MapReduce and Beyond

Amir H. Payberah

Swedish Institute of Computer Science

amir@sics.se
April 22, 2014

SWEDISH
T R

What do we do when there is too much data to
process?

Scale Up vs. Scale Out (1/2)

» Scale up or scale vertically: adding resources to a single node in a
system.

» Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (SICS) MapReduce April 22, 2014 3/ 44

|
Scale Up vs. Scale Out (2/2)

» Scale up: more expensive than scaling out.

» Scale out: more challenging for fault tolerance and software devel-
opment.

~ AmirH. Payberah (SICS) MapReduce April 22,2014 4/ 44

I
Taxonomy of Parallel Architectures

Shared nothing Shared disk Shared memory
Interconnect] ? Q -------- CP
................ Interconnect

O Process I:l Memory @ Disk

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

|
Taxonomy of Parallel Architectures

Shared nothing Shared disk Shared memory
Interconnect] % %
........ Interconnect

O Process I:l Memory 8 Disk

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

~ AmirH. Payberah (SICS) MapReduce April 22,2014 5/ 44

MapReduce

» A shared nothing architecture for processing large data sets with a
parallel /distributed algorithm on clusters.

INNSS———
MapReduce Definition

» A programming model: to batch process large data sets (inspired
by functional programming).

INNSS———
MapReduce Definition

» A programming model: to batch process large data sets (inspired
by functional programming).

» An execution framework: to run parallel algorithms on clusters of
commodity hardware.

INNSS———
Simplicity

» Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

» Hide system-level details from programmers.

Simplicity!

Programming Model

MapReduce Dataflow

» map function: processes data and generates a set of intermediate
key/value pairs.

» reduce function: merges all intermediate values associated with the
same intermediate key.

Map Shuffle Reduce
A

;IIIIPd;::
|||||r—O<:"
|||||F—O<:"

INNSS———
Example: Word Count

» Consider doing a word count of the following file using MapReduce:

Hello World Bye World
Hello Hadoop Goodbye Hadoop

INNSS———
Example: Word Count - map

» The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

» The map function output is:

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

INNSS———
Example: Word Count - shuffle

» The shuffle phase between map and reduce phase creates a list of
values associated with each key.

» The reduce function input is:

(Bye, (1))

(Goodbye, (1))
(Hadoop, (1, 1)
(Hello, (1, 1))
(World, (1, 1))

INNSS———
Example: Word Count - reduce

» The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

» The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)

I
Combiner Function (1/2)

» In some cases, there is significant repetition in the intermediate keys
produced by each map task, and the reduce function is commutative
and associative.

Machine 1:
(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)

Machine 2:
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

I
Combiner Function (2/2)

» Users can specify an optional combiner function to merge partially
data before it is sent over the network to the reduce function.

» Typically the same code is used to implement both the combiner
and the reduce function.

Machine 1:
(Hello, 1)
(World, 2)
(Bye, 1)

Machine 2:
(Hello, 1)
(Hadoop, 2)
(Goodbye, 1)

Example: Word Count - map

INNSS———
Example: Word Count - reduce

Example: Word Count - driver

Example: Word Count - Compile and Run (1/2)

Example: Word Count - Compile and Run (2/2)

> mkdir wordcount_classes

> javac -classpath
$HADOOP_HOME/share/hadoop/common/hadoop-common-2.2.0. jar:
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:
$HADOOP_HOME/share/hadoop/common/1ib/commons-cli-1.2. jar

-d wordcount_classes sics/WordCount.java

> jar -cvf wordcount.jar -C wordcount_classes/ .
> hadoop jar wordcount.jar sics.WordCount input output

> hdfs dfs -1s output
output/part-00000

> hdfs dfs -cat output/part-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2

Amir H. Payberah (SICS) MapReduce April 22, 2014 21 / 44

Execution Engine

MapReduce Execution (1/7)

» The user program divides the input files into M splits.

A typical size of a split is the size of a HDFS block (64 MB).
» Converts them to key/value pairs.

» It starts up many copies of the program on a cluster of machines.

) fork . ‘

. fork

tnput Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

MapReduce Execution (2/7)

» One of the copies of the program is master, and the rest are workers.

