Resource Management

Amir H. Payberah Swedish Institute of Computer Science

> amir@sics.se May 30, 2014

Motivation

- Rapid innovation in cloud computing.
- ▶ No single framework optimal for all applications.

Motivation

- Rapid innovation in cloud computing.
- ▶ No single framework optimal for all applications.
- ► Running each framework on its dedicated cluster:
 - Expensive
 - · Hard to share data

Proposed Solution

Running multiple frameworks on a single cluster

Proposed Solution

Running multiple frameworks on a single cluster

Maximize utilization

Share data between frameworks

Two Resource Management Systems ...

- Mesos
- ► YARN

Two Resource Management Systems ...

- Mesos
- ► YARN

Mesos

Mesos

A common resource sharing layer, over which diverse frameworks can run

Mesos

Mesos

A common resource sharing layer, over which diverse frameworks can run

Mesos Goals

- ► High utilization of resources
- ► Support diverse frameworks (current and future)
- ► Scalability to 10,000's of nodes
- ► Reliability in face of failures

A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

- ► A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
- ► A job consists of one or more tasks.

- A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
- ► A job consists of one or more tasks.
- ► A task (e.g., map, reduce) consists of one or more processes running on same machine.

- A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
- ► A job consists of one or more tasks.
- ► A task (e.g., map, reduce) consists of one or more processes running on same machine.

Mesos Design Elements

► Fine-grained sharing

► Resource offers

Fine-Grained Sharing

- Allocation at the level of tasks within a job.
- ▶ Improves utilization, latency, and data locality.

Coarse-grained sharing

Fine-grained sharing

Resource Offer

- ▶ Offer available resources to frameworks, let them pick which resources to use and which tasks to launch.
- ▶ Keeps Mesos simple, lets it support future frameworks.

Question?

How to schedule resource offering among frameworks?

Schedule Frameworks

- ► Global scheduler
- ► Distributed scheduler

Global Scheduler (1/2)

Job requirements

- Response time
- Throughput
- Availability

► Job execution plan

- Task DAG
- Inputs/outputs

Estimates

- Task duration
- Input sizes
- Transfer sizes

Global Scheduler (2/2)

Advantages

• Can achieve optimal schedule.

► Disadvantages

- Complexity: hard to scale and ensure resilience.
- Hard to anticipate future frameworks requirements.
- Need to refactor existing frameworks.

Distributed Scheduler (1/3)

Distributed Scheduler (2/3)

- ▶ Unit of allocation: resource offer
 - · Vector of available resources on a node
 - For example, node1: < 1CPU, 1GB >, node2: < 4CPU, 16GB >
- ► Master sends resource offers to frameworks.
- ► Frameworks select which offers to accept and which tasks to run.

Distributed Scheduler (3/3)

Advantages

- Simple: easier to scale and make resilient.
- Easy to port existing frameworks, support new ones.

▶ Disadvantages

Distributed scheduling decision: not optimal.

Mesos Architecture (1/4)

► Slaves continuously send status updates about resources to the Master.

Mesos Architecture (2/4)

▶ Pluggable scheduler picks framework to send an offer to.

Mesos Architecture (3/4)

► Framework scheduler selects resources and provides tasks.

Mesos Architecture (4/4)

► Framework executors launch tasks.

Question?

How to allocate resources of different types?

Single Resource: Fair Sharing

- ▶ n users want to share a resource, e.g., CPU.
 - Solution: allocate each $\frac{1}{n}$ of the shared resource. 50%

Single Resource: Fair Sharing

- ▶ n users want to share a resource, e.g., CPU.
 - Solution: allocate each $\frac{1}{n}$ of the shared resource.

- ► Generalized by max-min fairness.
 - Handles if a user wants less than its fair share.
 - E.g., user 1 wants no more than 20%.

Single Resource: Fair Sharing

- ▶ n users want to share a resource, e.g., CPU.
 - Solution: allocate each $\frac{1}{n}$ of the shared resource.

- Generalized by max-min fairness.
 - Handles if a user wants less than its fair share.
 - E.g., user 1 wants no more than 20%.

- ► Generalized by weighted max-min fairness.
 - Give weights to users according to importance.
 - E.g., user 1 gets weight 1, user 2 weight 2.

