Large-Scale Graph Processing

Amir H. Payberah

Swedish Institute of Computer Science

amir@sics.se
May 13-15, 2014

SWEDISH
T R

i

SOUNDCLOUD

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 2 /116

L
Introduction

» Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

» Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

I
Large Graph

INNSS———
Large-Scale Graph Processing

» Large graphs need large-scale processing.

» A large graph either cannot fit into memory of single computer or
it fits with huge cost.

L
Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel J

model, for large-scale graph proceeding?

Spoﬁz{

Result

L
Data-Parallel Model for Large-Scale Graph Processing

» The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

> Why?

SpcarfZ

Result

I
Graph Algorithms Characteristics (1/2)

» Unstructured problems

e Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

e Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

|
Graph Algorithms Characteristics (1/2)

» Unstructured problems

e Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

e Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

» Data-driven computations

« Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

e The computations are dictated by nodes and links of the graph.

 AmirH Paybersh (SICS) | LrgeScale Graph Processing ey 1515, 20148 /116

I
Graph Algorithms Characteristics (2/2)

» Poor data locality

e The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I
Graph Algorithms Characteristics (2/2)

» Poor data locality

e The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

» High data access to computation ratio

e Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

e Runtime can be dominated by waiting memory fetches: low locality.

INNSS———
Proposed Solution

Graph-Parallel Processing J

Proposed Solution

Graph-Parallel Processing)

» Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 10 / 116

|
Graph-Parallel Processing

v

Restricts the types of computation.

v

New techniques to partition and distribute graphs.

v

Exploit graph structure.

v

Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Pregel

SN
Graphlgb\

 AmirH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200411 /116

-
Data-Parallel vs. Graph-Parallel Computation

Data-Parallel

S)‘pCifiz

Graph-Parallel

Pregel Graph Ig b\

Property Graph

May 13-15, 2014 12 / 116

-
Data-Parallel vs. Graph-Parallel Computation

» Data-parallel computation

» Record-centric view of data.
e Parallelism: processing independent data on separate resources.

» Graph-parallel computation
e Vertex-centric view of graphs.
e Parallelism: partitioning graph (dependent) data across processing
resources, and resolving dependencies (along edges) through
iterative computation and communication.

Data-Parallel Graph-Parallel

Pregel GraphlLab' # &

Spor‘l?:

Property Graph
/@

 AmirH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200413/ 116

L
Outline

v

Pregel

v

GraphLab

v

PowerGraph

v

GraphX

Pregel

Seven Bridges of Konigsberg

» Finding a walk through the city that would cross each bridge once
and only once.

» Euler proved that the problem has no solution.

Map of Konigsberg in Euler’s time, highlighting the river Pregel and the bridges.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 16 / 116

Pregel

» Large-scale graph-parallel processing platform developed at Google.

» Inspired by bulk synchronous parallel (BSP) model.

NN
Bulk Synchronous Parallel (1/2)

» It is a parallel programming model.

» The model consists of:

e A set of processor-memory pairs.

e A communications network that delivers messages in a point-
to-point manner.

* A mechanism for the efficient barrier synchronization for all or
a subset of the processes.

» There are no special combining, replicating, or broadcasting fa-
cilities.

Bulk Synchronous Parallel (2/2)

Jouaeg

compute communicate

All vertices update in parallel (at the same time). J

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 19 / 116

BN
Vertex-Centric Programs

» Think like a vertex.
» Each vertex computes individually its value: in parallel

» Each vertex can see its local context, and updates its value accord-
ingly.

o
Data Model

» A directed graph that stores the program state, e.g., the current
value.

B,
Execution Model (1/3)

» Applications run in sequence of iterations: supersteps

B,
Execution Model (1/3)

» Applications run in sequence of iterations: supersteps

» During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

L
Execution Model (1/3)

» Applications run in sequence of iterations: supersteps

» During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

» A vertex in superstep S can:
» reads messages sent to it in superstep S-1.
» sends messages to other vertices: receiving at superstep S+1.
* modifies its state.

-
Execution Model (1/3)

v

Applications run in sequence of iterations: supersteps

v

During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

v

A vertex in superstep S can:
» reads messages sent to it in superstep S-1.
» sends messages to other vertices: receiving at superstep S+1.
e modifies its state.

v

Vertices communicate directly with one another by sending mes-
sages.

 AmiH Paybersh (SICS) | LrgeScale Graph Processing ey 1515, 2004 22/ 116

B,
Execution Model (2/3)

» Superstep 0: all vertices are in the active state.

B,
Execution Model (2/3)

» Superstep 0: all vertices are in the active state.

» A vertex deactivates itself by voting to halt: no further work to do.

B,
Execution Model (2/3)

» Superstep 0: all vertices are in the active state.
» A vertex deactivates itself by voting to halt: no further work to do.

» A halted vertex can be active if it receives a message.

L
Execution Model (2/3)

v

Superstep 0: all vertices are in the active state.

v

A vertex deactivates itself by voting to halt: no further work to do.

