
Hive and Shark
SQL and Rich Analytics at Scale

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
May 6, 2014

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 1 / 45



Motivation

I MapReduce is hard to program.

I No schema, lack of query languages, e.g., SQL.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 2 / 45



Solution

I Adding tables, columns, partitions, and a subset of SQL to unstruc-
tured data.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 3 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 4 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 4 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 4 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 4 / 45



Scalability

I Massive scale out and fault tolerance capabilities on commodity
hardware.

I Can handle petabytes of data.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 5 / 45



Extensibility

I Data types: primitive types and complex types.

I User Defined Functions (UDF).

I Serializer/Deserializer: text, binary, JSON ...

I Storage: HDFS, Hbase, S3 ...

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 6 / 45



RDBMS vs. Hive

RDBMS Hive

Language SQL HiveQL

Update Capabilities INSERT, UPDATE, and DELETE INSERT OVERWRITE; no UPDATE or DELETE

OLAP Yes Yes

OLTP Yes No

Latency Sub-second Minutes or more

Indexes Any number of indexes No indexes, data is always scanned (in parallel)

Data size TBs PBs

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 7 / 45



RDBMS vs. Hive

RDBMS Hive

Language SQL HiveQL

Update Capabilities INSERT, UPDATE, and DELETE INSERT OVERWRITE; no UPDATE or DELETE

OLAP Yes Yes

OLTP Yes No

Latency Sub-second Minutes or more

Indexes Any number of indexes No indexes, data is always scanned (in parallel)

Data size TBs PBs

I Online Analytical Processing (OLAP): allows users to analyze
database information from multiple database systems at one time.

I Online Transaction Processing (OLTP): facilitates and manages
transaction-oriented applications.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 7 / 45



Hive Data Model

I Re-used from RDBMS:
• Database: Set of Tables.
• Table: Set of Rows that have the same schema (same columns).
• Row: A single record; a set of columns.
• Column: provides value and type for a single value.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 8 / 45



Hive Data Model - Table

I Analogous to tables in relational databases.

I Each table has a corresponding HDFS directory.

I For example data for table customer is in the directory
/db/customer.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 9 / 45



Hive Data Model - Partition

I A coarse-grained partitioning of a table based on the value of a
column, such as a date.

I Faster queries on slices of the data.

I If customer is partitioned on column country, then data with a
particular country value SE, will be stored in files within the directory
/db/customer/country=SE.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 10 / 45



Hive Data Model - Bucket

I Data in each partition may in turn be divided into buckets based on
the hash of a column in the table.

I For more efficient queries.

I If customer country partition is subdivided further into buckets,
based on username (hashed on username), the data for each bucket
will be stored within the directories:
/db/customer/country=SE/000000 0

...

/db/customer/country=SE/000000 5

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 11 / 45



Column Data Types

I Primitive types
• integers, float, strings, dates and booleans

I Nestable collections
• array and map

I User-defined types
• Users can also define their own types programmatically

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 12 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I SQL operations
• Select, Filter, Join, Groupby

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 13 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I SQL operations
• Select, Filter, Join, Groupby

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 13 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I SQL operations
• Select, Filter, Join, Groupby

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 13 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I SQL operations
• Select, Filter, Join, Groupby

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 13 / 45



DDL Operations (1/3)

I Create tables

-- Creates a table with three columns

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

I Create tables with partitions

-- Creates a table with three columns and a partition column

-- /db/customer2/country=SE;

-- /db/customer2/country=IR;

CREATE TABLE customer2 (id INT, name STRING, address STRING)

PARTITION BY (country STRING)

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 14 / 45



DDL Operations (1/3)

I Create tables

-- Creates a table with three columns

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

I Create tables with partitions

-- Creates a table with three columns and a partition column

-- /db/customer2/country=SE;

-- /db/customer2/country=IR;

CREATE TABLE customer2 (id INT, name STRING, address STRING)

PARTITION BY (country STRING)

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 14 / 45



DDL Operations (2/3)

I Create tables with buckets

-- Specify the columns to bucket on and the number of buckets

-- /db/customer3/000000_0

-- /db/customer3/000000_1

-- /db/customer3/000000_2

set hive.enforce.bucketing = true;

CREATE TABLE customer3 (id INT, name STRING, address STRING)

CLUSTERED BY (id) INTO 3 BUCKETS;

I Browsing through tables

-- lists all the tables

SHOW TABLES;

-- shows the list of columns

DESCRIBE customer;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 15 / 45



DDL Operations (2/3)

I Create tables with buckets

-- Specify the columns to bucket on and the number of buckets

-- /db/customer3/000000_0

-- /db/customer3/000000_1

-- /db/customer3/000000_2

set hive.enforce.bucketing = true;

