Hive and Shark
SQL and Rich Analytics at Scale

Amir H. Payberah

Swedish Institute of Computer Science

amir@sics.se
May 6, 2014

SWEDISH
T R

L
Motivation

» MapReduce is hard to program.

» No schema, lack of query languages, e.g., SQL.

L
Solution

» Adding tables, columns, partitions, and a subset of SQL to unstruc-
tured data.

Hive

» A system for managing and querying structured data built on top
of Hadoop.

Hive

» A system for managing and querying structured data built on top
of Hadoop.

» Converts a query to a series of MapReduce phases.

Hive

» A system for managing and querying structured data built on top
of Hadoop.

» Converts a query to a series of MapReduce phases.

» Initially developed by Facebook. n

Hive

v

A system for managing and querying structured data built on top
of Hadoop.

v

Converts a query to a series of MapReduce phases.

Initially developed by Facebook. n

Focuses on scalability and extensibility.

v

v

May 6, 2014 4 /45

INNSS———
Scalability

» Massive scale out and fault tolerance capabilities on commodity
hardware.

» Can handle petabytes of data.

BN
Extensibility

» Data types: primitive types and complex types.

» User Defined Functions (UDF).

v

Serializer/Deserializer: text, binary, JSON ...

v

Storage: HDFS, Hbase, S3 ...

R
RDBMS vs. Hive

Language

Update Capabilities

OLAP
OoLTP

Latency

Indexes

Data size

Any number of indexes

No indexes, data is always scanned (in parallel)

TBs

PBs

Hive
‘ SQL HiveQL
‘ INSERT, UPDATE, and DELETE INSERT OVERWRITE; no UPDATE or DELETE
‘ Yes Yes
‘ Yes No
‘ Sub-second Minutes or more
|
|

Hive and Shark

ORACLE"

PostgreSQL.
Mysals

¥ TERADATA

s
SQLServer

May 6, 2014

7/45

R
RDBMS vs. Hive

Hive ‘

RDBMS

Language SQL HiveQL
Update Capabilities INSERT, UPDATE, and DELETE INSERT OVERWRITE; no UPDATE or DELETE

OLAP Yes Yes
OLTP Yes No
Latency Sub-second Minutes or more

No indexes, data is always scanned (in parallel)

PBs

Indexes Any number of indexes

Data size TBs

» Online Analytical Processing (OLAP): allows users to analyze
database information from multiple database systems at one time.

» Online Transaction Processing (OLTP): facilitates and manages
transaction-oriented applications.

 AmirH, Pagbersh (SICS) Hive and Shark e G 45

o
Hive Data Model

» Re-used from RDBMS:

e Database: Set of Tables.

e Table: Set of Rows that have the same schema (same columns).
¢ Row: A single record; a set of columns.

e Column: provides value and type for a single value.

Table

/—H
AEEEEE EEEEEE
HEEEEEE EEEEEN-—

— _
~

Database

Column

Hive Data Model - Table

» Analogous to tables in relational databases.
» Each table has a corresponding HDFS directory.

» For example data for table customer is in the directory
/db/customer.

o
Hive Data Model - Partition

» A coarse-grained partitioning of a table based on the value of a
column, such as a date.

» Faster queries on slices of the data.

» If customer is partitioned on column country, then data with a
particular country value SE, will be stored in files within the directory
/db/customer/country=SE.

o
Hive Data Model - Bucket

» Data in each partition may in turn be divided into buckets based on
the hash of a column in the table.

» For more efficient queries.

