
Stratosphere

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
April 22, 2014

Amir H. Payberah (SICS) Stratosphere April 22, 2014 1 / 38



Motivation

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 2 / 38



Proposed Solution

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 3 / 38



Stratosphere Programming Model
(PACT)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 4 / 38



Stratosphere Programming Model (1/2)

I Stratosphere’s programming model is based on parallelizable opera-
tors.

I Parallelizable operators are higer-order functions that execute user-
defined (first-order) functions in parallel on the input data.

I They are also called transformation or second-order functions.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 5 / 38



Stratosphere Programming Model (2/2)

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Job description based on directed acyclic graphs (DAG).

Amir H. Payberah (SICS) Stratosphere April 22, 2014 6 / 38



Transformations (1/7)

I Map

I Reduce

I Join

I Cross

I CoGroup

I Union

Amir H. Payberah (SICS) Stratosphere April 22, 2014 7 / 38



Transformations: Map (2/7)

I All pairs are independently processed.

val input: DataSet[(Int, String)] = ...

val mapped = input.map { (a, b) => (a + 2, b) }

val filtered = input.filter { (a, b) => a > 3 }

val mapped2 = input.flatMap { _._2.split(" ") }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 8 / 38



Transformations: Map (2/7)

I All pairs are independently processed.

val input: DataSet[(Int, String)] = ...

val mapped = input.map { (a, b) => (a + 2, b) }

val filtered = input.filter { (a, b) => a > 3 }

val mapped2 = input.flatMap { _._2.split(" ") }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 8 / 38



Transformations: Reduce (3/7)

I Pairs with identical key are grouped.

I Groups are independently processed.

val input: DataSet[(String, Int)] = ...

val reduced = input

.groupBy { _._1 }

.reduceGroup { _.minBy {_._2} }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 9 / 38



Transformations: Reduce (3/7)

I Pairs with identical key are grouped.

I Groups are independently processed.

val input: DataSet[(String, Int)] = ...

val reduced = input

.groupBy { _._1 }

.reduceGroup { _.minBy {_._2} }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 9 / 38



Transformations: Join (4/7)

I Performs an equi-join on the key.

I Join candidates are independently processed.

val counts: DataSet[(String, Int)] = ...

val names: DataSet[(Int, String)] = ...

val join = counts.join(names)

.where { _._2 }

.isEqualTo { _._1 }

.map { (l, r) => l._1 + "and" + r._2 }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 10 / 38



Transformations: Join (4/7)

I Performs an equi-join on the key.

I Join candidates are independently processed.

val counts: DataSet[(String, Int)] = ...

val names: DataSet[(Int, String)] = ...

val join = counts.join(names)

.where { _._2 }

.isEqualTo { _._1 }

.map { (l, r) => l._1 + "and" + r._2 }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 10 / 38



Transformations: Cross (5/7)

I Builds a Cartesian Product (CP).

I Elements of CP are independently processed.

val left: DataSet[(String, Int)] = ...

val right: DataSet[(String, Int)] = ...

val crossed = left.cross(right)

.map { (l, r) => ... }

val crossed2 = left.cross(right)

.flatMap { (l, r) => ... }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 11 / 38



Transformations: Cross (5/7)

I Builds a Cartesian Product (CP).

I Elements of CP are independently processed.

val left: DataSet[(String, Int)] = ...

val right: DataSet[(String, Int)] = ...

val crossed = left.cross(right)

.map { (l, r) => ... }

val crossed2 = left.cross(right)

.flatMap { (l, r) => ... }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 11 / 38



Transformations: CoGroup (6/7)

I Groups each input on key.

I Groups with identical keys are processed to-
gether.

val counts: DataSet[(String, Int)] = ...

val names: DataSet[(Int, String)] = ...

val cogrouped = counts.cogroup(names)

.where { _._2 } isEqualTo { _._1 }

.map { (l, r) => ... }

val cogrouped2 = counts.cogroup(names)

.where { (_, c) => c } isEqualTo { (n, _) => n }

.map { (l, r) => ... }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 12 / 38



Transformations: CoGroup (6/7)

I Groups each input on key.