\{

A halted vertex can be active if it receives a message.

v

The whole algorithm terminates when:

e All vertices are simultaneously inactive.
e There are no messages in transit.

Vote to halt

Inactive |

Message received

L
Execution Model (3/3)

» Aggregation: a mechanism for global communication, monitoring,
and data.

L
Execution Model (3/3)

» Aggregation: a mechanism for global communication, monitoring,
and data.

» Runs after each superstep.
» Each vertex can provide a value to an aggregator in superstep S.

» The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

-
Execution Model (3/3)

» Aggregation: a mechanism for global communication, monitoring,
and data.

» Runs after each superstep.
» Each vertex can provide a value to an aggregator in superstep S.

» The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

» A number of predefined aggregators, e.g., min, max, sum.

» Aggregation operators should be commutative and associative.

 AmiH Paybersh (SICS) | LorgeScale Graph Processing ey 1515, 2004 24/ 116

NSSS———
Example: Max Value (1/4)

oY¥oNo¥o

Super step 0

NSSS———
Example: Max Value (2/4)

NSSS———
Example: Max Value (3/4)

Super step 0

Super step 1

Super step 2

I ——
Example: Max Value (4/4)

Super step 0

i_val := val

Super step 1

for each message m

if m > val then val :=m
if i_val == val then
vote_to_halt
else

Super step 2

for each neighbor v
send_message (v, val)

Super step 3

 AmiH Paybersh (SICS) | LrgeScale Graph Processing ey 1515, 2004 28/ 116

|
Example: PageRank

» Update ranks in parallel.

» |terate until convergence.

Rl]=015+ 3 w;R[]
J€Nbrs(i)

J

?

May 13-15, 2014

29 / 116

BN
Example: PageRank

R[]=015+ Y w;R[j] J

JENbrs(i)

BN
Partitioning the Graph

» The pregel library divides a graph into a number of partitions.

» Each consisting of a set of vertices and all of those vertices’ outgoing
edges.

» Vertices are assigned to partitions based on their vertex-ID (e.g.,
hash(ID)).

BN
Implementation (1/4)

» Master-worker model.
» User programs are copied on machines.

» One copy becomes the master.

BN
Implementation (2/4)

» The master is responsible for

o Coordinating workers activity.
e Determining the number of partitions.

» Each worker is responsible for
¢ Maintaining the state of its partitions.
e Executing the user's Compute () method on its vertices.
¢ Managing messages to and from other workers.

BN
Implementation (3/4)

» The master assigns one or more partitions to each worker.

BN
Implementation (3/4)

» The master assigns one or more partitions to each worker.

» The master assigns a portion of user input to each worker.

e Set of records containing an arbitrary number of vertices and edges.

e If a worker loads a vertex that belongs to that worker’s partitions,
the appropriate data structures are immediately updated.

e Otherwise the worker enqueues a message to the remote peer that
owns the vertex.

BN
Implementation (4/4)

» After the input has finished loading, all vertices are marked as active.
» The master instructs each worker to perform a superstep.

» After the computation halts, the master may instruct each worker
to save its portion of the graph.

Combiner

» Sending a message between workers incurs some overhead: use com-

biner.

» This can be reduced in some cases: sometimes vertices only care
about a summary value for the messages it is sent (e.g., min, max,

sum, avg).

workerl

worker2

'})

combiner

S

combiner

worker;

I
Fault Tolerance (1/2)

v

Fault tolerance is achieved through checkpointing.

v

At start of each superstep, master tells workers to save their state:

e Vertex values, edge values, incoming messages
e Saved to persistent storage

» Master saves aggregator values (if any).

v

This is not necessarily done at every superstep: costly

I,
Fault Tolerance (2/2)

» When master detects one or more worker failures:
o All workers revert to last checkpoint.
e Continue from there.
e That is a lot of repeated work.

o At least it is better than redoing the whole job.

INNSS———
Pregel Summary

v

Bulk Synchronous Parallel model

Vertex-centric

v

v

Superstep: sequence of iterations

Master-worker model

v

» Communication: message passing

BN
Pregel Limitations

» Inefficient if different regions of the graph converge at different
speed.

» Can suffer if one task is more expensive than the others.

» Runtime of each phase is determined by the slowest machine.

AN
GraphLab\

o
Data Model

» A directed graph that stores the program state, called data graph.

Vertex Scope

» The scope of vertex v is the data stored in vertex v, in all adjacent

vertices and adjacent edges.

Data Graph
Edge Data

Vertex Data

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014

43 / 116

Execution Model (1/4)

» Rather than adopting a message passing as in Pregel, GraphLab
allows the user defined function of a vertex to read and modify any
of the data in its scope.

Scope 5,

Data Graph
Edge Data

Vertex Data

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 44 / 116

L
Execution Model (2/4)

» Update function: user-defined function similar to Compute in Pregel.
» Can read and modify the data within the scope of a vertex.

