Information Flow Processing

Amir H. Payberah Swedish Institute of Computer Science

> amir@sics.se May 8, 2014

Many applications must process large streams of live data and provide results in real-time.

- Many applications must process large streams of live data and provide results in real-time.
 - · Wireless sensor networks
 - Traffic management applications
 - Stock marketing
 - Environmental monitoring applications
 - Fraud detection tools
 - ..

▶ Processing information as it flows, without storing them persistently.

- ▶ Processing information as it flows, without storing them persistently.
- Traditional DBMSs:
 - Store and index data before processing it.
 - Process data only when explicitly asked by the users.

- ▶ Processing information as it flows, without storing them persistently.
- ► Traditional DBMSs:
 - Store and index data before processing it.
 - Process data only when explicitly asked by the users.
 - Both aspects contrast with our requirements.

One Name, Different Technologies

- ► Several research communities are contributing in this area:
 - Each brings its own expertise
 - Point of view
 - Vocabulary: event, data, stream, ...

One Name, Different Technologies

- Several research communities are contributing in this area:
 - Each brings its own expertise
 - Point of view
 - Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let's go down and confuse them by making them speak different languages, then they won't be able to understand each other.

Genesis 11:7

Information Flow Processing (IFP)

- ► Source: produces the incoming information flows
- ► Sink: consumes the results of processing
- ► IFP engine: processes incoming flows
- Processing rules: how to process the incoming flows
- ► Rule manager: adds/removes processing rules

IFP Competing Models

- ► Data Stream Management Systems (DSMS)
- ► Complex Event Processing (CEP)

IFP Competing Models

- ▶ Data Stream Management Systems (DSMS)
- ► Complex Event Processing (CEP)

Data Stream Management Systems (DSMS)

► An evolution of traditional data processing, as supported by DBMSs.

DBMS vs. DSMS (1/3)

- ▶ DBMS: persistent data where updates are relatively infrequent.
- ▶ DSMS: transient data that is continuously updated.

DBMS vs. DSMS (2/3)

- ▶ DBMS: runs queries just once to return a complete answer.
- ▶ DSMS: executes standing queries, which run continuously and provide updated answers as new data arrives.

DBMS vs. DSMS (3/3)

Despite these differences, DSMSs resemble DBMSs: both process incoming data through a sequence of transformations based on SQL operators, e.g., selections, aggregates, joins.

Out of Scope of DSMS

- ► DSMSs focus on producing query answers.
- Detection and notification of complex patterns of elements are usually out of the scope of DSMSs:

Out of Scope of DSMS

- ► DSMSs focus on producing query answers.
- ► Detection and notification of complex patterns of elements are usually out of the scope of DSMSs: Complex Event Processing

IFP Competing Models

- ► Data Stream Management Systems (DSMS)
- ► Complex Event Processing (CEP)

Complex Event Processing (CEP)

- ▶ DSMSs limitation: detecting complex patterns of incoming items, involving sequencing and ordering relationships.
- CEP models flowing information items as notifications of events happening in the external world.
 - They have to be filtered and combined to understand what is happening in terms of higher-level events.

CEP vs. Publish/Subscribe Systems

► CEP systems can be seen as an extension to traditional publish/subscribe systems.

CEP vs. Publish/Subscribe Systems

- ► CEP systems can be seen as an extension to traditional publish/subscribe systems.
- ► Traditional publish/subscribe systems consider each event separately from the others, and filter them based on their topic or content.

CEP vs. Publish/Subscribe Systems

- ► CEP systems can be seen as an extension to traditional publish/subscribe systems.
- ► Traditional publish/subscribe systems consider each event separately from the others, and filter them based on their topic or content.
- ► CEPs extend this functionality by increasing the expressive power of the subscription language to consider complex event patterns that involve the occurrence of multiple related events.

