parallel execution, there exists a
sequential execution of update functions that produces an equivalent
result.

I A simple method to achieve serializability is to ensure that the scopes
of concurrently executing update functions do not overlap.

• The full consistency model is used.
• The edge consistency model is used and update functions do not modify

data in adjacent vertices.
• The vertex consistency model is used and update functions only access

local vertex data.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 51 / 116

GraphLab Implementation

I Shared memory implementation

I Distributed implementation

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 52 / 116

GraphLab Implementation

I Shared memory implementation

I Distributed implementation

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 52 / 116

Tasks Schedulers (1/2)

I In what order should the tasks (vertex-update function pairs) be
called?

• A collection of base schedules, e.g., round-robin, and synchronous.
• Set scheduler: enables users to compose custom update schedules.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 53 / 116

Tasks Schedulers (1/2)

I In what order should the tasks (vertex-update function pairs) be
called?

• A collection of base schedules, e.g., round-robin, and synchronous.
• Set scheduler: enables users to compose custom update schedules.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 53 / 116

Tasks Schedulers (2/2)

I How to add new task in the queue?

• FIFO: only permits task creation but do not permit task reordering.
• Prioritized: permits task reordering at the cost of increased overhead.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 54 / 116

Tasks Schedulers (2/2)

I How to add new task in the queue?
• FIFO: only permits task creation but do not permit task reordering.
• Prioritized: permits task reordering at the cost of increased overhead.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 54 / 116

Consistency

I Implemented in C++ using PThreads for parallelism.

I Consistency: read-write lock

I Vertex consistency
• Central vertex (write-lock)

I Edge consistency
• Central vertex (write-lock)
• Adjacent vertices (read-locks)

I Full consistency
• Central vertex (write-locks)
• Adjacent vertices (write-locks)

I Deadlocks are avoided by acquiring locks sequentially following a
canonical order.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 55 / 116

Consistency

I Implemented in C++ using PThreads for parallelism.

I Consistency: read-write lock

I Vertex consistency
• Central vertex (write-lock)

I Edge consistency
• Central vertex (write-lock)
• Adjacent vertices (read-locks)

I Full consistency
• Central vertex (write-locks)
• Adjacent vertices (write-locks)

I Deadlocks are avoided by acquiring locks sequentially following a
canonical order.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 55 / 116

GraphLab Implementation

I Shared memory implementation

I Distributed implementation

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 56 / 116

Distributed Implementation

I Graph partitioning
• How to efficiently load, partition and distribute the data graph across

machines?

I Consistency
• How to achieve consistency in the distributed setting?

I Fault tolerance

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 57 / 116

Graph Partitioning - Phase 1 (1/2)

I Two-phase partitioning.

I Partitioning the data graph into k parts, called atom: k � number
of machines.

I meta-graph: the graph of atoms (one vertex for each atom).

I Atom weight: the amount of data it stores.

I Edge weight: the number of edges crossing the atoms.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 58 / 116

Graph Partitioning - Phase 1 (2/2)

I Each atom is stored as a separate file on a distributed storage system,
e.g., HDFS.

I Each atom file is a simple binary that stores interior and the ghosts
of the partition information.

I Ghost: set of vertices and edges adjacent to the partition boundary.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 59 / 116

Graph Partitioning - Phase 2

I Meta-graph is very small.

I A fast balanced partition of the meta-graph over the physical ma-
chines.

I Assigning graph atoms to machines.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 60 / 116

Consistency

I To achieve a serializable parallel execution of a set of dependent
tasks.

I Chromatic Engine

I Distributed Locking Engine

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 61 / 116

Consistency - Chromatic Engine

I Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

I Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

I Full consistency: no vertex shares the same color as any of its dis-
tance two neighbors.

I Vertex consistency: assigning all vertices the same color.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 62 / 116

Consistency - Chromatic Engine

I Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

I Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

I Full consistency: no vertex shares the same color as any of its dis-
tance two neighbors.

I Vertex consistency: assigning all vertices the same color.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 62 / 116

Consistency - Chromatic Engine

I Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

I Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

I Full consistency: no vertex shares the same color as any of its dis-
tance two neighbors.

I Vertex consistency: assigning all vertices the same color.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 62 / 116

Consistency - Chromatic Engine

I Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

I Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

I Full consistency: no vertex shares the same color as any of its dis-
tance two neighbors.