CREATE TABLE customer3 (id INT, name STRING, address STRING)

CLUSTERED BY (id) INTO 3 BUCKETS;

I Browsing through tables

-- lists all the tables

SHOW TABLES;

-- shows the list of columns

DESCRIBE customer;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 15 / 45



DDL Operations (3/3)

I Altering tables

-- rename the customer table to alaki

ALTER TABLE customer RENAME TO alaki;

-- add two new columns to the customer table

ALTER TABLE customer ADD COLUMNS (job STRING);

ALTER TABLE customer ADD COLUMNS (grade INT COMMENT ’some comment’);

I Dropping tables

DROP TABLE customer;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 16 / 45



DDL Operations (3/3)

I Altering tables

-- rename the customer table to alaki

ALTER TABLE customer RENAME TO alaki;

-- add two new columns to the customer table

ALTER TABLE customer ADD COLUMNS (job STRING);

ALTER TABLE customer ADD COLUMNS (grade INT COMMENT ’some comment’);

I Dropping tables

DROP TABLE customer;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 16 / 45



DML Operations

I Loading data from flat files.

-- if ’LOCAL’ is omitted then it looks for the file in HDFS.

-- the ’OVERWRITE’ signifies that existing data in the table is deleted.

-- if the ’OVERWRITE’ is omitted, data are appended to existing data sets.

LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

-- loads data into different partitions

LOAD DATA LOCAL INPATH ’data1.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’SE’);

LOAD DATA LOCAL INPATH ’data2.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’IR’);

I Store the query results in tables

INSERT OVERWRITE TABLE customer SELECT * From old_customers;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 17 / 45



DML Operations

I Loading data from flat files.

-- if ’LOCAL’ is omitted then it looks for the file in HDFS.

-- the ’OVERWRITE’ signifies that existing data in the table is deleted.

-- if the ’OVERWRITE’ is omitted, data are appended to existing data sets.

LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

-- loads data into different partitions

LOAD DATA LOCAL INPATH ’data1.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’SE’);

LOAD DATA LOCAL INPATH ’data2.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’IR’);

I Store the query results in tables

INSERT OVERWRITE TABLE customer SELECT * From old_customers;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 17 / 45



SQL Operations (1/3)

I Selects and filters

SELECT id FROM customer2 WHERE country=’SE’;

-- selects all rows from customer table into a local directory

INSERT OVERWRITE LOCAL DIRECTORY ’/tmp/hive-sample-out’ SELECT *

FROM customer;

-- selects all rows from customer2 table into a directory in hdfs

INSERT OVERWRITE DIRECTORY ’/tmp/hdfs_ir’ SELECT * FROM customer2

WHERE country=’IR’;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 18 / 45



SQL Operations (2/3)

I Aggregations and groups

SELECT MAX(id) FROM customer;

SELECT country, COUNT(*), SUM(id) FROM customer2 GROUP BY country;

INSERT TABLE high_id_customer SELECT c.name, COUNT(*) FROM customer c

WHERE c.id > 10 GROUP BY c.name;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 19 / 45



SQL Operations (3/3)

I Join

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

CREATE TABLE order (id INT, cus_id INT, prod_id INT, price INT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

SELECT * FROM customer c JOIN order o ON (c.id = o.cus_id);

SELECT c.id, c.name, c.address, ce.exp FROM customer c JOIN

(SELECT cus_id, sum(price) AS exp FROM order GROUP BY cus_id) ce

ON (c.id = ce.cus_id) INSERT OVERWRITE TABLE order_customer;

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 20 / 45



User-Defined Function (UDF)

package com.example.hive.udf;

import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.io.Text;

public final class Lower extends UDF {

public Text evaluate(final Text s) {

if (s == null) { return null; }

return new Text(s.toString().toLowerCase());

}

}

-- Register the class

CREATE FUNCTION my_lower AS ’com.example.hive.udf.Lower’;

-- Using the function

SELECT my_lower(title), sum(freq) FROM titles GROUP BY my_lower(title);

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 21 / 45



Executing SQL Questions

I Processes HiveQL statements and generates the execution plan
through three-phase processes.

1 Query parsing: transforms a query string to a parse tree representa-
tion.

2 Logical plan generation: converts the internal query representation
to a logical plan, and optimizes it.

3 Physical plan generation: split the optimized logical plan into multiple
map/reduce and HDFS tasks.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 22 / 45



Optimization (1/2)

I Column pruning
• Projecting out the needed columns.

I Predicate pushdown
• Filtering rows early in the processing, by pushing down predicates to

the scan (if possible).

I Partition pruning
• Pruning out files of partitions that do not satisfy the predicate.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 23 / 45



Optimization (2/2)

I Map-side joins
• The small tables are replicated in all the mappers and joined with

other tables.
• No reducer needed.