» Schedules the future execution of other update functions.

|
Execution Model (3/4)

Input: Data Graph G = (V. E. D)
Input: Initial task set 7 = {(f, v1), (¢, v2), ...}
while 7 is not Empty do

1 (f.v) + RemoveNext (T)
2 (T’7SU) A f(UrSU)
3 T+« TuT

Output: Modified Data Graph G = (V, E, D')

» After executing an update function (f,g,---) the modified scope
data in .S, is written back to the data graph.

» Each task in the set of tasks 7, is a tuple (f,v) consisting of an
update function f and a vertex v.

 AmirH Paybersh (SICS) LorgeScale Graph Processing ey 1315, 200446/ 116

NN
Execution Model (4/4)

» Sync function: similar to aggregate in Pregel.
» Maintains global aggregates.

» Performs periodically in the background.

BN
Example: PageRank

R[]=015+ Y w;R[j]]

JENbrs(i)

BN,
Data Consistency (1/3)

» Overlapped scopes: race-condition in simultaneous execution of two
update functions.

L
Data Consistency (1/3)

» Overlapped scopes: race-condition in simultaneous execution of two
update functions.

- “edge consisteney” "

full consistency

» Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

-
Data Consistency (1/3)

» Overlapped scopes: race-condition in simultaneous execution of two
update functions.

full consistency

» Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

» Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-
cent to v.

 AmirH Paybersh (SICS) LrgeScale Graph Processing ey 1515, 200449/ 116

-
Data Consistency (1/3)

» Overlapped scopes: race-condition in simultaneous execution of two
update functions.

full consistency

» Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.

» Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-

cent to v.

» Vertex consistency: during the execution f(v), no other function
will be applied to v.

 AmirH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200449/ 116

Data Consistency (2/3)

Full
Model

Edge
Model
wsija||esed

fe
€l
&
]
0
i
&
q
fe

Model

Vertex
Consistency Consistency ~ Consistency

Consistency vs. Parallelism

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of

California), 2013.]

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 50 / 116

L
Data Consistency (3/3)

» Proving the correctness of a parallel algorithm: sequential consistency

L
Data Consistency (3/3)

» Proving the correctness of a parallel algorithm: sequential consistency

» Sequential consistency: if for every parallel execution, there exists a
sequential execution of update functions that produces an equivalent
result.

-
Data Consistency (3/3)

» Proving the correctness of a parallel algorithm: sequential consistency

» Sequential consistency: if for every parallel execution, there exists a
sequential execution of update functions that produces an equivalent
result.

» A simple method to achieve serializability is to ensure that the scopes
of concurrently executing update functions do not overlap.
e The full consistency model is used.
» The edge consistency model is used and update functions do not modify
data in adjacent vertices.
e The vertex consistency model is used and update functions only access
local vertex data.

 AmiH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200451/ 116

INNSS———
GraphLab Implementation

» Shared memory implementation

» Distributed implementation

INNSS———
GraphLab Implementation

» Shared memory implementation

» Distributed implementation

N
Tasks Schedulers (1/2)

Input: Data Graph GG = (V. E. D)
Input: Initial task set 7 = {(f.v1).(g.va)....}

while 7/ y
1 \; (f.v) < RemoveNext (T)

2 (77 ou) < J(v,00)
3 T+ TUuT
Output: Modified Data Graph G = (V, E, D")

» In what order should the tasks (vertex-update function pairs) be
called?

 AmirH Pagbersh (SICS) LrgeScale Graph Processing Ny 05, A0 59 L

N
Tasks Schedulers (1/2)

Input: Data Graph GG = (V. E. D)
Input: Initial task set 7 = {(f.v1).(g.va)....}

while 7/ y
1 \; (f.v) < RemoveNext (T)

2 (77 ou) < J(v,00)
3 T+ TUuT
Output: Modified Data Graph G = (V, E, D")

» In what order should the tasks (vertex-update function pairs) be
called?

e A collection of base schedules, e.g., round-robin, and synchronous.
e Set scheduler: enables users to compose custom update schedules.

 AmirH Paybersh (SICS) LorgeScale Graph Processing Ny 05, A 59 L

N
Tasks Schedulers (2/2)

Input: Data Graph G = (V. E. D)
Input: Initial task set 7 = {(f,v1), (g, v2), ...}
while T is not Empty do

1 \; (f.v) < RemoveNext (T)

. (v, So)

Output: Modified Data Graph G = (V, E, D")

3

» How to add new task in the queue?

 AmirH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200484 /116

N
Tasks Schedulers (2/2)

Input: Data Graph G = (V. E. D)
Input: Initial task set 7 = {(f,v1), (g, v2), ...}
while T is not Empty do
1 (f.v) < RemoveNext (T)
- (’U,' 8“)

Output: Modified Data Graph G = (V, E, D")

3

» How to add new task in the queue?

e FIFO: only permits task creation but do not permit task reordering.
 Prioritized: permits task reordering at the cost of increased overhead.

 AmiH Paybersh (SICS) | LorgeScale Graph Processing ey 1315, 200454/ 116

BN
Consistency

» Implemented in C++ using PThreads for parallelism.