» The master assigns works to the workers.

|t picks idle workers and assigns each one a map task or a reduce
task.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

MapReduce Execution (3/7)

» A map worker reads the contents of the corresponding input splits.

» It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

» The intermediate key/value pairs produced by the map function are
buffered in memory.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

I,
MapReduce Execution (4/7)

» The buffered pairs are periodically written to local disk.
e They are partitioned into R regions (hash(key) mod R).

» The locations of the buffered pairs on the local disk are passed back
to the master.

» The master forwards these locations to the reduce workers.

tnput Map Intermediate fles Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

MapReduce Execution (5/7)

» A reduce worker reads the buffered data from the local disks of the
map workers.

» When a reduce worker has read all intermediate data, it sorts it by
the intermediate keys.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

MapReduce Execution (6/7)

» The reduce worker iterates over the intermediate data.

» For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

» The output of the reduce function is appended to a final output file
for this reduce partition.

lap Intermediate files Redu
asr (on local disks) ph

MapReduce Execution (7/7)

» When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

tnput Map Intermediate files Reduce Output
files ase i

phasr (on local disks) les

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Hadoop MapReduce and HDFS

G

Job Name
Tracker Node
e |\ —
Task Tas / Task Task
Tracker Tracker, racker
Task
_— _—
Data Task Data Data
Node Node Node

l:l Server O MapReduce @ HDFS

April 22, 2014

30 / 44

Fault Tolerance

» On worker failure:
e Detect failure via periodic heartbeats.
¢ Re-execute in-progress map and reduce tasks.

* Re-execute completed map tasks: their output is stored on the local
disk of the failed machine and is therefore inaccessible.

e Completed reduce tasks do not need to be re-executed since their
output is stored in a global filesystem.

» On master failure:
o State is periodically checkpointed: a new copy of master starts from
the last checkpoint state.

MapReduce Weaknesses
and
Solving Techniques

- Wewessa
W1: Access to Input Data

v

Scanning the entire input to perform the map-side processing.

v

Initiating map tasks on all input partitions.

e Accessing only a subset of input data would be enough in certain
cases.

v

Lack of selective access to data.

v

High communication cost.

- Sdwepa
S1: Access to Input Data

Efficient access to data.

v

v

Indexing data: Hadoop++, HAIL

v

Intentional data placement: CoHadoop

v

Data layout: Llama, Cheetah, RCFile, CIF

- Weles2 _________________________
W?2: Redundant Processing and Recomputation

» Performing similar processing by different jobs over the same data.
e Jobs are processed independently: redundant processing

» No way to reuse the results produced by previous jobs.
e Future jobs may require those results: recompute everything

S2: Redundant Processing and Recomputation

» Batch processing of jobs: MRShare
» Result sharing and materialization: ReStore

» Incremental processing: Incoop

- Weless _________________________
W3: Lack of Early Termination

» Map tasks must process the entire input data before any reduce task
can start processing.

» Some jobs may need only sampling of data.

» Quick retrieval of approximate results.

R o U o
S3: Lack of Early Termination

» Sampling: EARL

» Sorting: RanKloud

) Weakness4
W4: Lack of lteration

» MapReduce programmers need to write a sequence of MapReduce
jobs and coordinate their execution, in order to implement an iter-
ative processing.

» Data should be reloaded and reprocessed in each iteration.

- Solutiens4
S4: Lack of Iteration

» Looping, caching, pipelining: Stratosphere, Haloop, MapReduce on-
line, NOVA, Twister, CBP, Pregel, Prlter

» Incremental processing: Stratosphere, REX, Differential dataflow

W5: Lack of Interactive and Real-Time Processing

» Various overheads to guarantee fault-tolerance that negatively im-
pact the performance.

» Many applications require fast response times, interactive analysis,
and online analytics.

Sh: Lack of Interactive and Real-Time Processing

» Streaming, pipelining: Dremel, Impala, Hyracks, Tenzing
» In-memory processing: PowerDrill, Spark/Shark, M3R

» Pre-computation: BlikDB

INNSS———
Summary

v

Programming model: Map and Reduce

Execution framework

v

v

Batch processing

v

Shared nothing architecture

Questions?

	
	Weakness 1
	Solution 1
	Weakness 2
	Solution 2
	Weakness 3
	Solution 3
	Weakness 4
	Solution 4
	Weakness 5
	Solution 5

