Stream Processing In The Cloud

Amir H. Payberah amir@sics.se

Amirkabir University of Technology (Tehran Polytechnic)

Stream Processing In The Cloud

Motivation

- ► Users of big data applications expect fresh results.
- New stream processing systems are designed to scale to large numbers of cloud-hosted machines.

Motivation

- ► Clouds provide virtually infinite pools of resources.
- ► Fast and cheap access to new machines (VMs) for operators.
- ► How do you decide on the optimal number of VMs?
 - Over-provisioning system is expense.
 - Too few nodes leads to poor performance.

Challenges

- ► Elastic data-parallel processing
- ► Fault-tolerant processing

Challenge: Elastic Data-Parallel Processing

- ► Typical stream processing workloads are bursty.
- lacktriangle High and bursty input rates ightarrow detect bottleneck + parallelize

Challenge: Fault-Tolerant Processing

► Large scale deployment → handle node failures.

States in Stream Processing

Many online applications, like machine learning algorithms, require state.

What is State?

State Complicates Things

▶ Dynamic scale out impacts state.

State Complicates Things

▶ Dynamic scale out impacts state.

► Recovery from failures.

Operators States

► Stateless operators, e.g., filter and map

Operators States

- ► Stateless operators, e.g., filter and map
- ► Stateful operators, e.g., join and aggregate

Operators States

- ► Stateless operators, e.g., filter and map
- ► Stateful operators, e.g., join and aggregate
- ► Window operators, use use the concept of a finite window of tuples.

SEEP

Contribution

► Build a stream processing system that scale out while remaining fault tolerant when queries contain stateful operators.

Core Idea

► Make operator state an external entity that can be managed by the stream processing system.

Core Idea

- ► Make operator state an external entity that can be managed by the stream processing system.
- Operators have direct access to states.

Core Idea

- ► Make operator state an external entity that can be managed by the stream processing system.
- Operators have direct access to states.
- ► The system manages states.

Operator State Management

► On scale out: partition operator state correctly, maintaining consistency

Operator State Management

- On scale out: partition operator state correctly, maintaining consistency
- ► On failure recovery: restore state of failed operator

Operator State Management

- On scale out: partition operator state correctly, maintaining consistency
- ► On failure recovery: restore state of failed operator
- ► Define primitives for state management and build other mechanisms on top of them.

State Management Primitives

- ► Checkpoint
 - Makes state available to system.
 - Attaches last processed tuple timestamp.

State Management Primitives

Checkpoint

- Makes state available to system.
- Attaches last processed tuple timestamp.

► Backup/Restore

 Moves copy of state from one operator to another.

State Management Primitives

Checkpoint

- Makes state available to system.
- Attaches last processed tuple timestamp.

► Backup/Restore

 Moves copy of state from one operator to another.

Partition

• Splits state to scale out an operator.

State Primitives: Checkpoint

► Checkpoint state = the processing state + the buffer state

State Primitives: Checkpoint

- ► Checkpoint state = the processing state + the buffer state
- ▶ That routing state is not included in the state checkpoint.
 - It only changes in case of scale out or recovery.

State Primitives: Checkpoint

- ► Checkpoint state = the processing state + the buffer state
- ▶ That routing state is not included in the state checkpoint.
 - It only changes in case of scale out or recovery.
- ► The system executes checkpoint asynchronously and periodically.

State Primitives: Backup and Restore (1/2)

► The operator state (i.e., the checkpoint output) is backed up to an upstream operator.

State Primitives: Backup and Restore (1/2)

- ► The operator state (i.e., the checkpoint output) is backed up to an upstream operator.
- ► After the operator state was backed up, already processed tuples from output buffers in upstream operators can be discarded.
 - They are no longer required for failure recovery.

State Primitives: Backup and Restore (2/2)

Backed up operator state is restored to another operator to recover a failed operator or to redistribute state across partitioned operators.