I Vertex consistency: assigning all vertices the same color.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 62 / 116

Consistency - Distributed Locking Engine

I Associating a readers-writer lock with each vertex.

I Vertex consistency
• Central vertex (write-lock)

I Edge consistency
• Central vertex (write-lock), Adjacent vertices (read-locks)

I Full consistency
• Central vertex (write-locks), Adjacent vertices (write-locks)

I Deadlocks are avoided by acquiring locks sequentially following a
canonical order.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 63 / 116

Fault Tolerance - Synchronous

I The systems periodically signals all computation activity to halt.

I Then synchronizes all caches (ghosts) and saves to disk all data
which has been modified since the last snapshot.

I Simple, but eliminates the systems advantage of asynchronous com-
putation.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 64 / 116

Fault Tolerance - Asynchronous

I Based on the Chandy-Lamport algorithm.

I The snapshot function is implemented as an update function in
vertices.

I The Snapshot update takes priority over all other update functions.

I Edge Consistency is used on all update functions.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 65 / 116

GraphLab Summary

I Asynchronous model

I Vertex-centric

I Communication: distributed shared memory

I Three consistency levels: full, edge-level, and vertex-level

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 66 / 116

GraphLab Limitations

I Poor performance on Natural graphs.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 67 / 116

Natural Graphs

I Graphs derived from natural phenomena.

I Skewed Power-Law degree distribution.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 68 / 116

Natural Graphs Challenges

I Traditional graph-partitioning algorithms (edge-cut algorithms) per-
form poorly on Power-Law Graphs.

I Challenges of high-degree vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 69 / 116

Proposed Solution

Vertex-Cut Partitioning

Edge-cut Vertex-cut

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 70 / 116

Proposed Solution

Vertex-Cut Partitioning

Edge-cut Vertex-cut

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 70 / 116

Edge-cut vs. Vertex-cut Partitioning

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 71 / 116

Edge-cut vs. Vertex-cut Partitioning

Edge-cut Vertex-cut

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 72 / 116

PowerGraph

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 73 / 116

PowerGraph

I Vertex-cut partitioning of graphs.

I Factorizes the GraphLab update function into the Gather, Apply and
Scatter phases (GAS).

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 74 / 116

Gather-Apply-Scatter Programming Model

I Gather
• Accumulate information about neighborhood

through a generalized sum.

I Apply
• Apply the accumulated value to center vertex.

I Scatter
• Update adjacent edges and vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 75 / 116

Gather-Apply-Scatter Programming Model

I Gather
• Accumulate information about neighborhood

through a generalized sum.

I Apply
• Apply the accumulated value to center vertex.

I Scatter
• Update adjacent edges and vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 75 / 116

Gather-Apply-Scatter Programming Model

I Gather
• Accumulate information about neighborhood

through a generalized sum.

I Apply
• Apply the accumulated value to center vertex.

I Scatter
• Update adjacent edges and vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 75 / 116

Data Model

I A directed graph that stores the program state, called data graph.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 76 / 116

Execution Model (1/2)

I Vertex-centric programming: implementing the GASVertexProgram
interface (vertex-program for short).

I Similar to Comput in Pregel, and update function in GraphLab.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 77 / 116

Execution Model (2/2)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 78 / 116

Execution Model (2/2)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 78 / 116

Example: PageRank

PowerGraph_PageRank(i):

Gather(j -> i):

return wji * R[j]

sum(a, b):

return a + b

// total: Gather and sum

Apply(i, total):

R[i] = 0.15 + total

Scatter(i -> j):

if R[i] changed then activate(j)

R[i] = 0.15 +
∑

j∈Nbrs(i)
wjiR[j]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 79 / 116

Scheduling (1/5)

I PowerGraph inherits the dynamic scheduling of GraphLab.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 80 / 116

Scheduling (2/5)

I Initially all vertices are active.

I PowerGraph executes the vertex-program on the active vertices until
none remain.

I The order of executing activated vertices is up to the PowerGraph
execution engine.

I Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

I Vertices can activate themselves and neighboring vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 81 / 116

Scheduling (2/5)

I Initially all vertices are active.

I PowerGraph executes the vertex-program on the active vertices until
none remain.