I Join reordering
• Only materialized and kept small tables in memory.
• This ensures that the join operation does not exceed memory limits

on the reducer side.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 24 / 45



Hive Components (1/8)

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 25 / 45



Hive Components (2/8)

I External interfaces
• User interfaces, e.g., CLI and web UI
• Application programming interfaces, e.g., JDBC and ODBC
• Thrift, a framework for cross-language services.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 26 / 45



Hive Components (3/8)

I Driver
• Manages the life cycle of a HiveQL statement during compilation,

optimization and execution.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 27 / 45



Hive Components (4/8)

I Compiler (Parser/Query Optimizer)
• Translates the HiveQL statement into a a logical plan, and

optimizes it.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 28 / 45



Hive Components (5/8)

I Physical plan
• Transforms the logical plan into a DAG of Map/Reduce jobs.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 29 / 45



Hive Components (6/8)

I Execution engine
• The driver submits the individual mapreduce jobs from the DAG to

the execution engine in a topological order.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 30 / 45



Hive Components (7/8)

I SerDe
• Serializer/Deserializer allows Hive to read and write table rows in

any custom format.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 31 / 45



Hive Components (8/8)

I Metastore
• The system catalog.
• Contains metadata about the tables.
• Metadata is specified during table creation and reused every time the

table is referenced in HiveQL.
• Metadatas are stored on either a traditional relational database, e.g.,

MySQL, or file system and not HDFS.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 32 / 45



Hive on Spark

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 33 / 45



Spark RDD - Reminder

I RDDs are immutable, partitioned collections that can be created
through various transformations, e.g., map, groupByKey, join.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 34 / 45



Executing SQL over Spark RDDs

I Shark runs SQL queries over Spark using three-step process:

1 Query parsing: Shark uses Hive query compiler to parse the query
and generate a parse tree.

2 Logical plan generation: the tree is turned into a logical plan and
basic logical optimization is applied.

3 Physical plan generation: Shark applies additional optimization and
creates a physical plan consisting of transformations on RDDs.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 35 / 45



Hive Components

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 36 / 45



Shark Components

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 37 / 45



Shark and Spark

I Shark extended RDD execution model:

• Partial DAG Execution (PDE): to re-optimize a running query after
running the first few stages of its task DAG.

• In-memory columnar storage and compression: to process relational
data efficiently.

• Control over data partitioning.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 38 / 45



Partial DAG Execution (1/2)

I How to optimize the following query?

SELECT * FROM table1 a JOIN table2 b ON (a.key = b.key)

WHERE my_crazy_udf(b.field1, b.field2) = true;

I It can not use cost-based optimization techniques that rely on ac-
curate a priori data statistics.

I They require dynamic approaches to query optimization.

I Partial DAG Execution (PDE): dynamic alteration of query plans
based on data statistics collected at run-time.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 39 / 45



Partial DAG Execution (1/2)

I How to optimize the following query?

SELECT * FROM table1 a JOIN table2 b ON (a.key = b.key)

WHERE my_crazy_udf(b.field1, b.field2) = true;

I It can not use cost-based optimization techniques that rely on ac-
curate a priori data statistics.

I They require dynamic approaches to query optimization.

I Partial DAG Execution (PDE): dynamic alteration of query plans
based on data statistics collected at run-time.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 39 / 45



Partial DAG Execution (2/2)

I The workers gather customizable statistics at global and per-
partition granularities at run-time.

I Each worker sends the collected statistics to the master.

I The master aggregates the statistics and alters the query plan based
on such statistics.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 40 / 45



Columnar Memory Store

I Simply caching Hive records as JVM objects is inefficient.

I 12 to 16 bytes of overhead per object in JVM implementation:
• e.g., storing a 270MB table as JVM objects uses approximately 971

MB of memory.

I Shark employs column-oriented storage using arrays of primitive ob-
jects.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 41 / 45



Data Partitioning

I Shark allows co-partitioning two tables, which are frequently joined
together, on a common key for faster joins in subsequent queries.

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 42 / 45



Shark/Spark Integration

I Shark provides a simple API for programmers to convert results from
SQL queries into a special type of RDDs: sql2rdd.

val youngUsers = sql2rdd("SELECT * FROM users WHERE age < 20")

println(youngUsers.count)

val featureMatrix = youngUsers.map(extractFeatures(_))

kmeans(featureMatrix)

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 43 / 45



Summary

I Operators: DDL, DML, SQL

I Hive architecture vs. Shark architecture

I Add advance features to Spark, e.g., PDE, columnar memory store

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 44 / 45



Questions?

Amir H. Payberah (SICS) Hive and Shark May 6, 2014 45 / 45


