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Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...
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Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.
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One Name, Different Technologies

I Several research communities are contribut-
ing in this area:

• Each brings its own expertise
• Point of view
• Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let’s go down and confuse them by making them speak different languages,
then they won’t be able to understand each other.

Genesis 11:7
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Information Flow Processing (IFP)

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules
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IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 6 / 61



IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 6 / 61



Data Stream Management Systems (DSMS)

I An evolution of traditional data processing, as supported by DBMSs.
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DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.
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DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.
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DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.
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Out of Scope of DSMS

I DSMSs focus on producing query answers.

I Detection and notification of complex patterns of elements are usu-
ally out of the scope of DSMSs:
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Complex Event Processing (CEP)

I DSMSs limitation: detecting complex patterns of incoming items,
involving sequencing and ordering relationships.

I CEP models flowing information items as notifications of events
happening in the external world.

• They have to be filtered and combined to understand what is
happening in terms of higher-level events.
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CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.
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Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)
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Stream processing engine

I Stream: a sequence of unbounded tuples generated continuously in
time: · · · (a1, a2, · · · , an, t− 1)(a1, a2, · · · , an, t)(a1, a2, · · · , an, t + 1) · · ·, where
ai denotes an attribute.

I Stream processing engine: creates a logical network of PEs con-
nected in a DAG.

I Processing Element (PE): a processing unit in a stream processing
engine.
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Processing Element (PE)

I Execute independently and in parallel

I Not synchronized

I Communicate through messaging: push-based vs. pull-based

I Upstream node vs. downstream node

I PE output: not emit a tuple, emit a tuple, or emit a tuple in a
periodic manner
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PE Physical Deployment

I A single PE can be running in parallel on different nodes.
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Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)
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Fault Tolerance

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency
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Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.
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Recovery Methods

I GAP recovery

I Rollback recovery

I Precise recovery
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GAP Recovery

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.
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Rollback Recovery

I The information loss is avoided, but the output may contain dupli-
cate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup
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Rollback Recovery - Active Backup

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

I If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.
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Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the
primary fails.

I The backup node is always equal or behind the primary.
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Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

I There is no backup node in this model.
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Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup

node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.
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Outline

I Stream processing engine

I Fault tolerance
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I Spark Stream (DStream)
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Related Work

I Aurora

I Borealis

I Storm

I S4
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Aurora

I A single site stream-processing engine (centralized).

I DAG based processing model for streams.

I Push-based strategy.

I The first Aurora did not support fault tolerance.

I Stream Query Algebra (SQuAl), i.e., SQL with additional features,
e.g., windowed queries.

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 31 / 61



Borealis

I Distributed version of Aurora.

I Advanced functionalities on top of Aurora:
• Dynamic revision of query results: correct errors in previously

reported data.
• Dynamic query modifications: change certain attributes of the

query at runtime.

I Pull-based strategy.

I Rollback recovery with active backup.
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Storm (1/2)

I Stream processing is guaranteed: a message cannot be lost due to
node failures.

I DAG based processing:
• the DAG is called Topology
• the PEs are called Bolts
• the stream sources are called Spouts

I It does not have an explicit programming
paradigm.
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Storm (2/2)

I Pull-based strategy.

I Rollback recovery with upstream backup.

I Three sets of nodes:
• Nimbus: distributes the code among the worker nodes, and keeps

track of the progress of the worker nodes
• Supervisor: the set of worker nodes
• Zookeeper: coordination between supervisor nodes and the Nimbus

I Built by twitter
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S4 (1/2)

I S4: Simple Scalable Streaming System.

I Constructing a DAG structure of PEs at runtime.
• A PE is instantiated for each value of the key attribute.

I The processing model is inspired by MapReduce.

I Events are dispatched to nodes according to their key.
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S4 (2/2)

I Push-based strategy

I GAP recovery

I Communication layer: coordination between the processing nodes
and the messaging between nodes.

• Uses Zookeeper

I Built by yahoo
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Outline

I Stream processing engine

I Fault tolerance

I Related work

I Spark Stream (DStream)
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Motivation

I To run stream processing at large scale, system has to be both:
• Fault-tolerant: recover quickly from failures and stragglers.
• Cost-efficient: do not require significant hardware beyond that needed

for basic processing.

I Existing streaming systems do not have both properties.
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Existing Streaming Systems (1/2)

I Record-at-a-time processing model:

• Each node has mutable state.

• For each record, updates state and sends
new records.

• State is lost if node dies.
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Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Neither approach tolerates stragglers.
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Observation

I Batch processing models for clusters provide fault tolerance effi-
ciently.

I Divide job into deterministic tasks.

I Rerun failed/slow tasks in parallel on other nodes.
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Idea

Idea

Run a streaming computation as a series of very small and
deterministic batch jobs.
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Challenges

I Latency (interval granularity)
• Traditional batch systems replicate state on-disk storage: slow

I Recovering quickly from faults and stragglers
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Proposed Solution

I Latency (interval granularity)
• Resilient Distributed Dataset (RDD)
• Keep data in memory
• No replication

I Recovering quickly from faults and stragglers
• Storing the lineage graph
• Using the determinism of D-Streams
• Parallel recovery of a lost node’s state
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Discretized Stream Processing (D-Stream)

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.
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D-Stream API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])
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D-Stream API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless operations): map, join, ...

• Stateful operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.
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D-Stream API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)
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D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()
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Fault Tolerance

I Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
graph).

I Batches of input data are replicated in
memory of multiple worker nodes.

I Data lost due to worker failure, can be
recomputed from input data.
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Example 1 (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

DStream: a sequence of RDD representing a stream of data
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Example 1 (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream
to create another DStream
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Example 1 (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")
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Example 2

I Count frequency of words received every second.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

Amir H. Payberah (SICS) Information Flow Processing May 8, 2014 54 / 61



Example 3

I Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)

window length window movement
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Example 3 - Simpler Model

I Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))
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Example 3 - Incremental Window Operators

I Count frequency of words received in last minute.

// Associative only

freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

// Associative and invertible

freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))

Associative only Associative and invertible
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Example 4 - Standalone Application (1/2)

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.storage.StorageLevel

object NetworkWordCount {

def main(args: Array[String]) {

...

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

freqs = ones.reduceByKey(_ + _)

freqs.print()

ssc.start()

ssc.awaitTermination()

}

}
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Example 4 - Standalone Application (2/2)

I sics.sbt:

name := "Stream Word Count"

version := "1.0"

scalaVersion := "2.10.3"

libraryDependencies ++= Seq(

"org.apache.spark" %% "spark-core" % "0.9.0-incubating",

"org.apache.spark" %% "spark-streaming" % "0.9.0-incubating"

)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"
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Summary

I IFP: DSMS and CEP

I Recovering models: GAP, Rollback, and Precise

I Spark Stream
• Run a streaming computation as a series of very small, deterministic

batch jobs.
• DStream: sequence of RDDs
• Operators: Transformations (stateless and stateful) and output

operations
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Questions?
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