I The order of executing activated vertices is up to the PowerGraph
execution engine.

I Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

I Vertices can activate themselves and neighboring vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 81 / 116

Scheduling (2/5)

I Initially all vertices are active.

I PowerGraph executes the vertex-program on the active vertices until
none remain.

I The order of executing activated vertices is up to the PowerGraph
execution engine.

I Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

I Vertices can activate themselves and neighboring vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 81 / 116

Scheduling (2/5)

I Initially all vertices are active.

I PowerGraph executes the vertex-program on the active vertices until
none remain.

I The order of executing activated vertices is up to the PowerGraph
execution engine.

I Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

I Vertices can activate themselves and neighboring vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 81 / 116

Scheduling (2/5)

I Initially all vertices are active.

I PowerGraph executes the vertex-program on the active vertices until
none remain.

I The order of executing activated vertices is up to the PowerGraph
execution engine.

I Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

I Vertices can activate themselves and neighboring vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 81 / 116

Scheduling (3/5)

I PowerGraph can execute both synchronously and asynchronously.

• Bulk synchronous execution

• Asynchronous execution

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 82 / 116

Scheduling - Bulk Synchronous Execution (4/5)

I Similar to Pregel.

I Minor-step: executing the gather, apply, and scatter in order.
• Runs synchronously on all active vertices with a barrier at the end.

I Super-step: a complete series of GAS minor-steps.

I Changes made to the vertex/edge data are committed at the end of
each minor-step and are visible in the subsequent minor-steps.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 83 / 116

Scheduling - Bulk Synchronous Execution (4/5)

I Similar to Pregel.

I Minor-step: executing the gather, apply, and scatter in order.
• Runs synchronously on all active vertices with a barrier at the end.

I Super-step: a complete series of GAS minor-steps.

I Changes made to the vertex/edge data are committed at the end of
each minor-step and are visible in the subsequent minor-steps.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 83 / 116

Scheduling - Bulk Synchronous Execution (4/5)

I Similar to Pregel.

I Minor-step: executing the gather, apply, and scatter in order.
• Runs synchronously on all active vertices with a barrier at the end.

I Super-step: a complete series of GAS minor-steps.

I Changes made to the vertex/edge data are committed at the end of
each minor-step and are visible in the subsequent minor-steps.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 83 / 116

Scheduling - Bulk Synchronous Execution (4/5)

I Similar to Pregel.

I Minor-step: executing the gather, apply, and scatter in order.
• Runs synchronously on all active vertices with a barrier at the end.

I Super-step: a complete series of GAS minor-steps.

I Changes made to the vertex/edge data are committed at the end of
each minor-step and are visible in the subsequent minor-steps.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 83 / 116

Scheduling - Asynchronous Execution (5/5)

I Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

• Visible to subsequent computation on neighboring vertices.

I Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

• Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

• GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

• PowerGraph implements Chandy-Misra solution, which acquires all
forks simultaneously.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 84 / 116

Scheduling - Asynchronous Execution (5/5)

I Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

• Visible to subsequent computation on neighboring vertices.

I Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

• Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

• GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

• PowerGraph implements Chandy-Misra solution, which acquires all
forks simultaneously.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 84 / 116

Scheduling - Asynchronous Execution (5/5)

I Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

• Visible to subsequent computation on neighboring vertices.

I Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

• Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

• GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

• PowerGraph implements Chandy-Misra solution, which acquires all
forks simultaneously.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 84 / 116

Scheduling - Asynchronous Execution (5/5)

I Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

• Visible to subsequent computation on neighboring vertices.

I Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

• Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

• GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

• PowerGraph implements Chandy-Misra solution, which acquires all
forks simultaneously.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 84 / 116

Scheduling - Asynchronous Execution (5/5)

I Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

• Visible to subsequent computation on neighboring vertices.

I Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

• Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

• GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

• PowerGraph implements Chandy-Misra solution, which acquires all
forks simultaneously.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 84 / 116

Delta Caching (1/2)

I Changes in a few of its neighbors → triggering a vertex-program

I The gather operation is invoked on all neighbors: wasting compu-
tation cycles

I Maintaining a cache of the accumulator av from the previous gather
phase for each vertex.

I The scatter can return an additional ∆a, which is added to the
cached accumulator av .