» Consistency: read-write lock

-
Consistency

» Implemented in C++ using PThreads for parallelism.

» Consistency: read-write lock

» Vertex consistency
o Central vertex (write-lock)

Full

Edge
Consistency Consistency ~ Consistency
Model

Model

» Edge consistency

o Central vertex (write-lock)
¢ Adjacent vertices (read-locks)

Model

Vertex

» Full consistency

o Central vertex (write-locks)
¢ Adjacent vertices (write-locks)

» Deadlocks are avoided by acquiring locks sequentially following a
canonical order.

 AmirH Paybersh (SICS) LrgeScale Graph Processing Ny 05, A 5 f

INNSS———
GraphLab Implementation

» Shared memory implementation

» Distributed implementation

INNSS———
Distributed Implementation

» Graph partitioning
* How to efficiently load, partition and distribute the data graph across
machines?

» Consistency
e How to achieve consistency in the distributed setting?

» Fault tolerance

N
Graph Partitioning - Phase 1 (1/2)

» Two-phase partitioning.

» Partitioning the data graph into k parts, called atom: k > number
of machines.

v

meta-graph: the graph of atoms (one vertex for each atom).

v

Atom weight: the amount of data it stores.

v

Edge weight: the number of edges crossing the atoms.

— — @
3
meta-graph

A Paybersh (SICS) LrgeScale Graph Processing o TS 0TS 7 6

Graph Partitioning - Phase 1 (2/2)

Atom 1 (Weight = 4)

Atom 2 (Weight = 3)

» Each atom is stored as a separate file on a distributed storage system,
e.g., HDFS.

» Each atom file is a simple binary that stores interior and the ghosts
of the partition information.

» Ghost: set of vertices and edges adjacent to the partition boundary.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 59 / 116

BN
Graph Partitioning - Phase 2

» Meta-graph is very small.

» A fast balanced partition of the meta-graph over the physical ma-
chines.

» Assigning graph atoms to machines.

BN
Consistency

» To achieve a serializable parallel execution of a set of dependent
tasks.

» Chromatic Engine

» Distributed Locking Engine

BN
Consistency - Chromatic Engine

» Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

Consistency - Chromatic Engine

» Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

» Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

|
Consistency - Chromatic Engine

» Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

» Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

» Full consistency: no vertex shares the same color as any of its dis-
tance two neighbors.

 AmiH Paybersh (SICS) LrgeScale Graph Processing ey 1315, 201462/ 116

|
Consistency - Chromatic Engine

v

Construct a vertex coloring: assigns a color to each vertex such that
no adjacent vertices share the same color.

» Edge consistency: executing, synchronously, all update tasks asso-
ciated with vertices of the same color before proceeding to the next
color.

» Full consistency: no vertex shares the same color as any of its dis-
tance two neighbors.

» Vertex consistency: assigning all vertices the same color.

 AmirH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200462/ 116

I
Consistency - Distributed Locking Engine

v

Associating a readers-writer lock with each vertex.

v

Vertex consistency
» Central vertex (write-lock)

v

Edge consistency
» Central vertex (write-lock), Adjacent vertices (read-locks)

v

Full consistency
 Central vertex (write-locks), Adjacent vertices (write-locks)

v

Deadlocks are avoided by acquiring locks sequentially following a
canonical order.

L
Fault Tolerance - Synchronous

» The systems periodically signals all computation activity to halt.

» Then synchronizes all caches (ghosts) and saves to disk all data
which has been modified since the last snapshot.

» Simple, but eliminates the systems advantage of asynchronous com-
putation.

R ——
Fault Tolerance - Asynchronous

» Based on the Chandy-Lamport algorithm.

» The snapshot function is implemented as an update function in
vertices.

» The Snapshot update takes priority over all other update functions.
» Edge Consistency is used on all update functions.

if v was already snapshotted then
| Quit
Save D, // Save current vertex

// Save all edges connected to un-snapshotted vertices
foreach u € N[v] do

if uw was not snapshotted then
Save Dy, if edge u — v exists
Save D, if edge v — wu exists
Reschedule u for a Snapshot Update

// Loop over neighbors

Mark v as snapshotted

 AmirH Paybersh (SICS) LorgeScale Graph Processing e TR A G

INNSS———
GraphLab Summary

v

Asynchronous model

Vertex-centric

v

» Communication: distributed shared memory

v

Three consistency levels: full, edge-level, and vertex-level

INNSS———
GraphlLab Limitations

» Poor performance on Natural graphs.

Natural Graphs

» Graphs derived from natural phenomena.

» Skewed Power-Law degree distribution.

= d i
N

e

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 68 / 116

Natural Graphs Challenges

» Traditional graph-partitioning algorithms (edge-cut algorithms) per-
form poorly on Power-Law Graphs.

