
Distributed Filesystems

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
April 8, 2014

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32



What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 2 / 32



What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 2 / 32



Distributed Filesystems

I When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 3 / 32



Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 4 / 32



HDFS

I Hadoop Distributed FileSystem

I Appears as a single disk

I Runs on top of a native filesystem, e.g., ext3

I Fault tolerant: can handle disk crashes, machine crashes, ...

I Based on Google’s filesystem GFS

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 5 / 32



HDFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 6 / 32



HDFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.
• HBase addresses this issue.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 7 / 32



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 8 / 32



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 8 / 32



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 8 / 32



HDFS Daemons (2/2)

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 9 / 32



Files and Blocks (1/3)

I Files are split into blocks.

I Blocks
• Single unit of storage: a contiguous piece of information on a disk.
• Transparent to user.
• Managed by Namenode, stored by Datanode.
• Blocks are traditionally either 64MB or 128MB: default is 64MB.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 10 / 32



Files and Blocks (2/3)

I Why is a block in HDFS so large?

• To minimize the cost of seeks.

I Time to read a block = seek time + transfer time

I Keeping the ratio seektime
transfertime small: we are reading data from the

disk almost as fast as the physical limit imposed by the disk.

I Example: if seek time is 10ms and the transfer rate is 100MB/s, to
make the seek time 1% of the transfer time, we need to make the
block size around 100MB.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 11 / 32



Files and Blocks (2/3)

I Why is a block in HDFS so large?
• To minimize the cost of seeks.

I Time to read a block = seek time + transfer time

I Keeping the ratio seektime
transfertime small: we are reading data from the

disk almost as fast as the physical limit imposed by the disk.

I Example: if seek time is 10ms and the transfer rate is 100MB/s, to
make the seek time 1% of the transfer time, we need to make the
block size around 100MB.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 11 / 32



Files and Blocks (3/3)

I Same block is replicated on multiple machines: default is 3
• Replica placements are rack aware.
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on the different rack.

I Namenode determines replica placement.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 12 / 32



HDFS Client

I Client interacts with Namenode
• To update the Namenode namespace.
• To retrieve block locations for writing and reading.

I Client interacts directly with Datanode
• To read and write data.

I Namenode does not directly write or read data.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 13 / 32



HDFS Write

I 1. Create a new file in the Namenode’s Namespace; calculate block
topology.

I 2, 3, 4. Stream data to the first, second and third node.

I 5, 6, 7. Success/failure acknowledgment.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 14 / 32



HDFS Read

I 1. Retrieve block locations.

I 2, 3. Read blocks to re-assemble the file.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 15 / 32



Namenode Memory Concerns

I For fast access Namenode keeps all block metadata in-memory.
• Will work well for clusters of 100 machines.

I Changing block size will affect how much space a cluster can host.
• 64MB to 128MB will reduce the number of blocks and increase the

space that Namenode can support.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 16 / 32



HDFS Federation

I Hadoop 2+

I Each Namenode will host part of the blocks.

I A Block Pool is a set of blocks that belong to a single namespace.

I Support for 1000+ machine clusters.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 17 / 32



Namenode Fault-Tolerance (1/2)

I Namenode is a single point of failure.

I If Namenode crashes then cluster is down.

I Secondary Namenode periodically merges the namespace image and
log and a persistent record of it written to disk (checkpointing).

I But, the state of the secondary Namenode lags that of the primary:
does not provide high-availability of the filesystem

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 18 / 32



Namenode Fault-Tolerance (1/2)

I Namenode is a single point of failure.

I If Namenode crashes then cluster is down.

I Secondary Namenode periodically merges the namespace image and
log and a persistent record of it written to disk (checkpointing).

I But, the state of the secondary Namenode lags that of the primary:
does not provide high-availability of the filesystem

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 18 / 32



Namenode Fault-Tolerance (2/2)

I High availability Namenode.
• Hadoop 2+
• Active standby is always running and takes over in case main Namen-

ode fails.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 19 / 32



Summary

I Good for large files.

I Streaming access rather than random access.

I Daemons: Namenode, Secondary Namenode, and Datanode

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 20 / 32



HDFS Installation and Shell

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 21 / 32



HDFS Installation

I Three options

• Local (Standalone) Mode

• Pseudo-Distributed Mode

• Fully-Distributed Mode

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 22 / 32



Installation - Local

I Default configuration after the download.

I Executes as a single Java process.

I Works directly with local filesystem.

I Useful for debugging.

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 23 / 32



Installation - Pseudo-Distributed (1/6)

I Still runs on a single node.