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 85 / 116

Delta Caching (1/2)

I Changes in a few of its neighbors → triggering a vertex-program

I The gather operation is invoked on all neighbors: wasting compu-
tation cycles

I Maintaining a cache of the accumulator av from the previous gather
phase for each vertex.

I The scatter can return an additional ∆a, which is added to the
cached accumulator av .

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 85 / 116

Delta Caching (2/2)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 86 / 116

Delta Caching (2/2)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 86 / 116

Example: PageRank (Delta-Caching)

PowerGraph_PageRank(i):

Gather(j -> i):

return wji * R[j]

sum(a, b):

return a + b

// total: Gather and sum

Apply(i, total):

new = 0.15 + total

R[i].delta = new - R[i]

R[i] = new

Scatter(i -> j):

if R[i] changed then activate(j)

return wij * R[i].delta

R[i] = 0.15 +
∑

j∈Nbrs(i)
wjiR[j]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 87 / 116

Graph Partitioning

I Vertex-cut partitioning.

I Evenly assign edges to machines.
• Minimize machines spanned by each vertex.

I Two proposed solutions:
• Random edge placement.
• Greedy edge placement.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 88 / 116

Random Vertex-Cuts

I Randomly assign edges to machines.

I Completely parallel and easy to distribute.

I High replication factor.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 89 / 116

Greedy Vertex-Cuts (1/2)

I A(v): set of machines that contain adjacent edges of v.

I Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

I Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

I Case 4: If neither vertex has been assigned, then assign the edge to
the least loaded machine.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 90 / 116

Greedy Vertex-Cuts (1/2)

I A(v): set of machines that contain adjacent edges of v.

I Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

I Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

I Case 4: If neither vertex has been assigned, then assign the edge to
the least loaded machine.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 90 / 116

Greedy Vertex-Cuts (1/2)

I A(v): set of machines that contain adjacent edges of v.

I Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

I Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

I Case 4: If neither vertex has been assigned, then assign the edge to
the least loaded machine.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 90 / 116

Greedy Vertex-Cuts (1/2)

I A(v): set of machines that contain adjacent edges of v.

I Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

I Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

I Case 4: If neither vertex has been assigned, then assign the edge to
the least loaded machine.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 90 / 116

Greedy Vertex-Cuts (1/2)

I A(v): set of machines that contain adjacent edges of v.

I Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

I Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

I Case 4: If neither vertex has been assigned, then assign the edge to
the least loaded machine.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 90 / 116

Greedy Vertex-Cuts (2/2)

I Coordinated edge placement:
• Requires coordination to place each edge
• Slower, but higher quality cuts

I Oblivious edge placement:
• Approx. greedy objective without coordination
• Faster, but lower quality cuts

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 91 / 116

PowerGraph Summary

I Gather-Apply-Scatter programming model

I Synchronous and Asynchronous models

I Vertex-cut graph partitioning

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 92 / 116

I Any limitations?

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 93 / 116

Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 94 / 116

Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 94 / 116

Data-Parallel and Graph-Parallel Pipeline

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 95 / 116

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 96 / 116

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 96 / 116

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 97 / 116

GraphX

I New API that blurs the distinction between Tables and Graphs.

I New system that unifies Data-Parallel and Graph-Parallel systems.

I It is implemented on top of Spark.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 98 / 116

Unifying Data-Parallel and Graph-Parallel Analytics

I Tables and Graphs are composable views of the same physical data.

I Each view has its own operators that exploit the semantics of the
view to achieve efficient execution.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 99 / 116

Data Model

I Property Graph: represented using two Spark RDDs:
• Edge collection: VertexRDD
• Vertex collection: EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 100 / 116

Primitive Data Types

// Vertex collection

class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection

class EdgeRDD[ED] extends RDD[Edge[ED]]

case class Edge[ED](srcId: VertexId = 0, dstId: VertexId = 0,

attr: ED = null.asInstanceOf[ED])

// Edge Triple

class EdgeTriplet[VD, ED] extends Edge[ED]

I EdgeTriplet represents an edge along with the vertex attributes of
its neighboring vertices.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 101 / 116

Example (1/3)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 102 / 116

Example (2/3)

val sc: SparkContext

// Create an RDD for the vertices

val users: VertexRDD[(String, String)] = sc.parallelize(

Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: EdgeRDD[String] = sc.parallelize(

Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =

Graph(users, relationships, defaultUser)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 103 / 116

Example (3/3)

// Constructed from above

val userGraph: Graph[(String, String), String]

// Count all users which are postdocs

userGraph.vertices.filter((id, (name, pos)) => pos == "postdoc").count

// Count all the edges where src > dst

userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " +

triplet.attr + " of " + triplet.dstAttr._1)

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

facts.collect.foreach(println(_))

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 104 / 116

Property Operators (1/2)

class Graph[VD, ED] {

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

}

I They yield new graphs with the vertex or edge properties modified
by the map function.