» Challenges of high-degree vertices.

cpu2 cpul

CA
5o
e

[7

AN

INNSS———
Proposed Solution

Vertex-Cut Partitioning J

R ——
Proposed Solution

Vertex-Cut Partitioning J

Edge-cut Vertex-cut

 AmiH Paybersh (SICS) | LrgeScale Graph Processing ey 1315, 200470/ 116

Edge-cut vs. Vertex-cut Partitioning

o]
= |o—
0{5/

Sade ol

Edge-cut vs. Vertex-cut Partitioning

O® ® V@
O ® IoRNOXO;
® ® ® ®

Edge-cut Vertex-cut

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 72 / 116

PowerGraph

INNSS———
PowerGraph

» Vertex-cut partitioning of graphs.

» Factorizes the GraphLab update function into the Gather, Apply and
Scatter phases (GAS).

Gather-Apply-Scatter Programming Model

» Gather

e Accumulate information about neighborhood
through a generalized sum.

Gather-Apply-Scatter Programming Model

» Gather

e Accumulate information about neighborhood
through a generalized sum.

» Apply
¢ Apply the accumulated value to center vertex.

Gather-Apply-Scatter Programming Model

» Gather

e Accumulate information about neighborhood
through a generalized sum.

» Apply
¢ Apply the accumulated value to center vertex.

» Scatter
e Update adjacent edges and vertices.

o
Data Model

» A directed graph that stores the program state, called data graph.

N
Execution Model (1/2)

» Vertex-centric programming: implementing the GASVertexProgram

interface (vertex-program for short).

» Similar to Comput in Pregel, and update function in GraphLab.

interface GASVertexProgram(u) {
// Run on gather_nbrs (u)
gather(D,, D, ,, D,) — Accum
sum (Accum left, Accum right) — Accum
apply (), Accum) — DI
// Run on scatter_nbrs (u)
scatter (D)™, D,_,,D,) — (D7, Accum)

May 13-15, 2014

77 / 116

Execution Model (2/2)

Amir H. Payberah (SICS)

Input: Center vertex u
if Cache Disabled then
// Basic Gather-Apply-Scatter Model
foreach neighbor v in gather_nbrs(u) do
L a,, + sum(a,,. gather(D,,. D,,_,. D,))
D, + apply(Dy. ay)

foreach neighbor v scatter _nbrs(u) do

| (Du—v) ¢ scatter(Dy. Dy—y. D)

else if Cachie Enabled then
// Faster GAS Model with Delta Caching
if cached accumulator a,, is empty then
foreach neighbor v in gather_nbrs(u) do
L Gy SUM(a,, gather(Dy,, Dy, Dy))

D, + apply(D,,. a,)

foreach neighbor v scatter nbrs(u) do

(Dy—y. Aa) + scatter(D,,, D,,_,,. D,)

if a, and Aa are not Empty then a, + sum(a,, Aa)
else a,, + Empty

Large-Scale Graph Processing May 13-15, 2014

78 / 116

Execution Model (2/2)

Input: Center vertex u
if Cache Disabled then
// Basic Gather-Apply-Scatter Model
foreach neighbor v in gather_nbrs(u) do
L a,, + sum(a,,. gather(D,,. D,,_,. D,))
D, + apply(Dy. ay)
foreach neighbor v scatter _nbrs(u) do

| (Du—v) ¢ scatter(Dy. Dy—y. D)

if Cache Enabled then

if a, and Aa are not Empty then a,

sum(a,, Aa)
else a,, + Empty

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014

78 / 116

BN
Example: PageRank

JENbrs(i)

RIi1=015+ Y w;RIj J

I
Scheduling (1/5)

Input: Data Graph G = (V, E, D)
Input: Initial task set 7 = {(f,v1), (g. v2), ...}
while 7 is not Empty do
1 (f.v) < RemoveNext (T)
2 (7—,7 Sﬂ) A f(U,Sru)
3 T+ TUuT
Output: Modified Data Graph G = (V. E, D')

» PowerGraph inherits the dynamic scheduling of GraphLab.

I
Scheduling (2/5)

Input: Data Graph G = (V. E. D)
Input: Initial task set 7 = {(f.v1), (g, v2)., ...}
while T is not Empty do
L i i 1 (f.v) + RemoveNext (T)
» Initially all vertices are active. 2| (T80« f(0.8)
3| T«TuT
Output: Modified Data Graph & = (V. £, D’)

I
Scheduling (2/5)

Input: Data Graph G = (V. E. D)
Input: Initial task set 7 = {(f,v1). (g.v2). ...}
while T is not Empty do

(f.v) + RemoveNext (T)

1
» Initially all vertices are active. 2 L (T'.5,) « [(0.8,)
3 T« TuT

Output: Modified Data Graph & = (V. £, D’)

» PowerGraph executes the vertex-program on the active vertices until
none remain.

I
Scheduling (2/5)

Input: Data Graph G = (V. E. D)
Input: Initial task set 7 = {(f,v1). (g.v2). ...}
while T is not Empty do

1 \; (f.v) + RemoveNext (T)

» Initially all vertices are active. 2| (T80« f(0.8)
3 T« TuT

Output: Modified Data Graph & = (V. £, D’)

» PowerGraph executes the vertex-program on the active vertices until
none remain.

