
Information Flow Processing

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
May 8, 2014

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 1 / 61



Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 2 / 61



Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 2 / 61



Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 3 / 61



Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 3 / 61



Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 3 / 61



One Name, Different Technologies

I Several research communities are contribut-
ing in this area:

• Each brings its own expertise
• Point of view
• Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let’s go down and confuse them by making them speak different languages,
then they won’t be able to understand each other.

Genesis 11:7

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 4 / 61



One Name, Different Technologies

I Several research communities are contribut-
ing in this area:

• Each brings its own expertise
• Point of view
• Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let’s go down and confuse them by making them speak different languages,
then they won’t be able to understand each other.

Genesis 11:7

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 4 / 61



Information Flow Processing (IFP)

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 5 / 61



IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 6 / 61



IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 6 / 61



Data Stream Management Systems (DSMS)

I An evolution of traditional data processing, as supported by DBMSs.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 7 / 61



DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 8 / 61



DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 9 / 61



DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 10 / 61



Out of Scope of DSMS

I DSMSs focus on producing query answers.

I Detection and notification of complex patterns of elements are usu-
ally out of the scope of DSMSs:

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 11 / 61



Out of Scope of DSMS

I DSMSs focus on producing query answers.

I Detection and notification of complex patterns of elements are usu-
ally out of the scope of DSMSs: Complex Event Processing

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 11 / 61



IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 12 / 61



Complex Event Processing (CEP)

I DSMSs limitation: detecting complex patterns of incoming items,
involving sequencing and ordering relationships.

I CEP models flowing information items as notifications of events
happening in the external world.

• They have to be filtered and combined to understand what is
happening in terms of higher-level events.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 13 / 61



CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 14 / 61



CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 14 / 61



CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 14 / 61



Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 15 / 61



Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 15 / 61



Stream processing engine

I Stream: a sequence of unbounded tuples generated continuously in
time: · · · (a1, a2, · · · , an, t− 1)(a1, a2, · · · , an, t)(a1, a2, · · · , an, t + 1) · · ·, where
ai denotes an attribute.

I Stream processing engine: creates a logical network of PEs con-
nected in a DAG.

I Processing Element (PE): a processing unit in a stream processing
engine.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 16 / 61



Stream processing engine

I Stream: a sequence of unbounded tuples generated continuously in
time: · · · (a1, a2, · · · , an, t− 1)(a1, a2, · · · , an, t)(a1, a2, · · · , an, t + 1) · · ·, where
ai denotes an attribute.

I Stream processing engine: creates a logical network of PEs con-
nected in a DAG.

I Processing Element (PE): a processing unit in a stream processing
engine.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 16 / 61



Processing Element (PE)

I Execute independently and in parallel

I Not synchronized

I Communicate through messaging: push-based vs. pull-based

I Upstream node vs. downstream node

I PE output: not emit a tuple, emit a tuple, or emit a tuple in a
periodic manner

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 17 / 61



PE Physical Deployment

I A single PE can be running in parallel on different nodes.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 18 / 61



Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 19 / 61



Fault Tolerance

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 20 / 61



Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 21 / 61



Recovery Methods

I GAP recovery

I Rollback recovery

I Precise recovery

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 22 / 61



GAP Recovery

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 23 / 61



Rollback Recovery

I The information loss is avoided, but the output may contain dupli-
cate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 24 / 61



Rollback Recovery - Active Backup

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

I If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 25 / 61



Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the
primary fails.

I The backup node is always equal or behind the primary.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 26 / 61



Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

I There is no backup node in this model.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 27 / 61



Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup

node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 28 / 61



Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 29 / 61



Related Work

I Aurora

I Borealis

I Storm

I S4

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 30 / 61



Aurora

I A single site stream-processing engine (centralized).

I DAG based processing model for streams.

I Push-based strategy.

I The first Aurora did not support fault tolerance.

I Stream Query Algebra (SQuAl), i.e., SQL with additional features,
e.g., windowed queries.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 31 / 61



Borealis

I Distributed version of Aurora.

I Advanced functionalities on top of Aurora:
• Dynamic revision of query results: correct errors in previously

reported data.
• Dynamic query modifications: change certain attributes of the

query at runtime.

I Pull-based strategy.

I Rollback recovery with active backup.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 32 / 61



Storm (1/2)

I Stream processing is guaranteed: a message cannot be lost due to
node failures.

I DAG based processing:
• the DAG is called Topology
• the PEs are called Bolts
• the stream sources are called Spouts

I It does not have an explicit programming
paradigm.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 33 / 61



Storm (2/2)

I Pull-based strategy.

