Stream Processing In The Cloud

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

Stream Processing In The Cloud

Motivation

» Users of big data applications expect fresh results.

» New stream processing systems are designed to scale to large num-
bers of cloud-hosted machines.

L
Motivation

» Clouds provide virtually infinite pools of resources.

» Fast and cheap access to new machines (VMs) for operators.

» How do you decide on the optimal number of VMs?

» Over-provisioning system is expense.
e Too few nodes leads to poor performance.

BN
Challenges

» Elastic data-parallel processing

» Fault-tolerant processing

Challenge: Elastic Data-Parallel Processing

» Typical stream processing workloads are bursty.

» High and bursty input rates — detect bottleneck + parallelize

100%
80%
5 60%
g 40%
=
=1
20%
%
09/07 09/08 09/09 09/10 09/11 09/12 09/13

Date

100%
0% -
5 ye

588

er
23333338

Courtesy of MSRC

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 6 /47

Challenge: Fault-Tolerant Processing

» Large scale deployment — handle node failures.

G G

|
States in Stream Processing

» Many online applications, like machine learning algorithms, require

state.

Stream Processing System
(eg Twitter Storm, Yahoo $4,...)

User
Activities Recommendations

= —

(eg item
purchases,
page views, Item 1 Item 2

clicks, ...)
‘ Processing | User4 2 5
State UserB 4 1

1393/9/1

8 /47

R
What is State?

A Processing state 6 Routing state

UserA 2 5 Based on data, A BorA= C

. Buffer state

Data Data Data

Data
ts4

[Item 1 Item j Dynamic data flow graph:

UserB 4 1

ag

1393/9/1

9 /47

State Complicates Things

» Dynamic scale out impacts state.

Partitioning
of state

-
State Complicates Things

» Dynamic scale out impacts state.

Partitioning
of state

» Recovery from failures.
Loss of state
after node
failure

1393/9/1 10/ 47

INNSS———
Operators States

» Stateless operators, e.g., filter and map

INNSS———
Operators States

» Stateless operators, e.g., filter and map

» Stateful operators, e.g., join and aggregate

Operators States

» Stateless operators, e.g., filter and map

» Stateful operators, e.g., join and aggregate

» Window operators, use use the concept of a finite window of tuples.

temp |temp |temp |temp |temp
rain rain rain rain rain
window

1393/9/1

11 / 47

SEEP

L
Contribution

» Build a stream processing system that scale out while remaining
fault tolerant when queries contain stateful operators.

Core ldea

> Make operator state an external entity that can be managed by the
stream processing system.

o
Core ldea

> Make operator state an external entity that can be managed by the
stream processing system.

» Operators have direct access to states.

Core ldea

> Make operator state an external entity that can be managed by the
stream processing system.

» Operators have direct access to states.

» The system manages states.

INNSS———
Operator State Management

» On scale out: partition operator state correctly, maintaining consis-
tency

INNSS———
Operator State Management

» On scale out: partition operator state correctly, maintaining consis-
tency

» On failure recovery: restore state of failed operator

INNSS———
Operator State Management

» On scale out: partition operator state correctly, maintaining consis-
tency

» On failure recovery: restore state of failed operator

> Define primitives for state management and build other mechanisms
on top of them.

State Management Primitives

» Checkpoint Checkpoint
e Makes state available to system. ts
¢ Attaches last processed tuple timestamp.

State Management Primitives

» Checkpoint

e Makes state available to system.
¢ Attaches last processed tuple timestamp.

» Backup/Restore

¢ Moves copy of state from
one operator to another.

O

R ——
State Management Primitives

» Checkpoint Checkpoint

e Makes state available to system.
e Attaches last processed tuple timestamp.

