Spark and Resilient Distributed Datasets

Amir H. Payberah

Swedish Institute of Computer Science

amir@sics.se
April 24, 2014

SWEDISH
T R

L
Motivation

» MapReduce greatly simplified big data analysis on large, unreliable
clusters.

» But as soon as it got popular, users wanted more:

e [terative jobs, e.g., machine learning algorithms
e Interactive analytics

L
Motivation

» Both iterative and interactive queries need one thing that MapRe-
duce lacks:

L
Motivation

» Both iterative and interactive queries need one thing that MapRe-
duce lacks:

Efficient primitives for data sharing. J

Motivation

» Both iterative and interactive queries need one thing that MapRe-
duce lacks:

Efficient primitives for data sharing. J

» In MapReduce, the only way to share data across jobs is stable
storage, which is slow.

» Replication also makes the system slow, but it is necessary for fault
tolerance.

Proposed Solution

In-Memory Data Processing and Sharing. J

Example

Example

Iter. 1 Iter. 2
|l

Input

Example

|

Resultsl

\

Resultsl

|

Resultsl

\

Example

|

Resultsl

\

Resultsl

|

Resultsl

\

Results1
\/_

Resultsl
\/_

1

Input Resultsl

—

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD) J

BN
Resilient Distributed Datasets (RDD) (1/2)

» A distributed memory abstraction.

BN
Resilient Distributed Datasets (RDD) (1/2)

» A distributed memory abstraction.

» Immutable collections of objects spread across a cluster.

Resilient Distributed Datasets (RDD) (2/2)

» An RDD is divided into a number of partitions, which are atomic

pieces of information.
RDD

partition

» Partitions of an RDD can be stored on different nodes of a cluster.

Programming Model

INSS——
Spark Programming Model (1/2)

» Spark programming model is based on parallelizable operators.

» Parallelizable operators are higher-order functions that execute user-
defined functions in parallel.

BN
Spark Programming Model (2/2)

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

» Job description based on directed acyclic graphs (DAG).

I
Higher-Order Functions (1/3)

» Higher-order functions: RDDs operators.

» There are two types of RDD operators: transformations and actions.

I
Higher-Order Functions (2/3)

» Transformations: lazy operators that create new RDDs.

» Actions: lunch a computation and return a value to the program or
write data to the external storage.

Higher-Order Functions (3/3)

map(f:T=U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDD[T]

RDDIT] = RDD[U]

RDD[T] = RDD[T] (Deterministic sampling)
RDD[(K, V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDDI[T],RDD[T]) = RDDIT]
Jjoin() (RDD[(K, V)],RDD[(K, W)]) = RDDI[(K, (V, W))]
cogroup() (RDDI(K, V)],RDD[(K, W)]) = RDDI[(K, (Seq[V], Seq[W1))]
crossProduct() (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f: V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T,T)=T) RDD[T]=T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Amir H. Payberah (SICS)

Spark April 24, 2014

15 / 49

INNSS———
RDD Transformations - Map

» All pairs are independently processed.

RRAR
L

INNSS———
RDD Transformations - Map

» All pairs are independently processed.

RRAR
L

RDD Transformations - Reduce

» Pairs with identical key are grouped.

» Groups are independently processed.

RDD Transformations - Reduce

» Pairs with identical key are grouped.

» Groups are independently processed.

RDD Transformations - Join

» Performs an equi-join on the key.

m
» Join candidates are independently pro- :*"
cessed. m

RDD Transformations - Join

» Performs an equi-join on the key.

» Join candidates are independently pro-
cessed.

[]
Loy
;s
]

INNSS———
RDD Transformations - CoGroup

» Groups each input on key.

» Groups with identical keys are processed
together.

INNSS———
RDD Transformations - CoGroup

» Groups each input on key.

» Groups with identical keys are processed
together.

INNSS———
RDD Transformations - Union and Sample

» Union: merges two RDDs and returns a single RDD using bag se-
mantics, i.e., duplicates are not removed.

» Sample: similar to mapping, except that the RDD stores a random
number generator seed for each partition to deterministically sample
parent records.

Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

I,
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

I,
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

» Return the number of elements in the RDD.

I,
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

I,
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

» Write the elements of the RDD as a text file.

INNSS———
SparkContext

» Main entry point to Spark functionality.

» Available in shell as variable sc.

» In standalone programs, you should make your own.

INNSS———
SparkContext

» Main entry point to Spark functionality.

» Available in shell as variable sc.

» In standalone programs, you should make your own.

Creating RDDs

» Turn a collection into an RDD.

BN
Creating RDDs

» Turn a collection into an RDD.

» Load text file from local FS, HDFS, or S3.

I
Example (1/2)

» Count the lines containing SICS.

I
Example (1/2)

» Count the lines containing SICS.

I
Example (2/2)

» Count the lines containing SICS.

Example (2/2)

» Count the lines containing SICS.