» If customer country partition is subdivided further into buckets,
based on username (hashed on username), the data for each bucket
will be stored within the directories:
/db/customer/country=SE/000000_0

/db/customer/country=SE/000000_5

BN
Column Data Types

» Primitive types
e integers, float, strings, dates and booleans

» Nestable collections
e array and map

» User-defined types
e Users can also define their own types programmatically

INNSS———
Hive Operations

» HiveQL: SQL-like query languages

INNSS———
Hive Operations

» HiveQL: SQL-like query languages

» DDL operations (Data Definition Language)
e Create, Alter, Drop

INNSS———
Hive Operations

» HiveQL: SQL-like query languages

» DDL operations (Data Definition Language)
e Create, Alter, Drop

» DML operations (Data Manipulation Language)

» Load and Insert (overwrite)
e Does not support updating and deleting

INNSS———
Hive Operations

v

HiveQL: SQL-like query languages

v

DDL operations (Data Definition Language)
e Create, Alter, Drop

v

DML operations (Data Manipulation Language)

» Load and Insert (overwrite)
e Does not support updating and deleting

v

SQL operations
o Select, Filter, Join, Groupby

DDL Operations (1/3)

» Create tables

B,
DDL Operations (1/3)

» Create tables

» Create tables with partitions

B,
DDL Operations (2/3)

» Create tables with buckets

B,
DDL Operations (2/3)

» Create tables with buckets

» Browsing through tables

B,
DDL Operations (3/3)

» Altering tables

B,
DDL Operations (3/3)

» Altering tables

» Dropping tables

INNSS———
DML Operations

» Loading data from flat files.

INNSS———
DML Operations

» Loading data from flat files.

» Store the query results in tables

BN,
SQL Operations (1/3)

» Selects and filters

BN,
SQL Operations (2/3)

» Aggregations and groups

BN,
SQL Operations (3/3)

» Join

User-Defined Function (UDF)

o
Executing SQL Questions

» Processes HiveQL statements and generates the execution plan
through three-phase processes.

@ Query parsing: transforms a query string to a parse tree representa-
tion.

@ Logical plan generation: converts the internal query representation
to a logical plan, and optimizes it.

@ Physical plan generation: split the optimized logical plan into multiple
map/reduce and HDFS tasks.

B
Optimization (1/2)

» Column pruning
e Projecting out the needed columns.

» Predicate pushdown

e Filtering rows early in the processing, by pushing down predicates to
the scan (if possible).

» Partition pruning
e Pruning out files of partitions that do not satisfy the predicate.

B
Optimization (2/2)

» Map-side joins
e The small tables are replicated in all the mappers and joined with
other tables.
¢ No reducer needed.

» Join reordering
e Only materialized and kept small tables in memory.
e This ensures that the join operation does not exceed memory limits
on the reducer side.

Hive Components (1/8)

Command-line shell Thrift/JDBC
Driver
Physical Plan
Quer
Metastore SQL Parser Optimi;,er SerDes, UDFs
Execution
MapReduce

RDBMS (MySQL)

Hadoop Storage (HDFS, HBase)

May 6, 2014

25 / 45

-
Hive Components (2/8)

» External interfaces

e User interfaces, e.g., CLI and web Ul
 Application programming interfaces, e.g., JDBC and ODBC

e Thrift, a framework for cross-language services.

Command-line shell || Thrift//DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
| MapReduce

| RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)

May 6, 2014

26 / 45

L
Hive Components (3/8)

» Driver

» Manages the life cycle of a HiveQL statement during compilation,
optimization and execution.

Command-line shell || Thrift//DBC
Driver
Physical Plan
Quei
Metastore SQL Parser Opﬁma’er SerDes, UDFs
Execution

| MapReduce |
| RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

L
Hive Components (4/8)

» Compiler (Parser/Query Optimizer)
e Translates the HiveQL statement into a a logical plan, and

optimizes It.
Command-line shell || Thrift//DBC
Driver
Physical Plan
Quei
Metastore SQL Parser Opﬁma’er SerDes, UDFs
Execution
| MapReduce |
| RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

L
Hive Components (5/8)

» Physical plan
» Transforms the logical plan into a DAG of Map/Reduce jobs.

Command-line shell || Thrift//DBC |
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution

| MapReduce |
RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

L
Hive Components (6/8)

» Execution engine

e The driver submits the individual mapreduce jobs from the DAG to
the execution engine in a topological order.