» Backup/Restore

e Moves copy of state from A
one operator to another. Q
restore M\
» Partition Partition

 Splits state to scale out an operator. QA @

* Amir H. Payberah (Tehran Polytechnic) SEEP and DStream e G0

INNSS———
State Primitives: Checkpoint

» Checkpoint state = the processing state + the buffer state

INNSS———
State Primitives: Checkpoint

» Checkpoint state = the processing state + the buffer state

» That routing state is not included in the state checkpoint.
e |t only changes in case of scale out or recovery.

INNSS———
State Primitives: Checkpoint

» Checkpoint state = the processing state + the buffer state

» That routing state is not included in the state checkpoint.
e |t only changes in case of scale out or recovery.

» The system executes checkpoint asynchronously and periodically.

I
State Primitives: Backup and Restore (1/2)

» The operator state (i.e., the checkpoint output) is backed up to an
upstream operator.

I
State Primitives: Backup and Restore (1/2)

» The operator state (i.e., the checkpoint output) is backed up to an
upstream operator.

» After the operator state was backed up, already processed tuples
from output buffers in upstream operators can be discarded.

e They are no longer required for failure recovery.

I
State Primitives: Backup and Restore (2/2)

» Backed up operator state is restored to another operator to recover
a failed operator or to redistribute state across partitioned operators.

I
State Primitives: Backup and Restore (2/2)

» Backed up operator state is restored to another operator to recover
a failed operator or to redistribute state across partitioned operators.

» After restoring the state, the system replays unprocessed tuples in
the output buffer from an upstream operator to bring the operator's
processing state up-to-date.

L
State Primitives: Partition

» Split the state of a stateful operator across the new partitioned
operators when it scales out.

L
State Primitives: Partition

» Split the state of a stateful operator across the new partitioned
operators when it scales out.

» Partitioning the key space of the tuples processed by the operator.

L
State Primitives: Partition

» Split the state of a stateful operator across the new partitioned
operators when it scales out.

» Partitioning the key space of the tuples processed by the operator.

» The routing state of its upstream operators must also be updated
to account for the new partitioned operators.

N —
State Primitives: Partition

» Split the state of a stateful operator across the new partitioned
operators when it scales out.

» Partitioning the key space of the tuples processed by the operator.

» The routing state of its upstream operators must also be updated
to account for the new partitioned operators.

» The buffer state of the upstream operators is partitioned to ensure
that unprocessed tuples are dispatched to the correct partition.

* Amir H. Payberah (Tehran Polytechnic) SEEP and DStream sesjes 30 /4T

R
Scale Out

» To scale out queries at runtime, the system partitions operators
on-demand in response to bottleneck operators.

» The load of the bottlenecked operator is shared among a set of new
partitioned operators.

1393/9/1 21 /47

L
Fault-Tolerance

» Overload and failure are handled in the same fashion.

» Operator recovery becomes a special case of scale out, in which a
failed operator is scaled out.

INNSS———
Fault-Tolerant Scale Out Algorithm

» Two versions of operator’s state that can be partitioned for scale
out:
e The current state
e The recent state checkpoint

INNSS———
Fault-Tolerant Scale Out Algorithm

» Two versions of operator’s state that can be partitioned for scale
out:

e The current state
¢ The recent state checkpoint

» In SEEP, the system partitions the most recent state checkpoint.

L
Fault-Tolerant Scale Out Algorithm

» Two versions of operator’s state that can be partitioned for scale
out:

e The current state
¢ The recent state checkpoint

» In SEEP, the system partitions the most recent state checkpoint.

» [ts benefits:

* Avoids adding further load to the operator, which is already
overloaded, by requesting it to checkpoint or partition its own state.
e Makes the scale out process itself fault-tolerant.

Spark Stream

Existing Streaming Systems (1/2)

» Record-at-a-time processing model:

e Each node has mutable state.

e For each record, updates state and sends
new records.

e State is lost if node dies.

Mutable state

Input records

Input records ————|node2P

N
Existing Streaming Systems (2/2)

» Fault tolerance via replication or upstream backup.

Input

Input

1393/9/1 26 / 47

N
Existing Streaming Systems (2/2)

» Fault tolerance via replication or upstream backup.