EENE O B
i -

L
Example - Standalone Application (1/2)

L
Example - Standalone Application (2/2)

» sics.sbt:

I,
Shared Variables (1/2)

» When Spark runs a function in parallel as a set of tasks on different
nodes, it ships a copy of each variable used in the function to each
task.

» Sometimes, a variable needs to be shared across tasks, or between
tasks and the driver program.

I,
Shared Variables (2/2)

» No updates to the variables are propagated back to the driver pro-
gram.

» General read-write shared variables across tasks is inefficient.
e For example, to give every node a copy of a large input dataset.

» Two types of shared variables: broadcast variables and accumula-
tors.

o
Shared Variables: Broadcast Variables

» A read-only variable cached on each machine rather than shipping
a copy of it with tasks.

» The broadcast values are not shipped to the nodes more than once.

L
Shared Variables: Accumulators

» They are only added.

» They can be used to implement counters or sums.

» Tasks running on the cluster can then add to it using the += oper-
ator.

Execution Engine

(SPARK)

Spark

» Spark provides a programming interface in Scala.

» Each RDD is represented as an object in Spark.

Spor‘l"(z

Spark Programming Interface

» A Spark application consists of a driver program that runs the user’s
main function and executes various parallel operations on a cluster.

Lineage
file: | panthatsie
» Lineage: transformations used to build _ Filtered Dataset
sics: func = _.contains(...)
an RDD.

» RDDs are stored as a chain of objects cachedsics:
capturing the lineage of each RDD.

Mapped Dataset
func=_=>1

ones:

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))
val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)

© AmirH. Pagbersh SICS) sk April 24,2014 36 / 49

I
RDD Dependencies (1/3)

» Two types of dependencies between RDDs: Narrow and Wide.

RDD Dependencies: Narrow (2/3)

000

ap, filter

—

—

| —

| —

)
)
)

LORY .00
[0000)

union

000000

join with inputs
co-partitioned

» Narrow: each partition of a parent RDD is used by at most one

partition of the child RDD.

» Narrow dependencies allow pipelined execution on one cluster node:

a map followed by a filter.

RDD Dependencies: Wide (3/3)

groupByKey

Join with inputs not
co-partitioned

» Wide: each partition of a parent RDD is used by multiple partitions
of the child RDDs.

NN
Job Scheduling (1/2)

» When a user runs an action on an RDD:
the scheduler builds a DAG of stages
from the RDD lineage graph.

» A stage contains as many pipelined
transformations with narrow dependen-
cies.

» The boundary of a stage:

e Shuffles for wide dependencies.
e Already computed partitions.

NN
Job Scheduling (2/2)

» The scheduler launches tasks to compute
missing partitions from each stage until
it computes the target RDD.

» Tasks are assigned to machines based on
data locality.
e If a task needs a partition, which is
available in the memory of a node, the
task is sent to that node.

BN,
RDD Fault Tolerance (1/3)

v

RDDs maintain lineage information that can be used to reconstruct
lost partitions.

v

Logging lineage rather than the actual data.

v

No replication.

v

Recompute only the lost partitions of an RDD.

I
Job Scheduling (2/3)

» The intermediate records of wide dependencies are materialized on
the nodes holding the parent partitions: to simplify fault recovery.

» If a task fails, it will be re-ran on another node, as long as its stages
parents are available.

> If some stages become unavailable, the tasks are submitted to com-
pute the missing partitions in parallel.

BN,
RDD Fault Tolerance (3/3)

» Recovery may be time-consuming for RDDs with long lineage chains
and wide dependencies.

» It can be helpful to checkpoint some RDDs to stable storage.

» Decision about which data to checkpoint is left to users.

BN
Memory Management (1/2)

» If there is not enough space in memory for a new computed RDD
partition: a partition from the least recently used RDD is evicted.

» Spark provides three options for storage of persistent RDDs:

@ In memory storage as deserialized Java objects.
@ In memory storage as serialized Java objects.
@ On disk storage.

BN
Memory Management (2/2)

v

When an RDD is persisted, each node stores any partitions of the
RDD that it computes in memory.

v

This allows future actions to be much faster.

\{

Persisting an RDD using persist() or cache() methods.

v

Different storage levels:

MEMORY_ONLY

MEMORY_AND_DISK

MEMORY_ONLY_SER

MEMORY_AND_DISK_SER

MEMORY_ONLY_2, MEMORY_AND_DISK_ 2, etc.

INNSS———
RDD Applications

» Applications suitable for RDDs

» Batch applications that apply the same operation to all elements of
a dataset.

» Applications not suitable for RDDs

¢ Applications that make asynchronous fine-grained updates to shared
state, e.g., storage system for a web application.

Summary

» RDD: a distributed memory abstraction that is both fault tolerant
and efficient

» Two types of operations: Transformations and Actions.

» RDD fault tolerance: Lineage

Questions?