- ▶ 1 resource: CPU
- ► Total resources: 20 CPU
- ▶ User 1 has x tasks and wants < 1CPU > per task
- ▶ User 2 has y tasks and wants < 2*CPU* > per task

- ▶ 1 resource: CPU
- ► Total resources: 20 CPU
- ▶ User 1 has x tasks and wants < 1*CPU* > per task
- ▶ User 2 has y tasks and wants < 2*CPU* > per task

```
max(x, y) (maximize allocation)
```

- ▶ 1 resource: CPU
- ► Total resources: 20 CPU
- ▶ User 1 has x tasks and wants < 1CPU > per task
- ▶ User 2 has y tasks and wants $\langle 2CPU \rangle$ per task

```
\begin{aligned} &\max(x,y) \text{ (maximize allocation)} \\ &\text{subject to} \\ &x + 2y \leq 20 \text{ (CPU constraint)} \\ &x = 2y \end{aligned}
```

- ▶ 1 resource: CPU
- ► Total resources: 20 CPU
- ▶ User 1 has x tasks and wants < 1CPU > per task
- ▶ User 2 has y tasks and wants < 2CPU > per task

```
\begin{array}{l} \text{max}(x,y) \text{ (maximize allocation)} \\ \text{subject to} \\ x+2y \leq 20 \text{ (CPU constraint)} \\ x=2y \\ \text{so} \\ x=10 \\ y=5 \end{array}
```

Why is Fair Sharing Useful?

- ▶ Proportional allocation: user 1 gets weight 2, user 2 weight 1.
- ▶ Priorities: give user 1 weight 1000, user 2 weight 1.
- ▶ Reservations: ensure user 1 gets 10% of a resource, so give user 1 weight 10, sum weights ≤ 100.
- ▶ Isolation policy: users cannot affect others beyond their fair share.

Properties of Max-Min Fairness

Share guarantee

- Each user can get at least $\frac{1}{n}$ of the resource.
- · But will get less if her demand is less.

► Strategy proof

- Users are not better off by asking for more than they need.
- Users have no reason to lie.

Properties of Max-Min Fairness

Share guarantee

- Each user can get at least $\frac{1}{n}$ of the resource.
- But will get less if her demand is less.

► Strategy proof

- Users are not better off by asking for more than they need.
- Users have no reason to lie.

- ► Max-Min fairness is the only reasonable mechanism with these two properties.
- ▶ Widely used: OS, networking, datacenters, ...

Question?

When is Max-Min Fairness NOT Enough?

Question?

When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g., CPU, memory, etc.

Problem

- ► Single resource example
 - 1 resource: CPU
 - User 1 wants < 1 CPU > per task
 - $\bullet \ \ \mathsf{User} \ 2 \ \mathsf{wants} < 2 \mathit{CPU} > \mathsf{per} \ \mathsf{task}$

Problem

- Single resource example
 - 1 resource: CPU
 - User 1 wants < 1 CPU > per task
 - User 2 wants < 2 CPU > per task

- ► Multi-resource example
 - 2 resources: CPUs and mem
 - User 1 wants < 1CPU, 4GB > per task
 - User 2 wants < 2CPU, 1GB > per task

Problem

- Single resource example
 - 1 resource: CPU
 - User 1 wants < 1 CPU > per task
 - User 2 wants < 2*CPU* > per task

- Multi-resource example
 - 2 resources: CPUs and mem
 - User 1 wants < 1CPU, 4GB > per task
 - User 2 wants < 2CPU, 1GB > per task
 - What is a fair allocation?

A Natural Policy (1/2)

► Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total value given to each user.

A Natural Policy (1/2)

- ► Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total value given to each user.
- ► Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
 - User 1 has x tasks and wants < 1*CPU*, 2*GB* > per task
 - User 2 has y tasks and wants < 1CPU, 4GB > per task

A Natural Policy (1/2)

- ► Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total value given to each user.
- ► Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
 - User 1 has x tasks and wants < 1*CPU*, 2*GB* > per task
 - User 2 has y tasks and wants < 1*CPU*, 4*GB* > per task

Asset fairness yields:

User 1: $\mathbf{x} = \mathbf{12}$: $< 43\% CPU, 43\% GB > (\sum = 86\%)$ User 2: $\mathbf{y} = \mathbf{8}$: $< 28\% CPU, 57\% GB > (\sum = 86\%)$

User 1 User 2

43%

100%

A Natural Policy (2/2)

- ▶ Problem: violates share grantee.
- ▶ User 1 gets less than 50% of both CPU and RAM.
- ▶ Better off in a separate cluster with half the resources.

Challenge

- ► Can we find a fair sharing policy that provides:
 - Share guarantee
 - Strategy-proofness
- ► Can we generalize max-min fairness to multiple resources?

Proposed Solution

Dominant Resource Fairness (DRF)

Dominant Resource Fairness (DRF) (1/2)

- ▶ Dominant resource of a user: the resource that user has the biggest share of.
 - Total resources: < 8 CPU, 5 GB >
 - User 1 allocation: < 2*CPU*, 1*GB* > $\frac{2}{8} = 25\%$ CPU and $\frac{1}{5} = 20\%$ RAM
 - Dominant resource of User 1 is CPU (25% > 20%)

Dominant Resource Fairness (DRF) (1/2)

- ▶ Dominant resource of a user: the resource that user has the biggest share of.
 - Total resources: < 8 CPU, 5 GB >
 - User 1 allocation: < 2*CPU*, 1*GB* > $\frac{2}{8} = 25\%$ CPU and $\frac{1}{5} = 20\%$ RAM
 - Dominant resource of User 1 is CPU (25% > 20%)
- ▶ Dominant share of a user: the fraction of the dominant resource she is allocated.
 - User 1 dominant share is 25%.