Input

Input

Fast recovery, but 2x hardware cost J Only need one standby, but slow to recover J

1393/9/1 26 / 47

L
Observation

» Batch processing models for clusters provide fault tolerance effi-
ciently.

» Divide job into deterministic tasks.

» Rerun failed/slow tasks in parallel on other nodes.

o
Core ldea

» Run a streaming computation as a series of very small and deter-
ministic batch jobs.

BN
Challenges

» Latency (interval granularity)
e Traditional batch systems replicate state on-disk storage: slow

» Recovering quickly from faults and stragglers

INNSS———
Proposed Solution

» Latency (interval granularity)
¢ Resilient Distributed Dataset (RDD)
¢ Keep data in memory
¢ No replication

» Recovering quickly from faults and stragglers
 Storing the lineage graph
e Using the determinism of D-Streams
o Parallel recovery of a lost node's state

BN
Discretized Stream Processing (D-Stream)

» Run a streaming computation as a series of very small, deterministic
batch jobs.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

BN
Discretized Stream Processing (D-Stream)

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

BN
Discretized Stream Processing (D-Stream)

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

|
Discretized Stream Processing (D-Stream)

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

 Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in

batches.
input data batches of batches of
stream Spark input data Spark processed data
| streaming |1 Engine |1

1393/9/1 31 /47

D-Stream API (1/4)

» DStream: sequence of RDDs representing a stream of data.
o TCP sockets, Twitter, HDFS, Kafka, ...

input data batches of batches of
stream Spark input data Spark processed data
| streaming |CICJ,>| Engine |CJIC)

RDD@time1 RDD@time2 RDD@time3 RDD @ time4
- data from data from .| datafrom >
time 1to 2 time2to3 time3to4

DStream == datafrom
timeOtol

D-Stream API (1/4)

» DStream: sequence of RDDs representing a stream of data.
o TCP sockets, Twitter, HDFS, Kafka, ...

input data batches of batches of
stream Spark input data Spark processed data
C——| streaming [[JCIC)| Engine |ICIC)

RDD@time1 RDD@time2 RDD@time3 RDD @ time4
- data from . datafrom .| datafrom >
time 1to 2

timeOtol

DStream == datafrom
time2to3 time3to4

» Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,
[sparkHome] , [jars])

* Amir H. Payberah (Tehran Polytechnic) SEEP and DStream TR BT

BN
D-Stream API (2/4)

» Transformations: modify data from on DStream to a new DStream.
e Standard RDD operations (stateless/stateful operations): map, join, ...

lines — finesfrom | _| linesfrom | _| linesfrom |_ | linesfrom [s
DStream time 0to 1 time 1to 2 time2to3 time 3to 4
flatMap
operation

words from | _ | words from
time 1t0 2 time 2t03

words from
'I time 3to 4 I- >

words | wordsfrom | _|
DStream time 0to 1

N
D-Stream API (2/4)

» Transformations: modify data from on DStream to a new DStream.
 Standard RDD operations (stateless/stateful operations): map, join, ...

lines .| fmesfrom | _| linesfrom | _| linesfrom | _ | linesfrom | .
DStream time 0to 1 time 1to 2 time2to3 time 3to 4

flathap
operation

words | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time 0to 1 time 1to 2 time 2to3 time3to4

* Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...
time 1 time 2 time 3 time 4 time 5
e (= = =)

window-based
operation

windowed

DStream
window window window
attime 1 attime 3 attime 5

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

* Amir H. Payberah (Tehran Polytechnic) SEEP and DStream Y

BN
D-Stream API (3/4)

» Qutput operations: send data to external entity
* saveAsHadoopFiles, foreach, print, ...

BN
D-Stream API (3/4)

» Qutput operations: send data to external entity
* saveAsHadoopFiles, foreach, print, ...