Outline

- ► Stream processing engine
- ► Fault tolerance
- ► Related work
- Spark Stream (DStream)

Outline

- ► Stream processing engine
- ► Fault tolerance
- ► Related work
- ► Spark Stream (DStream)

Stream processing engine

▶ Stream: a sequence of unbounded tuples generated continuously in time: $\cdots (a_1, a_2, \cdots, a_n, t-1)(a_1, a_2, \cdots, a_n, t)(a_1, a_2, \cdots, a_n, t+1) \cdots$, where a_i denotes an attribute.

Stream processing engine

- Stream: a sequence of unbounded tuples generated continuously in time: ...(a₁, a₂, ..., aₙ, t − 1)(a₁, a₂, ..., aₙ, t)(a₁, a₂, ..., aₙ, t + 1)..., where aᵢ denotes an attribute.
- Stream processing engine: creates a logical network of PEs connected in a DAG.
- ► Processing Element (PE): a processing unit in a stream processing engine.

Processing Element (PE)

- Execute independently and in parallel
- ► Not synchronized
- ► Communicate through messaging: push-based vs. pull-based
- ► Upstream node vs. downstream node
- ▶ PE output: not emit a tuple, emit a tuple, or emit a tuple in a periodic manner

PE Physical Deployment

► A single PE can be running in parallel on different nodes.

Outline

- ► Stream processing engine
- ► Fault tolerance
- ► Related work
- ► Spark Stream (DStream)

Fault Tolerance

- ▶ The recovery methods of streaming frameworks must take:
 - Correctness, e.g., data loss and duplicates
 - Performance, e.g., low latency

Basic Idea

- ► Each processing node has an associated backup node.
- The backup node's stream processing engine is identical to the primary one.
- But the state of the backup node is not necessarily the same as that of the primary.
- ▶ If a primary node fails, its backup node takes over the operation of the failed node.

Recovery Methods

- ► GAP recovery
- ► Rollback recovery
- Precise recovery

GAP Recovery

- ► The weakest recovery guarantee
- ► A new task takes over the operations of the failed task.
- ► The new task starts from an empty state.
- ► Tuples can be lost during the recovery phase.

Rollback Recovery

- ► The information loss is avoided, but the output may contain duplicate tuples.
- ► Three types of rollback recovery:
 - Active backup
 - · Passive backup
 - Upstream backup

Rollback Recovery - Active Backup

- ▶ Both primary and backup nodes are given the same input.
- ► The output tuples of the backup node are logged at the output queues and they are not sent downstream.
- ▶ If the primary fails, the backup takes over by sending the logged tuples to all downstream neighbors and then continuing its processing.

Rollback Recovery - Passive Backup

- ▶ Periodically check-points processing state to a shared storage.
- The backup node takes over from the latest checkpoint when the primary fails.
- ► The backup node is always equal or behind the primary.

Rollback Recovery - Upstream Backup

- Upstream nodes store the tuples until the downstream nodes acknowledge them.
- ▶ If a node fails, an empty node rebuilds the latest state of the failed primary from the logs kept at the upstream server.
- ► There is no backup node in this model.

Precise Recovery

- ▶ Post-failure output is exactly the same as the output without failure.
- ► Can be achieved by modifying the algorithms for rollback recovery.
 - For example, in passive backup, after a failure occurs the backup node can ask the downstream nodes for the latest tuples they received and trim the output queues accordingly to prevent the duplicates.

Outline

- ► Stream processing engine
- ► Fault tolerance
- ► Related work
- ► Spark Stream (DStream)

Related Work

- ► Aurora
- ► Borealis
- ► Storm
- ► S4

Aurora

- ► A single site stream-processing engine (centralized).
- ▶ DAG based processing model for streams.
- ► Push-based strategy.
- ► The first Aurora did not support fault tolerance.
- ► Stream Query Algebra (SQuAI), i.e., SQL with additional features, e.g., windowed queries.

Borealis

- Distributed version of Aurora.
- Advanced functionalities on top of Aurora:
 - Dynamic revision of query results: correct errors in previously reported data.
 - Dynamic query modifications: change certain attributes of the query at runtime.
- ► Pull-based strategy.
- ▶ Rollback recovery with active backup.