I Rollback recovery with upstream backup.

I Three sets of nodes:
• Nimbus: distributes the code among the worker nodes, and keeps

track of the progress of the worker nodes
• Supervisor: the set of worker nodes
• Zookeeper: coordination between supervisor nodes and the Nimbus

I Built by twitter

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 34 / 61



S4 (1/2)

I S4: Simple Scalable Streaming System.

I Constructing a DAG structure of PEs at runtime.
• A PE is instantiated for each value of the key attribute.

I The processing model is inspired by MapReduce.

I Events are dispatched to nodes according to their key.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 35 / 61



S4 (2/2)

I Push-based strategy

I GAP recovery

I Communication layer: coordination between the processing nodes
and the messaging between nodes.

• Uses Zookeeper

I Built by yahoo

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 36 / 61



Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 37 / 61



Motivation

I To run stream processing at large scale, system has to be both:
• Fault-tolerant: recover quickly from failures and stragglers.
• Cost-efficient: do not require significant hardware beyond that needed

for basic processing.

I Existing streaming systems do not have both properties.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 38 / 61



Existing Streaming Systems (1/2)

I Record-at-a-time processing model:

• Each node has mutable state.

• For each record, updates state and sends
new records.

• State is lost if node dies.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 39 / 61



Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Neither approach tolerates stragglers.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 40 / 61



Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Neither approach tolerates stragglers.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 40 / 61



Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Neither approach tolerates stragglers.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 40 / 61



Observation

I Batch processing models for clusters provide fault tolerance effi-
ciently.

I Divide job into deterministic tasks.

I Rerun failed/slow tasks in parallel on other nodes.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 41 / 61



Idea

Idea

Run a streaming computation as a series of very small and
deterministic batch jobs.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 42 / 61



Challenges

I Latency (interval granularity)
• Traditional batch systems replicate state on-disk storage: slow

I Recovering quickly from faults and stragglers

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 43 / 61



Proposed Solution

I Latency (interval granularity)
• Resilient Distributed Dataset (RDD)
• Keep data in memory
• No replication

I Recovering quickly from faults and stragglers
• Storing the lineage graph
• Using the determinism of D-Streams
• Parallel recovery of a lost node’s state

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 44 / 61



Discretized Stream Processing (D-Stream)

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 45 / 61



D-Stream API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 46 / 61



D-Stream API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 46 / 61



D-Stream API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless operations): map, join, ...

• Stateful operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 47 / 61



D-Stream API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless operations): map, join, ...

• Stateful operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 47 / 61



D-Stream API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 48 / 61



D-Stream API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 48 / 61



D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 49 / 61



D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 49 / 61



D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 49 / 61



Fault Tolerance

I Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
graph).

I Batches of input data are replicated in
memory of multiple worker nodes.

I Data lost due to worker failure, can be
recomputed from input data.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 50 / 61



Example 1 (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

DStream: a sequence of RDD representing a stream of data

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 51 / 61



Example 1 (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream
to create another DStream

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 52 / 61



Example 1 (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 53 / 61



Example 2

I Count frequency of words received every second.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 54 / 61



Example 3

I Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)

window length window movement

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 55 / 61



Example 3 - Simpler Model

I Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 56 / 61



Example 3 - Incremental Window Operators

I Count frequency of words received in last minute.

// Associative only

freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

// Associative and invertible

freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))

Associative only Associative and invertible

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 57 / 61



Example 4 - Standalone Application (1/2)

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.storage.StorageLevel

object NetworkWordCount {

def main(args: Array[String]) {

...

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

freqs = ones.reduceByKey(_ + _)

freqs.print()

ssc.start()

ssc.awaitTermination()

}

}

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 58 / 61



Example 4 - Standalone Application (2/2)

I sics.sbt:

name := "Stream Word Count"

version := "1.0"

scalaVersion := "2.10.3"

libraryDependencies ++= Seq(

"org.apache.spark" %% "spark-core" % "0.9.0-incubating",

"org.apache.spark" %% "spark-streaming" % "0.9.0-incubating"

)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 59 / 61



Summary

I IFP: DSMS and CEP

I Recovering models: GAP, Rollback, and Precise

I Spark Stream
• Run a streaming computation as a series of very small, deterministic

batch jobs.
• DStream: sequence of RDDs
• Operators: Transformations (stateless and stateful) and output

operations

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 60 / 61



Questions?

Acknowledgements

Some slides and pictures were derived from Matei Zaharia slides
and the Spark web site (http://spark.apache.org/).

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 61 / 61