» Attaching input sources

D-Stream API (4/4)

» Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

BN
D-Stream API (4/4)

» Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

» Stream -+ Interactive: Interactive queries on stream state from the
Spark interpreter

D-Stream API (4/4)

» Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

» Stream -+ Interactive: Interactive queries on stream state from the
Spark interpreter

» Starting/stopping the streaming computation

Fault Tolerance

» Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
tweets Input data
gra ph) . DStream replicated

m m in memory

fiatMap

. . . hashT:
» Batches of input data are replicated in Beream

memory of multiple worker nodes. @g@

» Data lost due to worker failure, can be
recomputed from input data.

Lost partitions
recomputed on
other workers

I,
Example 1 (1/3)

» Get hash-tags from Twitter.

Twitter streaming API [batch @t | [(batch @ t+1 | [[batch @ t+2 ||:>

tweets DStream N 0y) LL1J Stored in memory as an RDD
nﬂﬂ Uﬂﬂ mﬂ (immutable, distributed)

I,
Example 1 (2/3)

» Get hash-tags from Twitter.

Twitter streaming APl | batch@t | [batch @ t+1 | | batch @ t+2 | |:>

tweets DStream WIﬁ [ﬂlvlﬁ lnlmlﬁ

flatMap flatMap flatMap

hashTags Dstream
[#cag #dog, ...] [I D I O I I (. New RDDs Eretali]ed for
R EEE) EER) o

|
Example 1 (3/3)

» Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles ("hdfs://...")

Twitter streaming APl [_batch @t | [[batch @ t+1_| [batch @ t+2 ||:>

tweets DStream [

‘ flatMap | flatMap ‘ flatMap

hashTags Dstream (

@Q@ 'Q@ UQ@

Every batch saved
to HDFS

1393/9/1 39 / 47

-
Example 2

» Count frequency of words received every second.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1l), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

words ones freqs

Time = 0-1 D map D reduce D
o M

Time = 1-2 D map J reduce'D

Time = 2-3 D map D reduce D

~ Amir H. Payberah (Tehran Polytechnic) =~ SEEP and DStream 1303/9/1 40/ 47

R ——
Example 3

» Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1l), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey (_

val freqs_60s = fregs. w:.ndow(Seconds(GO), Second (1)) .reduceByKey(_ + _)
words ones freqs

words freqs freqs_60s

Time=0-1 []

freqs_60s
Time=1-2 [}

Time=2-3 []

~ Amir H. Payberah (Tehran Polytechnic) =~ SEEP and DStream 1393/9/1

41/ a7

R ——
Example 3 - Simpler Model

» Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1l), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

words ones freqs
Time=0-1 (]

words. freqs freqs_60s
freqs_60s t1 s

Time= 1-2]

Time=2-3]

* Amir H. Payberah (Tehran Polytechnic) SEEP and DStream T

-
Example 3 - Incremental Window Operators

» Count frequency of words received in last minute.

// Associative only
freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

// Assoctiative and invertible

freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))
wo_rds fr?gs frec_]f_GOs words freqs freqs_60s
T U I o

Associative only Associative and invertible

* Amir H. Payberah (Tehran Polytechnic) SEEP and DStream esjes a3 T

Example 4 - Standalone Application (1/2)

import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext. _
import org.apache.spark.storage.StoragelLevel

object NetworkWordCount {
def main(args: Array[String]) {

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1l), args(2).toInt)

val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))

freqs = ones.reduceByKey(_ + _)
fregs.print ()

ssc.start ()
ssc.awaitTermination()

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 44 / 47

NS
Example 4 - Standalone Application (2/2)

> sics.sbt:

Summary

» SEEP

e Make operator state an external entity
* Primitives for state management: checkpoint, backup/restore,

partition

» Spark Stream
e Run a streaming computation as a series of very small, deterministic
batch jobs.
e DStream: sequence of RDDs
e Operators: Transformations (stateless, stateful, and window) and

output operations

Questions?

Some slides and pictures were derived from Matei Zaharia (MIT
University) and Peter Pietzuch (Imperial College) slides.

