
Stream Processing In The Cloud

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 1 / 47



Stream Processing In The Cloud

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 2 / 47



Motivation

I Users of big data applications expect fresh results.

I New stream processing systems are designed to scale to large num-
bers of cloud-hosted machines.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 3 / 47



Motivation

I Clouds provide virtually infinite pools of resources.

I Fast and cheap access to new machines (VMs) for operators.

I How do you decide on the optimal number of VMs?
• Over-provisioning system is expense.
• Too few nodes leads to poor performance.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 4 / 47



Challenges

I Elastic data-parallel processing

I Fault-tolerant processing

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 5 / 47



Challenge: Elastic Data-Parallel Processing

I Typical stream processing workloads are bursty.

I High and bursty input rates → detect bottleneck + parallelize

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 6 / 47



Challenge: Fault-Tolerant Processing

I Large scale deployment → handle node failures.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 7 / 47



States in Stream Processing

I Many online applications, like machine learning algorithms, require
state.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 8 / 47



What is State?

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 9 / 47



State Complicates Things

I Dynamic scale out impacts state.

I Recovery from failures.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 10 / 47



State Complicates Things

I Dynamic scale out impacts state.

I Recovery from failures.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 10 / 47



Operators States

I Stateless operators, e.g., filter and map

I Stateful operators, e.g., join and aggregate

I Window operators, use use the concept of a finite window of tuples.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 11 / 47



Operators States

I Stateless operators, e.g., filter and map

I Stateful operators, e.g., join and aggregate

I Window operators, use use the concept of a finite window of tuples.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 11 / 47



Operators States

I Stateless operators, e.g., filter and map

I Stateful operators, e.g., join and aggregate

I Window operators, use use the concept of a finite window of tuples.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 11 / 47



SEEP

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 12 / 47



Contribution

I Build a stream processing system that scale out while remaining
fault tolerant when queries contain stateful operators.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 13 / 47



Core Idea

I Make operator state an external entity that can be managed by the
stream processing system.

I Operators have direct access to states.

I The system manages states.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 14 / 47



Core Idea

I Make operator state an external entity that can be managed by the
stream processing system.

I Operators have direct access to states.

I The system manages states.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 14 / 47



Core Idea

I Make operator state an external entity that can be managed by the
stream processing system.

I Operators have direct access to states.

I The system manages states.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 14 / 47



Operator State Management

I On scale out: partition operator state correctly, maintaining consis-
tency

I On failure recovery: restore state of failed operator

I Define primitives for state management and build other mechanisms
on top of them.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 15 / 47



Operator State Management

I On scale out: partition operator state correctly, maintaining consis-
tency

I On failure recovery: restore state of failed operator

I Define primitives for state management and build other mechanisms
on top of them.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 15 / 47



Operator State Management

I On scale out: partition operator state correctly, maintaining consis-
tency

I On failure recovery: restore state of failed operator

I Define primitives for state management and build other mechanisms
on top of them.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 15 / 47



State Management Primitives

I Checkpoint
• Makes state available to system.
• Attaches last processed tuple timestamp.

I Backup/Restore
• Moves copy of state from

one operator to another.

I Partition
• Splits state to scale out an operator.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 16 / 47



State Management Primitives

I Checkpoint
• Makes state available to system.
• Attaches last processed tuple timestamp.

I Backup/Restore
• Moves copy of state from

one operator to another.

I Partition
• Splits state to scale out an operator.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 16 / 47



State Management Primitives

I Checkpoint
• Makes state available to system.
• Attaches last processed tuple timestamp.

I Backup/Restore
• Moves copy of state from

one operator to another.

I Partition
• Splits state to scale out an operator.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 16 / 47



State Primitives: Checkpoint

I Checkpoint state = the processing state + the buffer state

I That routing state is not included in the state checkpoint.
• It only changes in case of scale out or recovery.

I The system executes checkpoint asynchronously and periodically.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 17 / 47



State Primitives: Checkpoint

I Checkpoint state = the processing state + the buffer state

I That routing state is not included in the state checkpoint.
• It only changes in case of scale out or recovery.