Dominant Resource Fairness (DRF) (2/2)

► Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.

Dominant Resource Fairness (DRF) (2/2)

► Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.

- ► Equalize the dominant share of the users.
 - Total resources: < 9CPU, 18GB >
 - User 1 wants < 1*CPU*, 4*GB* >; Dominant resource: RAM $\frac{1}{9} < \frac{4}{18}$ User 2 wants < 3*CPU*, 1*GB* >; Dominant resource: CPU $\frac{3}{9} > \frac{1}{18}$

Dominant Resource Fairness (DRF) (2/2)

Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.

- ► Equalize the dominant share of the users.
 - Total resources: < 9CPU, 18GB >
 - User 1 wants < 1*CPU*, 4*GB* >; Dominant resource: RAM $\frac{1}{9} < \frac{4}{18}$ User 2 wants < 3*CPU*, 1*GB* >; Dominant resource: CPU $\frac{3}{9} > \frac{1}{18}$
- \blacktriangleright max(x,y) x + 3y < 94x + y < 18 $\frac{4x}{10} = \frac{3y}{0}$ User 1: x = 3: < 33% CPU, 66% GB >User 2: y = 2: < 66% CPU, 16% GB >

Online DRF Scheduler

► Whenever there are available resources and tasks to run: Schedule a task to the user with the smallest dominant share.

Two Resource Management Systems ...

- Mesos
- ► YARN

YARN

YARN

Yet Another Resource Negotiator

YARN Architecture

- ► Resource Manager (RM)
- ► Application Master (AM)
- ► Node Manager (NM)

YARN Architecture - Resource Manager (1/2)

- ▶ One per cluster
 - Central: global view
 - Enable global properties
 - · Fairness, capacity, locality
- ▶ Job requests are submitted to RM.
 - To start a job (application), RM finds a container to spawn AM.
- Container
 - Logical bundle of resources (CPU/memory).
- ► No static resource partitioning.

YARN Architecture - Resource Manager (2/2)

- Only handles an overall resource profile for each application.
 - Local optimization is up to the application.
- Preemption
 - Request resources back from an application.
 - Checkpoint snapshot instead of explicitly killing jobs / migrate computation to other containers.

YARN Architecture - Application Manager (1/2)

- ► The head of a job.
- Runs as a container.
- Request resources from RM.
 - # of containers/resource per container/locality ...
- Dynamically changing resource consumption, based on the containers it receives from the RM.

YARN Architecture - Application Manager (2/2)

- ► Requests are late-binding.
 - The process spawned is not bound to the request, but to the lease.
 - The conditions that caused the AM to issue the request may not remain true when it receives its resources.
- ► Can run any user code, e.g., MapReduce, Spark, etc.
- AM determines the semantics of the success or failure of the container.

YARN Architecture - Node Manager (1/2)

- ▶ The worker daemon.
- ► Registers with RM.
- One per node.
- ▶ Report resources to RM: memory, CPU, ...
- ► Containers are described by a Container Launch Context (CLC).
 - The command necessary to create the process
 - Environment variables
 - Security tokens
 - ...

YARN Architecture - Node Manager (2/2)

- ► Configure the environment for task execution.
- ► Garbage collection.
- Auxiliary services.
 - A process may produce data that persist beyond the life of the container.
 - Output intermediate data between map and reduce tasks.

YARN Framework (1/2)

- ► Submitting the application: passing a CLC for the AM to the RM.
- ▶ When RM starts the AM, it should register with the RM.
 - Periodically advertise its liveness and requirements over the heartbeat protocol.

YARN Framework (2/2)

- ► Once the RM allocates a container, AM can construct a CLC to launch the container on the corresponding NM.
 - It monitors the status of the running container and stop it when the resource should be reclaimed.
- Once the AM is done with its work, it should unregister from the RM and exit cleanly.

Mesos vs. YARN

Similarities:

Both have schedulers at two levels.

Differences:

- Mesos is an offer-based resource manager, whereas YARN has a request-based approach.
- Mesos uses framework schedulers for inter-job scheduling, whereas YARN uses per-job optimization through AM (however, per-job AM has higher overhead compare to Mesos).

Summary

- ► Resource management: Mesos and YARN
- Mesos
 - · Offered-based
 - Max-Min fairness: DRF
- ► YARN
 - · Request-based
 - RM, AM, NM

Questions?

Acknowledgements

Some slides were derived from Ion Stoica and Ali Ghodsi slides (Berkeley University), and Wei-Chiu Chuang slides (Purdue University).