Storm (1/2)

- ► Stream processing is guaranteed: a message cannot be lost due to node failures.
- ► DAG based processing:
 - the DAG is called Topology
 - the PEs are called Bolts
 - the stream sources are called Spouts
- It does not have an explicit programming paradigm.

Storm (2/2)

- ► Pull-based strategy.
- Rollback recovery with upstream backup.
- ► Three sets of nodes:
 - Nimbus: distributes the code among the worker nodes, and keeps track of the progress of the worker nodes
 - Supervisor: the set of worker nodes
 - Zookeeper: coordination between supervisor nodes and the Nimbus
- Built by twitter

S4(1/2)

▶ S4: Simple Scalable Streaming System.

- ► Constructing a DAG structure of PEs at runtime.
 - A PE is instantiated for each value of the key attribute.
- ► The processing model is inspired by MapReduce.
- Events are dispatched to nodes according to their key.

S4(2/2)

- Push-based strategy
- ► GAP recovery
- Communication layer: coordination between the processing nodes and the messaging between nodes.
 - Uses Zookeeper
- ▶ Built by yahoo

Outline

- ► Stream processing engine
- ► Fault tolerance
- ► Related work
- Spark Stream (DStream)

Motivation

- ► To run stream processing at large scale, system has to be both:
 - Fault-tolerant: recover quickly from failures and stragglers.
 - Cost-efficient: do not require significant hardware beyond that needed for basic processing.

Existing streaming systems do not have both properties.

Existing Streaming Systems (1/2)

- ► Record-at-a-time processing model:
 - Each node has mutable state.
 - For each record, updates state and sends new records.
 - State is lost if node dies.

Existing Streaming Systems (2/2)

► Fault tolerance via replication or upstream backup.

Existing Streaming Systems (2/2)

► Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost

Only need one standby, but slow to recover

Existing Streaming Systems (2/2)

► Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost

Only need one standby, but slow to recover

Neither approach tolerates stragglers.

Observation

- Batch processing models for clusters provide fault tolerance efficiently.
- ▶ Divide job into deterministic tasks.
- ► Rerun failed/slow tasks in parallel on other nodes.

Idea

Idea

Run a streaming computation as a series of very small and deterministic batch jobs.

Challenges

- ► Latency (interval granularity)
 - Traditional batch systems replicate state on-disk storage: slow
- Recovering quickly from faults and stragglers

Proposed Solution

- ► Latency (interval granularity)
 - Resilient Distributed Dataset (RDD)
 - Keep data in memory
 - · No replication
- Recovering quickly from faults and stragglers
 - Storing the lineage graph
 - Using the determinism of D-Streams
 - Parallel recovery of a lost node's state

Discretized Stream Processing (D-Stream)

- Run a streaming computation as a series of very small, deterministic batch jobs.
 - Chop up the live stream into batches of X seconds.
 - Spark treats each batch of data as RDDs and processes them using RDD operations.
 - Finally, the processed results of the RDD operations are returned in batches.

D-Stream API (1/4)

- ▶ DStream: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...

D-Stream API (1/4)

- ▶ DStream: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...

► Initializing Spark streaming

```
val scc = new StreamingContext(master, appName, batchDuration,
[sparkHome], [jars])
```

D-Stream API (2/4)

- ▶ Transformations: modify data from on DStream to a new DStream.
 - Standard RDD operations (stateless operations): map, join, ...

D-Stream API (2/4)

- ► Transformations: modify data from on DStream to a new DStream.
 - Standard RDD operations (stateless operations): map, join, ...

 Stateful operations: group all the records from a sliding window of the past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.

Slide interval: the interval at which the operation is performed.

D-Stream API (3/4)

- ▶ Output operations: send data to external entity
 - saveAsHadoopFiles, foreach, print, ...