I Groups with identical keys are processed to-
gether.

val counts: DataSet[(String, Int)] = ...

val names: DataSet[(Int, String)] = ...

val cogrouped = counts.cogroup(names)

.where { _._2 } isEqualTo { _._1 }

.map { (l, r) => ... }

val cogrouped2 = counts.cogroup(names)

.where { (_, c) => c } isEqualTo { (n, _) => n }

.map { (l, r) => ... }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 12 / 38



Transformations: Union (7/7)

I Union is an operator without a user-defined function.

I It merges two or more input data sets into a single output data set
using bag semantics, i.e., duplicates are not removed.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 13 / 38



DataSet

I DataSet is the core of the Stratosphere Scala API.

I It looks and behaves like a regular Scala collection.

I It does not contain any actual data but only represents data.

I An operation on DataSet creates a new DataSet.

val input: DataSet[(String, Int)] = ...

val mapped = input.map { a => (a._1, a._2 + 1) }

Amir H. Payberah (SICS) Stratosphere April 22, 2014 14 / 38



Skeleton of a Stratosphere Program

1 Data source: text file, JDBC, CSV, etc.
• Loaded in internal representation: DataSet

2 Transformations on DataSet: map, reduce, join, etc.
• Higher-order function

3 Data sink: text file, JDBC, CSV, etc.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 15 / 38



Data Source

// type: DataSet[String]

val input = TextFile("hdfs://")

// type: DataSet[(Int, String)]

val input = DataSource("file://", CsvInputFormat[(Int, String)]())

// type: DataSet[(Int, Int)]

def parseInput(line: String): (Int, Int) = {...}

val input = DataSource("hdfs://", DelimitedInputFormat(parseInput))

Amir H. Payberah (SICS) Stratosphere April 22, 2014 16 / 38



Data Sink

val counts: DataSet[(String, Int)] = ...

val sink = counts.write("hdfs://", CsvOutputFormat())

def formatOutput(a: (String, Int)): String = {

"Word " + a._1 + " count " + a._2

}

val sink = counts.write("file://", DelimitedOutputFormat(formatOutput))

Amir H. Payberah (SICS) Stratosphere April 22, 2014 17 / 38



Example: Word Count

val input = TextFile(textInput)

val words = input.flatMap { _.split(" ") map { (_, 1) } }

val counts = words.groupBy { case (word, _) => word }

.reduce { (w1, w2) => (w1._1, w1._2 + w2._2) }

val output = counts.write(wordsOutput, CsvOutputFormat())

Transformation

Data source

Data sink

Amir H. Payberah (SICS) Stratosphere April 22, 2014 18 / 38



Example: Word Count

val input = TextFile(textInput)

val words = input.flatMap { _.split(" ") map { (_, 1) } }

val counts = words.groupBy { case (word, _) => word }

.reduce { (w1, w2) => (w1._1, w1._2 + w2._2) }

val output = counts.write(wordsOutput, CsvOutputFormat())

Transformation

Data source

Data sink

Amir H. Payberah (SICS) Stratosphere April 22, 2014 18 / 38



Example: Word Count - Local Execution

val input = TextFile(textInput)

val words = input.flatMap { _.split(" ") map { (_, 1) } }

val counts = words.groupBy { case (word, _) => word }

.reduce { (w1, w2) => (w1._1, w1._2 + w2._2) }

val output = counts.write(wordsOutput, CsvOutputFormat())

val plan = new ScalaPlan(Seq(output))

val ex = new LocalExecutor()

ex.start()

ex.executePlan(plan)

ex.stop()

Amir H. Payberah (SICS) Stratosphere April 22, 2014 19 / 38



Example: Word Count - Remote Execution

val input = TextFile(textInput)

val words = input.flatMap { _.split(" ") map { (_, 1) } }

val counts = words.groupBy { case (word, _) => word }

.reduce { (w1, w2) => (w1._1, w1._2 + w2._2) }

val output = counts.write(wordsOutput, CsvOutputFormat())

val plan = new ScalaPlan(Seq(output))

val ex = new RemoteExecutor("localhost", 6123, "target/some.jar")

ex.executePlan(plan)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 20 / 38



Iteration (1/6)

I Loop over the working data multiple times.