Command-line shell || Thrift//DBC
Driver
Physical Plan
Quei
Metastore SQL Parser Opﬁma’er SerDes, UDFs
Execution

| MapReduce |
| RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

L
Hive Components (7/8)

» SerDe

« Serializer/Deserializer allows Hive to read and write table rows in
any custom format.

| Command-line shell || Thrift//DBC
Driver
Physical Plan
Quei
Metastore SQL Parser Opﬁma’er SerDes, UDFs
Execution
| MapReduce |
| RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

-
Hive Components (8/8)

» Metastore
e The system catalog.
» Contains metadata about the tables.
e Metadata is specified during table creation and reused every time the
table is referenced in HiveQL.
e Metadatas are stored on either a traditional relational database, e.g.,
MySQL, or file system and not HDFS.

| Command-line shell || Thrift//DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
| MapReduce |
| RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

~ AmirH. Payberah (SICS) Hiveand Shark May 6, 2014 32 /45

Hive on Spark

SHARK

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 33 /45

INNSS———
Spark RDD - Reminder

» RDDs are immutable, partitioned collections that can be created
through various transformations, e.g., map, groupByKey, join.

Executing SQL over Spark RDDs

» Shark runs SQL queries over Spark using three-step process:

@ Query parsing: Shark uses Hive query compiler to parse the query
and generate a parse tree.

@ Logical plan generation: the tree is turned into a logical plan and
basic logical optimization is applied.

@ Physical plan generation: Shark applies additional optimization and
creates a physical plan consisting of transformations on RDDs.

Hive Components

Command-line shell Thrift//DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
MapReduce

RDBMS (MySQL)

Hadoop Storage (HDFS, HBase)

May 6, 2014

36 / 45

INNSS———
Shark Components

Command-line shell Thrift//DBC

Driver

Metastore SQL Parser SerDes, UDFs

RDBMS (MySQL) Hadoop Storage (HDFS, HBase)

INNSS———
Shark and Spark

» Shark extended RDD execution model:

 Partial DAG Execution (PDE): to re-optimize a running query after
running the first few stages of its task DAG.

¢ In-memory columnar storage and compression: to process relational
data efficiently.

« Control over data partitioning.

Partial DAG Execution (1/2)

» How to optimize the following query?

N
Partial DAG Execution (1/2)

» How to optimize the following query?

SELECT * FROM tablel a JOIN table2 b ON (a.key = b.key)
WHERE my_crazy_udf(b.fieldl, b.field2) = true;

» It can not use cost-based optimization techniques that rely on ac-
curate a priori data statistics.

» They require dynamic approaches to query optimization.

» Partial DAG Execution (PDE): dynamic alteration of query plans
based on data statistics collected at run-time.

~ AmirH. Payberah (SICS) Hiveand Shark May 6, 2014 39/ 45

B
Partial DAG Execution (2/2)

» The workers gather customizable statistics at global and per-
partition granularities at run-time.

» Each worker sends the collected statistics to the master.

» The master aggregates the statistics and alters the query plan based
on such statistics.

Columnar Memory Store

» Simply caching Hive records as JVM objects is inefficient.

» 12 to 16 bytes of overhead per object in JVM implementation:

e e.g., storing a 270MB table as JVM objects uses approximately 971
MB of memory.

» Shark employs column-oriented storage using arrays of primitive ob-
jects.

1 John 4.1 3

p) mike | 3.5 john | mike | sally

3 sally 6.4 4.1 3.5 6.4

Row Storage Column Storage

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 41/ 45

BN
Data Partitioning

» Shark allows co-partitioning two tables, which are frequently joined
together, on a common key for faster joins in subsequent queries.

B
Shark /Spark Integration

» Shark provides a simple API for programmers to convert results from
SQL queries into a special type of RDDs: sql2rdd.

INNSS———
Summary

» Operators: DDL, DML, SQL
» Hive architecture vs. Shark architecture

» Add advance features to Spark, e.g., PDE, columnar memory store

Questions?