» The order of executing activated vertices is up to the PowerGraph
execution engine.

-
Scheduling (2/5)

Input: Data Graph G = (V, £, D)
Input: Initial task set 7 = {(f.v1), (g, v2)., ...}
while T is not Empty do

1 \; (f.v) + RemoveNext (T)

» Initially all vertices are active. 2| (T80« f(0.8)
3 T« TuT
Output: Modified Data Graph & = (V. £, D’)

» PowerGraph executes the vertex-program on the active vertices until
none remain.

» The order of executing activated vertices is up to the PowerGraph
execution engine.

» Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

 AmirH Paybersh (SICS) LrgeScale Graph Processing ey 1515, 200481/ 116

-
Scheduling (2/5)

Input: Data Graph G = (V, £, D)
Input: Initial task set 7 = {(f.v1), (g, v2)., ...}
while 7 is not Empty do

1 \; (f.v) + RemoveNext (T)

» Initially all vertices are active. 2| (T80« f(0.8)
3 T« TuT

Output: Modified Data Graph & = (V. £, D’)
» PowerGraph executes the vertex-program on the active vertices until
none remain.

» The order of executing activated vertices is up to the PowerGraph
execution engine.

» Once a vertex-program completes the scatter phase it becomes in-
active until it is reactivated.

» Vertices can activate themselves and neighboring vertices.

 AmirH Paybersh (SICS) LrgeScale Graph Processing ey 1315, 2004 81/ 116

I
Scheduling (3/5)

» PowerGraph can execute both synchronously and asynchronously.

e Bulk synchronous execution

e Asynchronous execution

ESSS———
Scheduling - Bulk Synchronous Execution (4/5)

» Similar to Pregel.

ESSS———
Scheduling - Bulk Synchronous Execution (4/5)

» Similar to Pregel.

» Minor-step: executing the gather, apply, and scatter in order.
¢ Runs synchronously on all active vertices with a barrier at the end.

ESSS———
Scheduling - Bulk Synchronous Execution (4/5)

» Similar to Pregel.

» Minor-step: executing the gather, apply, and scatter in order.
¢ Runs synchronously on all active vertices with a barrier at the end.

» Super-step: a complete series of GAS minor-steps.

N
Scheduling - Bulk Synchronous Execution (4/5)

v

Similar to Pregel.

\{

Minor-step: executing the gather, apply, and scatter in order.
¢ Runs synchronously on all active vertices with a barrier at the end.

v

Super-step: a complete series of GAS minor-steps.

v

Changes made to the vertex/edge data are committed at the end of
each minor-step and are visible in the subsequent minor-steps.

INSSS———
Scheduling - Asynchronous Execution (5/5)

» Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

e Visible to subsequent computation on neighboring vertices.

N
Scheduling - Asynchronous Execution (5/5)

» Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

e Visible to subsequent computation on neighboring vertices.

» Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

-
Scheduling - Asynchronous Execution (5/5)

» Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

 Visible to subsequent computation on neighboring vertices.

» Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

e Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

 AmirH Pagbersh (SICS) LrgeScale Graph Processing ey 1315, 2004 84/ 116

-
Scheduling - Asynchronous Execution (5/5)

» Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

 Visible to subsequent computation on neighboring vertices.

» Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

e Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

e GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

 AmiH Paybersh (SICS) | LrgeScale Graph Processing ey 1515, 200484/ 116

-
Scheduling - Asynchronous Execution (5/5)

» Changes made to the vertex/edge data during the apply and scatter
functions are immediately committed to the graph.

 Visible to subsequent computation on neighboring vertices.

» Serializability: prevents adjacent vertex-programs from running con-
currently using a fine-grained locking protocol.

e Dining philosophers problem, where each vertex is a philosopher, and
each edge is a fork.

e GraphLab implements Dijkstras solution, where forks are acquired
sequentially according to a total ordering.

e PowerGraph implements Chandy-Misra solution, which acquires all
forks simultaneously.

 AmirH Paybersh (SICS) | LorgeScale Graph Processing ey 1515, 200484 /116

I,
Delta Caching (1/2)

» Changes in a few of its neighbors — triggering a vertex-program

» The gather operation is invoked on all neighbors: wasting compu-
tation cycles

BN
Delta Caching (1/2)

» Changes in a few of its neighbors — triggering a vertex-program

» The gather operation is invoked on all neighbors: wasting compu-
tation cycles

» Maintaining a cache of the accumulator a, from the previous gather
phase for each vertex.

» The scatter can return an additional Aa, which is added to the
cached accumulator a,.