I Iterations with hadoop
• Slow: using HDFS
• Everything has to be read over and over again

Amir H. Payberah (SICS) Stratosphere April 22, 2014 21 / 38



Iteration (1/6)

I Loop over the working data multiple times.

I Iterations with hadoop
• Slow: using HDFS
• Everything has to be read over and over again

Amir H. Payberah (SICS) Stratosphere April 22, 2014 21 / 38



Iteration (2/6)

I Two types of iteration at stratosphere:
• Bulk iteration
• Delta iteration

I Both operators repeatedly invoke the step function on the current
iteration state until a certain termination condition is reached.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 22 / 38



Iteration - Bulk Iteration (3/6)

I In each iteration, the step function consumes the entire input (the
result of the previous iteration, or the initial data set), and computes
the next version of the partial solution.

I A new version of the entire model in each iteration.

val input: DataSet[Int] = ...

def step(partial: DataSet[Int]) = {

val nextPartial = partial.map { a => a + 1 }

nextPartial

}

val numIter = 10;

val iter = input.iterate(numIter, step)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 23 / 38



Iteration - Bulk Iteration (3/6)

I In each iteration, the step function consumes the entire input (the
result of the previous iteration, or the initial data set), and computes
the next version of the partial solution.

I A new version of the entire model in each iteration.

val input: DataSet[Int] = ...

def step(partial: DataSet[Int]) = {

val nextPartial = partial.map { a => a + 1 }

nextPartial

}

val numIter = 10;

val iter = input.iterate(numIter, step)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 23 / 38



Iteration - Bulk Iteration (4/6)

// 1st 2nd 10th

map(1) -> 2 map(2) -> 3 ... map(10) -> 11

map(2) -> 3 map(3) -> 4 ... map(11) -> 12

map(3) -> 4 map(4) -> 5 ... map(12) -> 13

map(4) -> 5 map(5) -> 6 ... map(13) -> 14

map(5) -> 6 map(6) -> 7 ... map(14) -> 15

Amir H. Payberah (SICS) Stratosphere April 22, 2014 24 / 38



Iteration - Delta Iteration (5/6)

I Only parts of the model change in each iteration.

val input: DataSet[(Int, Int)] = ...

val initWorkset: DataSet[(Int, Int)] = ...

val initSolutionSet: DataSet[(Int, Int)] = ...

def step(ss: DataSet[(Int, Int)], ws: DataSet[(Int, Int)]) = {

val delta = ...

val nextWorkset = ...

(delta, nextWorkset)

}

val maxIter = 10;

val iter = input.iterateWithWorkset(initSolutionSet, initWorkset, step, maxIter)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 25 / 38



Iteration - Delta Iteration (5/6)

I Only parts of the model change in each iteration.

val input: DataSet[(Int, Int)] = ...

val initWorkset: DataSet[(Int, Int)] = ...

val initSolutionSet: DataSet[(Int, Int)] = ...

def step(ss: DataSet[(Int, Int)], ws: DataSet[(Int, Int)]) = {

val delta = ...

val nextWorkset = ...

(delta, nextWorkset)

}

val maxIter = 10;

val iter = input.iterateWithWorkset(initSolutionSet, initWorkset, step, maxIter)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 25 / 38



Iteration - Delta Iteration (6/6)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 26 / 38



Stratosphere Executin Engine
(Nephele)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 27 / 38



Challenges

I Most of the existing processing frameworks, e.g., MapReduced, are
designed for cluster environments.