I The system executes checkpoint asynchronously and periodically.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 17 / 47



State Primitives: Checkpoint

I Checkpoint state = the processing state + the buffer state

I That routing state is not included in the state checkpoint.
• It only changes in case of scale out or recovery.

I The system executes checkpoint asynchronously and periodically.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 17 / 47



State Primitives: Backup and Restore (1/2)

I The operator state (i.e., the checkpoint output) is backed up to an
upstream operator.

I After the operator state was backed up, already processed tuples
from output buffers in upstream operators can be discarded.

• They are no longer required for failure recovery.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 18 / 47



State Primitives: Backup and Restore (1/2)

I The operator state (i.e., the checkpoint output) is backed up to an
upstream operator.

I After the operator state was backed up, already processed tuples
from output buffers in upstream operators can be discarded.

• They are no longer required for failure recovery.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 18 / 47



State Primitives: Backup and Restore (2/2)

I Backed up operator state is restored to another operator to recover
a failed operator or to redistribute state across partitioned operators.

I After restoring the state, the system replays unprocessed tuples in
the output buffer from an upstream operator to bring the operator’s
processing state up-to-date.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 19 / 47



State Primitives: Backup and Restore (2/2)

I Backed up operator state is restored to another operator to recover
a failed operator or to redistribute state across partitioned operators.

I After restoring the state, the system replays unprocessed tuples in
the output buffer from an upstream operator to bring the operator’s
processing state up-to-date.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 19 / 47



State Primitives: Partition

I Split the state of a stateful operator across the new partitioned
operators when it scales out.

I Partitioning the key space of the tuples processed by the operator.

I The routing state of its upstream operators must also be updated
to account for the new partitioned operators.

I The buffer state of the upstream operators is partitioned to ensure
that unprocessed tuples are dispatched to the correct partition.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 20 / 47



State Primitives: Partition

I Split the state of a stateful operator across the new partitioned
operators when it scales out.

I Partitioning the key space of the tuples processed by the operator.

I The routing state of its upstream operators must also be updated
to account for the new partitioned operators.

I The buffer state of the upstream operators is partitioned to ensure
that unprocessed tuples are dispatched to the correct partition.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 20 / 47



State Primitives: Partition

I Split the state of a stateful operator across the new partitioned
operators when it scales out.

I Partitioning the key space of the tuples processed by the operator.

I The routing state of its upstream operators must also be updated
to account for the new partitioned operators.

I The buffer state of the upstream operators is partitioned to ensure
that unprocessed tuples are dispatched to the correct partition.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 20 / 47



State Primitives: Partition

I Split the state of a stateful operator across the new partitioned
operators when it scales out.

I Partitioning the key space of the tuples processed by the operator.

I The routing state of its upstream operators must also be updated
to account for the new partitioned operators.

I The buffer state of the upstream operators is partitioned to ensure
that unprocessed tuples are dispatched to the correct partition.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 20 / 47



Scale Out

I To scale out queries at runtime, the system partitions operators
on-demand in response to bottleneck operators.

I The load of the bottlenecked operator is shared among a set of new
partitioned operators.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 21 / 47



Fault-Tolerance

I Overload and failure are handled in the same fashion.

I Operator recovery becomes a special case of scale out, in which a
failed operator is scaled out.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 22 / 47



Fault-Tolerant Scale Out Algorithm

I Two versions of operator’s state that can be partitioned for scale
out:

• The current state
• The recent state checkpoint

I In SEEP, the system partitions the most recent state checkpoint.

I Its benefits:
• Avoids adding further load to the operator, which is already

overloaded, by requesting it to checkpoint or partition its own state.
• Makes the scale out process itself fault-tolerant.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 23 / 47



Fault-Tolerant Scale Out Algorithm

I Two versions of operator’s state that can be partitioned for scale
out:

• The current state
• The recent state checkpoint

I In SEEP, the system partitions the most recent state checkpoint.

I Its benefits:
• Avoids adding further load to the operator, which is already

overloaded, by requesting it to checkpoint or partition its own state.
• Makes the scale out process itself fault-tolerant.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 23 / 47



Fault-Tolerant Scale Out Algorithm

I Two versions of operator’s state that can be partitioned for scale
out:

• The current state
• The recent state checkpoint

I In SEEP, the system partitions the most recent state checkpoint.