Delta Caching (2/2)

Input: Center vertex u
if Cache Disabled then
// Basic Gather-Apply-Scatter Model
foreach neighbor v in gather_nbrs(u) do
L a,, + sum(a,,. gather(D,,. D,,_,. D,))
D, + apply(Dy. ay)
foreach neighbor v scatter _nbrs(u) do

| (Du—v) ¢ scatter(Dy. Dy—y. D)

if Cache Enabled then

if a, and Aa are not Empty then a,

sum(a,, Aa)
else a,, + Empty

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014

86 / 116

Delta Caching (2/2)

Amir H. Payberah (SICS)

Input: Center vertex u
if Cache Disabled then
// Basic Gather-Apply-Scatter Model
foreach neighbor v in gather_nbrs(u) do
L a,, + sum(a,,. gather(D,,. D,,_,. D,))
D, + apply(Dy. ay)

foreach neighbor v scatter _nbrs(u) do

| (Du—v) ¢ scatter(Dy. Dy—y. D)

else if Cachie Enabled then
// Faster GAS Model with Delta Caching
if cached accumulator a,, is empty then
foreach neighbor v in gather_nbrs(u) do
L Gy SUM(a,, gather(Dy,, Dy, Dy))

D, + apply(D,,. a,)

foreach neighbor v scatter nbrs(u) do

(Dy—y. Aa) + scatter(D,,, D,,_,,. D,)

if a, and Aa are not Empty then a, + sum(a,, Aa)
else a,, + Empty

Large-Scale Graph Processing May 13-15, 2014

86 / 116

Example: PageRank (Delta-Caching)

PowerGraph_PageRank (i) :
Gather(j -> i):
return wji * R[j]

sum(a, b):
return a + b

// total: Gather and sum
Apply(i, total):
new = 0.15 + total
R[i].delta = new - R[il
R[i] = new

Scatter(i -> j):
if R[i] changed then activate(j)
return wij * R[i].delta

R[] =015+ Y w;R[]
JENbrs(i)

J

Amir H. Payberah (SICS) Large-Scale Graph Processing

May 13-15, 2014

87 / 116

BN
Graph Partitioning

» Vertex-cut partitioning.

» Evenly assign edges to machines.
e Minimize machines spanned by each vertex.

» Two proposed solutions:

¢ Random edge placement.
o Greedy edge placement.

L
Random Vertex-Cuts

» Randomly assign edges to machines.

» Completely parallel and easy to distribute.

» High replication factor.

I,
Greedy Vertex-Cuts (1/2)

» A(v): set of machines that contain adjacent edges of v.

I,
Greedy Vertex-Cuts (1/2)

» A(v): set of machines that contain adjacent edges of v.

» Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

|
Greedy Vertex-Cuts (1/2)

» A(v): set of machines that contain adjacent edges of v.

» Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

» Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

 AmirH Paybersh (SICS) | LrgeScale Graph Processing o TS 0T 57 6

|
Greedy Vertex-Cuts (1/2)

» A(v): set of machines that contain adjacent edges of v.

» Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

» Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

» Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

 AmirH Paybersh (SICS) | LrgeScale Graph Processing e TR A €D f

|
Greedy Vertex-Cuts (1/2)

» A(v): set of machines that contain adjacent edges of v.

» Case 1: If A(u) and A(v) intersect, then the edge should be assigned
to a machine in the intersection.

» Case 2: If A(u) and A(v) are not empty and do not intersect, then
the edge should be assigned to one of the machines from the vertex
with the most unassigned edges.

» Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

» Case 4: If neither vertex has been assigned, then assign the edge to
the least loaded machine.

 AmiH Paybersh (SICS) | LrgeScale Graph Processing ey B A €D f

I,
Greedy Vertex-Cuts (2/2)

» Coordinated edge placement:

¢ Requires coordination to place each edge
e Slower, but higher quality cuts

» Oblivious edge placement:

e Approx. greedy objective without coordination
e Faster, but lower quality cuts

INNSS———
PowerGraph Summary

» Gather-Apply-Scatter programming model
» Synchronous and Asynchronous models

» Vertex-cut graph partitioning

» Any limitations?

INNSS———
Data-Parallel vs. Graph-Parallel Computation

» Graph-parallel computation: restricting the types of computation to
achieve performance.

-
Data-Parallel vs. Graph-Parallel Computation

» Graph-parallel computation: restricting the types of computation to
achieve performance.

» But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Preprocessing Compute Post Proc.

@. @ Grapkfét;\ ﬂ?«

i o

Compute

{ Initil | Subgraph | PageRank
! Graph 4

Large-Scale Graph Processing May 13-15, 2014 94 / 116

Data-Parallel and Graph-Parallel Pipeline

- --E

Graphlab - Il
HDFS

» Moving between table and graph views of the same physical data.

» Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 95 / 116

INSS———
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

Mahout/Hadoop 1B40
Naive Spark 54
Giraph 207
GraphX 68
GraphlLab | 22

200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

N
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

Mahout/Hadoop 1B40
Naive Spark 54
Giraph 207
GraphX 68
Graphlab | 22

200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

Raw Wikipedia Hyperlinks PageRank Top 20 Pages

& =
Spark Preprocess ompute Spark Post.