• Static and homogenous resources.
• Not suitable for cloud environments.

I Given a set of compute resources, how to distribute the particular
tasks of a job among them?

I Given a job, what compute resources match the tasks the job con-
sists of best?

Amir H. Payberah (SICS) Stratosphere April 22, 2014 28 / 38



Challenges

I Most of the existing processing frameworks, e.g., MapReduced, are
designed for cluster environments.

• Static and homogenous resources.
• Not suitable for cloud environments.

I Given a set of compute resources, how to distribute the particular
tasks of a job among them?

I Given a job, what compute resources match the tasks the job con-
sists of best?

Amir H. Payberah (SICS) Stratosphere April 22, 2014 28 / 38



Architecture

I Master-worker model

I Job Manager (JM): responsible for scheduling the received jobs and
coordinating their execution.

I Task Manager (TM): receives tasks from the JM, executes them
and informs the JM about their completion or possible errors.

• Runs on VMs (instances)

Amir H. Payberah (SICS) Stratosphere April 22, 2014 29 / 38



Job Description

I Jobs are expressed as a directed acyclic graph (DAG), called job
graph.

I Each vertex in the job graph represtes a task.

I Users define tasks and their relations on an abstract level.

I They can also explicitly provide furthure annotations to their job.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 30 / 38



Execution Graph

I Job graphs are transformed into the execution graph.

I Execution graph: informaiton to schedule and execute a job.

I Group vertex: corresponds to every vertex (task) of the job graph.

I Execution vertex: every task in a job graph is transformed into one
or more subtasks (if the task is suitable for parallel execution).

Job graph

Execution graph

Amir H. Payberah (SICS) Stratosphere April 22, 2014 31 / 38



Job Scheduling and Execution (1/2)

I Job graph is given to the Job Manager (JM).

I JM decides about the number of and type of instnaces (VM).

I The new instnaces boot up with a previously compiled VM image.

I The image starts a Task Manager (TM) and registers it with the
JM.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 32 / 38



Job Scheduling and Execution (2/2)

I The requested instances may not available: cause a problem.

I Separates the execution graph into execution stages.
• Contains at least one group vertex.
• Starts when all its preceding stages have been successfully processed.
• When the processing of a stage begins, all instances required within

the stage are allocated.

Job graph

Execution graph

Amir H. Payberah (SICS) Stratosphere April 22, 2014 33 / 38



Channels (1/2)

I Network channels (pipeline)
• Vertices must be in same stage.

I In-memory channels (pipeline)
• Vertices must run on same VM.
• Vertices must be in same stage.

I File channels
• Vertices must run on same VM.
• Vertices must be in different stage.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 34 / 38



Channels (2/2)

I Pipelined
• Online transfer to receiver.
• Receiver must be online.
• Receiving speed limits sender speed.

I Materialized
• Sender writes result to disk, and afterwards it transferred to receiver.
• Materialized result can be used in a checkpoint for recovery.
• Similar to Hadoop Map task results.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 35 / 38



Fault Tolerance

I Task failure compensated by backup task deployment.

I Lost intermediate results have to be reproduced
• Track the execution graph back to the latest available result.
• Latest available result may be input, if nothing is materialized.

I When a sender fails, an online receiver must be restarted.
• If tasks are deterministic, the sender just disregards all input it has

already seen.

Amir H. Payberah (SICS) Stratosphere April 22, 2014 36 / 38



Summary

I PACT:
• Extends MapReduce with more operations: map, reduce, join, cross,

cogroup
• Supports advanced data flow graph

I Nephele:
• It is designed for cloud environments.
• Transforms job graphs to execution graphs and executes its tasks over

instances (VMs).

Amir H. Payberah (SICS) Stratosphere April 22, 2014 37 / 38



Questions?

Acknowledgements

Some pictures were derived from the Stratosphere web site
(stratosphere.eu).

Amir H. Payberah (SICS) Stratosphere April 22, 2014 38 / 38