D-Stream API (3/4)

- Output operations: send data to external entity
 - saveAsHadoopFiles, foreach, print, ...
- Attaching input sources

```
ssc.textFileStream(directory)
ssc.socketStream(hostname, port)
```

D-Stream API (4/4)

► Stream + Batch: It can be used to apply any RDD operation that is not exposed in the DStream API.

```
val spamInfoRDD = sparkContext.hadoopFile(...)
// join data stream with spam information to do data cleaning
val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))
```

D-Stream API (4/4)

Stream + Batch: It can be used to apply any RDD operation that is not exposed in the DStream API.

```
val spamInfoRDD = sparkContext.hadoopFile(...)
// join data stream with spam information to do data cleaning
val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))
```

► Stream + Interactive: Interactive queries on stream state from the Spark interpreter

```
freqs.slice("21:00", "21:05").topK(10)
```

D-Stream API (4/4)

Stream + Batch: It can be used to apply any RDD operation that is not exposed in the DStream API.

```
val spamInfoRDD = sparkContext.hadoopFile(...)
// join data stream with spam information to do data cleaning
val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))
```

► Stream + Interactive: Interactive queries on stream state from the Spark interpreter

```
freqs.slice("21:00", "21:05").topK(10)
```

► Starting/stopping the streaming computation

```
ssc.start()
ssc.stop()
ssc.awaitTermination()
```

Fault Tolerance

- ► Spark remembers the sequence of operations that creates each RDD from the original fault-tolerant input data (lineage graph).
- ► Batches of input data are replicated in memory of multiple worker nodes.
- Data lost due to worker failure, can be recomputed from input data.

Example 1 (1/3)

► Get hash-tags from Twitter.

```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)

DStream: a sequence of RDD representing a stream of data
```

Twitter streaming API batch @ t batch @ t+1 batch @ t+2

tweets DStream Stored in memory as an RDD (immutable, distributed)

Example 1 (2/3)

► Get hash-tags from Twitter.

```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
val hashTags = tweets.flatMap(status => getTags(status))
                       transformation: modify data in one DStream
                               to create another DStream
Twitter streaming API
                  batch @ t
                             batch @ t+1
   tweets DStream
                      flatMap
                                  flatMap
                                               flatMap
 hashTags Dstream
                                                          New RDDs created for
   [#cat, #dog, ...]
                                                              every batch
```

Example 1 (3/3)

► Get hash-tags from Twitter.

```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```


Example 2

► Count frequency of words received every second.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs = ones.reduceByKey(_ + _)
```


Example 3

Count frequency of words received in last minute.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x \Rightarrow (x, 1))
val freqs = ones.reduceByKey(_ + _)
val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)
                      window length
                                          window movement
           words
                   ones
                           freas
                                                                      freas 60s
 Time = 0 - 1 map reduce
                                          freqs 60s
 Time = 1 - 2 map reduce window
 Time = 2 - 3 map reduce
```

Example 3 - Simpler Model

► Count frequency of words received in last minute.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))
```


Example 3 - Incremental Window Operators

► Count frequency of words received in last minute.

```
// Associative only
freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))
// Associative and invertible
freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))
```


Associative and invertible

Example 4 - Standalone Application (1/2)

```
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.storage.StorageLevel
object NetworkWordCount {
 def main(args: Array[String]) {
   val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
    val lines = ssc.socketTextStream(args(1), args(2).toInt)
    val words = lines.flatMap(_.split(" "))
    val ones = words.map(x => (x, 1))
    freqs = ones.reduceByKey(_ + _)
   freqs.print()
    ssc.start()
    ssc.awaitTermination()
```

Example 4 - Standalone Application (2/2)

▶ sics.sbt:

```
name := "Stream Word Count"

version := "1.0"

scalaVersion := "2.10.3"

libraryDependencies ++= Seq(
    "org.apache.spark" %% "spark-core" % "0.9.0-incubating",
    "org.apache.spark" %% "spark-streaming" % "0.9.0-incubating")
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"
```

Summary

- ► IFP: DSMS and CEP
- ► Recovering models: GAP, Rollback, and Precise
- Spark Stream
 - Run a streaming computation as a series of very small, deterministic batch jobs.
 - DStream: sequence of RDDs
 - Operators: Transformations (stateless and stateful) and output operations

Questions?

Acknowledgements

Some slides and pictures were derived from Matei Zaharia slides and the Spark web site (http://spark.apache.org/).