I Each daemon runs in its own Java process.
• Namenode
• Secondary Namenode
• Datanode

I Configuration files:
• hadoop-env.sh
• core-site.xml
• hdfs-site.xml

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 24 / 32



Installation - Pseudo-Distributed (2/6)

I Specify environment variables in hadoop-env.sh

export JAVA_HOME=/opt/jdk1.7.0_51

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 25 / 32



Installation - Pseudo-Distributed (3/6)

I Specify location of Namenode in core-site.sh

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:8020</value>

<description>NameNode URI</description>

</property>

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 26 / 32



Installation - Pseudo-Distributed (4/6)

I Configurations of Namenode in hdfs-site.sh

I Path on the local filesystem where the Namenode stores the names-
pace and transaction logs persistently.

<property>

<name>dfs.namenode.name.dir</name>

<value>/opt/hadoop-2.2.0/hdfs/namenode</value>

<description>description...</description>

</property>

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 27 / 32



Installation - Pseudo-Distributed (5/6)

I Configurations of Secondary Namenode in hdfs-site.sh

I Path on the local filesystem where the Secondary Namenode stores
the temporary images to merge.

<property>

<name>dfs.namenode.checkpoint.dir</name>

<value>/opt/hadoop-2.2.0/hdfs/secondary</value>

<description>description...</description>

</property>

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 28 / 32



Installation - Pseudo-Distributed (6/6)

I Configurations of Datanode in hdfs-site.sh

I Comma separated list of paths on the local filesystem of a Datanode
where it should store its blocks.

<property>

<name>dfs.datanode.data.dir</name>

<value>/opt/hadoop-2.2.0/hdfs/datanode</value>

<description>description...</description>

</property>

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 29 / 32



Start HDFS and Test

I Format the Namenode directory (do this only once, the first time).

hdfs namenode -format

I Start the Namenode, Secondary namenode and Datanode daemons.

hadoop-daemon.sh start namenode

hadoop-daemon.sh start secondarynamenode

hadoop-daemon.sh start datanode

jps

I Verify the deamons are running:
• Namenode: http://localhost:50070
• Secondary Namenode: http://localhost:50090
• Datanode: http://localhost:50075

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 30 / 32



Start HDFS and Test

I Format the Namenode directory (do this only once, the first time).

hdfs namenode -format

I Start the Namenode, Secondary namenode and Datanode daemons.

hadoop-daemon.sh start namenode

hadoop-daemon.sh start secondarynamenode

hadoop-daemon.sh start datanode

jps

I Verify the deamons are running:
• Namenode: http://localhost:50070
• Secondary Namenode: http://localhost:50090
• Datanode: http://localhost:50075

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 30 / 32



Start HDFS and Test

I Format the Namenode directory (do this only once, the first time).

hdfs namenode -format

I Start the Namenode, Secondary namenode and Datanode daemons.

hadoop-daemon.sh start namenode

hadoop-daemon.sh start secondarynamenode

hadoop-daemon.sh start datanode

jps

I Verify the deamons are running:
• Namenode: http://localhost:50070
• Secondary Namenode: http://localhost:50090
• Datanode: http://localhost:50075

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 30 / 32



HDFS Shell

hdfs dfs -<command> -<option> <path>

hdfs dfs -ls /

hdfs dfs -ls file:///home/big

hdfs dfs -ls hdfs://localhost/

hdfs dfs -cat /dir/file.txt

hdfs dfs -cp /dir/file1 /otherDir/file2

hdfs dfs -mv /dir/file1 /dir2/file2

hdfs dfs -mkdir /newDir

hdfs dfs -put file.txt /dir/file.txt # can also use copyFromLocal

hdfs dfs -get /dir/file.txt file.txt # can also use copyToLocal

hdfs dfs -rm /dir/fileToDelete

hdfs dfs -help

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 31 / 32



HDFS Shell

hdfs dfs -<command> -<option> <path>

hdfs dfs -ls /

hdfs dfs -ls file:///home/big

hdfs dfs -ls hdfs://localhost/

hdfs dfs -cat /dir/file.txt

hdfs dfs -cp /dir/file1 /otherDir/file2

hdfs dfs -mv /dir/file1 /dir2/file2

hdfs dfs -mkdir /newDir

hdfs dfs -put file.txt /dir/file.txt # can also use copyFromLocal

hdfs dfs -get /dir/file.txt file.txt # can also use copyToLocal

hdfs dfs -rm /dir/fileToDelete

hdfs dfs -help

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 31 / 32



Questions?

Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 32 / 32