I Its benefits:
• Avoids adding further load to the operator, which is already

overloaded, by requesting it to checkpoint or partition its own state.
• Makes the scale out process itself fault-tolerant.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 23 / 47



Spark Stream

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 24 / 47



Existing Streaming Systems (1/2)

I Record-at-a-time processing model:

• Each node has mutable state.

• For each record, updates state and sends
new records.

• State is lost if node dies.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 25 / 47



Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 26 / 47



Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 26 / 47



Observation

I Batch processing models for clusters provide fault tolerance effi-
ciently.

I Divide job into deterministic tasks.

I Rerun failed/slow tasks in parallel on other nodes.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 27 / 47



Core Idea

I Run a streaming computation as a series of very small and deter-
ministic batch jobs.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 28 / 47



Challenges

I Latency (interval granularity)
• Traditional batch systems replicate state on-disk storage: slow

I Recovering quickly from faults and stragglers

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 29 / 47



Proposed Solution

I Latency (interval granularity)
• Resilient Distributed Dataset (RDD)
• Keep data in memory
• No replication

I Recovering quickly from faults and stragglers
• Storing the lineage graph
• Using the determinism of D-Streams
• Parallel recovery of a lost node’s state

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 30 / 47



Discretized Stream Processing (D-Stream)

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 31 / 47



Discretized Stream Processing (D-Stream)

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 31 / 47



Discretized Stream Processing (D-Stream)

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 31 / 47



Discretized Stream Processing (D-Stream)

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 31 / 47



D-Stream API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 32 / 47



D-Stream API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 32 / 47



D-Stream API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless/stateful operations): map, join, ...

• Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 33 / 47



D-Stream API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless/stateful operations): map, join, ...

• Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 33 / 47



D-Stream API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 34 / 47



D-Stream API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 34 / 47



D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 35 / 47



D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 35 / 47



D-Stream API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 35 / 47



Fault Tolerance

I Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
graph).

I Batches of input data are replicated in
memory of multiple worker nodes.

I Data lost due to worker failure, can be
recomputed from input data.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 36 / 47



Example 1 (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

DStream: a sequence of RDD representing a stream of data

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 37 / 47



Example 1 (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream

to create another DStream

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 38 / 47



Example 1 (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))

val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 39 / 47



Example 2

I Count frequency of words received every second.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 40 / 47



Example 3

I Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)

window length window movement

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 41 / 47



Example 3 - Simpler Model

I Count frequency of words received in last minute.

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 42 / 47



Example 3 - Incremental Window Operators

I Count frequency of words received in last minute.

// Associative only

freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

// Associative and invertible

freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))

Associative only Associative and invertible

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 43 / 47



Example 4 - Standalone Application (1/2)

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.storage.StorageLevel

object NetworkWordCount {

def main(args: Array[String]) {

...

val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(args(1), args(2).toInt)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

freqs = ones.reduceByKey(_ + _)

freqs.print()

ssc.start()

ssc.awaitTermination()

}

}

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 44 / 47



Example 4 - Standalone Application (2/2)

I sics.sbt:

name := "Stream Word Count"

version := "1.0"

scalaVersion := "2.10.3"

libraryDependencies ++= Seq(

"org.apache.spark" %% "spark-core" % "0.9.0-incubating",

"org.apache.spark" %% "spark-streaming" % "0.9.0-incubating"

)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 45 / 47



Summary

I SEEP
• Make operator state an external entity
• Primitives for state management: checkpoint, backup/restore,

partition

I Spark Stream
• Run a streaming computation as a series of very small, deterministic

batch jobs.
• DStream: sequence of RDDs
• Operators: Transformations (stateless, stateful, and window) and

output operations

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 46 / 47



Questions?

Acknowledgements

Some slides and pictures were derived from Matei Zaharia (MIT
University) and Peter Pietzuch (Imperial College) slides.

Amir H. Payberah (Tehran Polytechnic) SEEP and DStream 1393/9/1 47 / 47