I The graph structure is unaffected.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 105 / 116

Property Operators (2/2)

val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))

val newVertices = graph.vertices.map((id, attr) => (id, mapUdf(id, attr)))

val newGraph = Graph(newVertices, graph.edges)

I Both are logically equivalent, but the second one does not preserve
the structural indices and would not benefit from the GraphX system
optimizations.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 106 / 116

Map Reduce Triplets

I Map-Reduce for each vertex

// what is the age of the oldest follower for each user?

val oldestFollowerAge = graph.mapReduceTriplets(

e => (e.dstAttr, e.srcAttr), // Map

(a, b) => max(a, b) // Reduce

).vertices

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 107 / 116

Map Reduce Triplets

I Map-Reduce for each vertex

// what is the age of the oldest follower for each user?

val oldestFollowerAge = graph.mapReduceTriplets(

e => (e.dstAttr, e.srcAttr), // Map

(a, b) => max(a, b) // Reduce

).vertices

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 107 / 116

Structural Operators

class Graph[VD, ED] {

// returns a new graph with all the edge directions reversed

def reverse: Graph[VD, ED]

// returns the graph containing only the vertices and edges that satisfy

// the vertex predicate

def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,

vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

// a subgraph by returning a graph that contains the vertices and edges

// that are also found in the input graph

def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

}

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 108 / 116

Structural Operators Example

// Build the initial Graph

val graph = Graph(users, relationships, defaultUser)

// Run Connected Components

val ccGraph = graph.connectedComponents()

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

// Restrict the answer to the valid subgraph

val validCCGraph = ccGraph.mask(validGraph)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 109 / 116

Join Operators

I To join data from external collections (RDDs) with graphs.

class Graph[VD, ED] {

// joins the vertices with the input RDD and returns a new graph

// by applying the map function to the result of the joined vertices

def joinVertices[U](table: RDD[(VertexId, U)])

(map: (VertexId, VD, U) => VD): Graph[VD, ED]

// similarly to joinVertices, but the map function is applied to

// all vertices and can change the vertex property type

def outerJoinVertices[U, VD2](table: RDD[(VertexId, U)])

(map: (VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]

}

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 110 / 116

Graph Builders

// load a graph from a list of edges on disk

object GraphLoader {

def edgeListFile(

sc: SparkContext,

path: String,

canonicalOrientation: Boolean = false,

minEdgePartitions: Int = 1)

: Graph[Int, Int]

}

// graph file

This is a comment

2 1

4 1

1 2

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 111 / 116

GraphX and Spark

I GraphX is implemented on top of Spark

I In-memory caching

I Lineage-based fault tolerance

I Programmable partitioning

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 112 / 116

Distributed Graph Representation (1/2)

I Representing graphs using two RDDs: edge-collection and vertex-
collection

I Vertex-cut partitioning (like PowerGraph)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 113 / 116

Distributed Graph Representation (2/2)

I Each vertex partition contains a bitmask and routing table.

I Routing table: a logical map from a vertex id to the set of edge
partitions that contains adjacent edges.

I Bitmask: enables the set intersection and filtering.
• Vertices bitmasks are updated after each operation (e.g., mapRe-

duceTriplets).
• Vertices hidden by the bitmask do not participate in the graph oper-

ations.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 114 / 116

Summary

I Pregel
• Synchronous model: super-step
• Message passing

I GraphLab
• Asynchronous model: distributed shared-memory
• Edge-cut partitioning

I PowerGraph
• GAS programming model
• Vertex-cut partitioning

I GraphX
• Unifying data-parallel and graph-parallel analytics
• Vertex-cut partitioning

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 115 / 116

Questions?

Acknowledgements

Some pictures were derived from the Spark web site
(http://spark.apache.org/).

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 116 / 116