Spark

Giraph + Spark
GraphX
Graphlab + Spark

0 200 400 600 80O 1000 1200 1400 1600
Total Runtime (in Seconds)

May 13-15, 2014 96 / 116

=HGraph X

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 97 / 116

GraphX

» New API that blurs the distinction between Tables and Graphs.
» New system that unifies Data-Parallel and Graph-Parallel systems.

» It is implemented on top of Spark.

I
Unifying Data-Parallel and Graph-Parallel Analytics

» Tables and Graphs are composable views of the same physical data.

» Each view has its own operators that exploit the semantics of the
view to achieve efficient execution.

Table View GraphX Unified Graph View
Representation

Data Model

» Property Graph: represented using two Spark RDDs:

e Edge collection: VertexRDD
e Vertex collection: EdgeRDD

Property Graph Vertex Table

Edge Table

Primitive Data Types

// Vertex collection
class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection

class EdgeRDD[ED] extends RDD[Edge [ED]]

case class Edge[ED] (srcId: VertexId = 0, dstId: VertexId = O,
attr: ED = null.asInstanceOf [ED])

// Edge Triple
class EdgeTriplet[VD, ED] extends Edge[ED]

» EdgeTriplet represents an edge along with the vertex attributes of
its neighboring vertices.

Vertices: % Edges: Triplets:

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 101 / 116

N
Example (1/3)

Property Graph Vertex Table
o TR
e"'—." 3 (rxin, student)
franklin,
prof. 7 (jgonzal, postdoc)
S (franklin, professor)
Q 2 (istoica, professor)
2 Edge Table
Srcld Dstld Property (E)
3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7 Pl

May 13-15, 2014

102 / 116

Example (2/3)

val sc: SparkContext

// Create an RDD for the vertices
val users: VertexRDD[(String, String)] = sc.parallelize(
Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: EdgeRDD[String] = sc.parallelize(
Array(Edge (3L, 7L, "collab"), Edge (5L, 3L, "advisor"),
Edge (2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =
Graph (users, relationships, defaultUser)

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 103 / 116

Example (3/3)

// Constructed from above
val userGraph: Graph[(String, String), String]

// Count all users which are postdocs
userGraph.vertices.filter((id, (name, pos)) => pos == "postdoc").count

// Count all the edges where src > dst
userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " +
triplet.attr + " of " + triplet.dstAttr._1)

// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

facts.collect.foreach(println(_))

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 104 / 116

BN
Property Operators (1/2)

» They yield new graphs with the vertex or edge properties modified
by the map function.

» The graph structure is unaffected.

BN
Property Operators (2/2)

» Both are logically equivalent, but the second one does not preserve

the structural indices and would not benefit from the GraphX system
optimizations.

Map Reduce Triplets

» Map-Reduce for each vertex

mapF((-o-EY) =
mapF((Ree-(Q) =

reducefF((8, B9) = @

-
Map Reduce Triplets

» Map-Reduce for each vertex

mapF((Ree-@) =
mapF((Ree(Q) =

reducefF((8, B9) = @

// what is the age of the oldest follower for each user?
val oldestFollowerAge = graph.mapReduceTriplets(

e => (e.dstAttr, e.srcAttr), // Map

(a, b) => max(a, b) // Reduce
) .vertices

STl Meyi3is 2014 107/ 116

INNSS———
Structural Operators

INNSS———
Structural Operators Example

INNSS———
Join Operators

» To join data from external collections (RDDs) with graphs.

Graph Builders

INNSS———
GraphX and Spark

v

GraphX is implemented on top of Spark

» In-memory caching

v

Lineage-based fault tolerance

v

Programmable partitioning

Distributed Graph Representation (1/2)

» Representing graphs using two RDDs: edge-collection and vertex-
collection

» Vertex-cut partitioning (like PowerGraph)

“roor| | e || e
(RDD)

e oo

e oe

\ 2D Vertex Cut Heuristic e o @

v e (e

00

e 60

Part.2 e @ﬁ-@

Amir H. Payberah (SICS) Large-Scale Graph Processing May 13-15, 2014 113 / 116

|
Distributed Graph Representation (2/2)

» Each vertex partition contains a bitmask and routing table.

» Routing table: a logical map from a vertex id to the set of edge
partitions that contains adjacent edges.

» Bitmask: enables the set intersection and filtering.
 Vertices bitmasks are updated after each operation (e.g., mapRe-
duceTriplets).
e Vertices hidden by the bitmask do not participate in the graph oper-
ations.

e STl Meyi3is 2014 114116

L
Summary

v

Pregel

e Synchronous model: super-step
* Message passing

\{

GraphlLab

e Asynchronous model: distributed shared-memory
» Edge-cut partitioning

v

PowerGraph

* GAS programming model
e Vertex-cut partitioning

v

GraphX

» Unifying data-parallel and graph-parallel analytics
* Vertex-cut partitioning

Questions?

Some pictures were derived from the Spark web site
(http://spark.apache.org/).