State Primitives: Backup and Restore (2/2)

- ▶ Backed up operator state is restored to another operator to recover a failed operator or to redistribute state across partitioned operators.
- ► After restoring the state, the system replays unprocessed tuples in the output buffer from an upstream operator to bring the operator's processing state up-to-date.

► Split the state of a stateful operator across the new partitioned operators when it scales out.

- ► Split the state of a stateful operator across the new partitioned operators when it scales out.
- ▶ Partitioning the key space of the tuples processed by the operator.

- ► Split the state of a stateful operator across the new partitioned operators when it scales out.
- ► Partitioning the key space of the tuples processed by the operator.
- ► The routing state of its upstream operators must also be updated to account for the new partitioned operators.

- ► Split the state of a stateful operator across the new partitioned operators when it scales out.
- ► Partitioning the key space of the tuples processed by the operator.
- ► The routing state of its upstream operators must also be updated to account for the new partitioned operators.
- ► The buffer state of the upstream operators is partitioned to ensure that unprocessed tuples are dispatched to the correct partition.

Scale Out

- ► To scale out queries at runtime, the system partitions operators on-demand in response to bottleneck operators.
- ► The load of the bottlenecked operator is shared among a set of new partitioned operators.

Fault-Tolerance

- ▶ Overload and failure are handled in the same fashion.
- ► Operator recovery becomes a special case of scale out, in which a failed operator is scaled out.

Fault-Tolerant Scale Out Algorithm

- Two versions of operator's state that can be partitioned for scale out:
 - The current state
 - The recent state checkpoint

Fault-Tolerant Scale Out Algorithm

- Two versions of operator's state that can be partitioned for scale out:
 - The current state
 - The recent state checkpoint
- ▶ In SEEP, the system partitions the most recent state checkpoint.

Fault-Tolerant Scale Out Algorithm

- Two versions of operator's state that can be partitioned for scale out:
 - The current state
 - The recent state checkpoint
- ▶ In SEEP, the system partitions the most recent state checkpoint.
- Its benefits:
 - Avoids adding further load to the operator, which is already overloaded, by requesting it to checkpoint or partition its own state.
 - Makes the scale out process itself fault-tolerant.

Spark Stream

Existing Streaming Systems (1/2)

- ► Record-at-a-time processing model:
 - Each node has mutable state.
 - For each record, updates state and sends new records.
 - State is lost if node dies.

Existing Streaming Systems (2/2)

► Fault tolerance via replication or upstream backup.

Existing Streaming Systems (2/2)

► Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost

Only need one standby, but slow to recover

Observation

- ▶ Batch processing models for clusters provide fault tolerance efficiently.
- ▶ Divide job into deterministic tasks.
- ► Rerun failed/slow tasks in parallel on other nodes.

Core Idea

► Run a streaming computation as a series of very small and deterministic batch jobs.

Challenges

- ► Latency (interval granularity)
 - Traditional batch systems replicate state on-disk storage: slow
- Recovering quickly from faults and stragglers

Proposed Solution

- ► Latency (interval granularity)
 - Resilient Distributed Dataset (RDD)
 - Keep data in memory
 - · No replication
- Recovering quickly from faults and stragglers
 - Storing the lineage graph
 - Using the determinism of D-Streams
 - Parallel recovery of a lost node's state

► Run a streaming computation as a series of very small, deterministic batch jobs.

- Run a streaming computation as a series of very small, deterministic batch jobs.
 - Chop up the live stream into batches of X seconds.

- Run a streaming computation as a series of very small, deterministic batch jobs.
 - Chop up the live stream into batches of X seconds.
 - Spark treats each batch of data as RDDs and processes them using RDD operations.

- Run a streaming computation as a series of very small, deterministic batch jobs.
 - Chop up the live stream into batches of X seconds.
 - Spark treats each batch of data as RDDs and processes them using RDD operations.
 - Finally, the processed results of the RDD operations are returned in batches.

D-Stream API (1/4)

- ▶ DStream: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...

D-Stream API (1/4)

- ▶ DStream: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...

Initializing Spark streaming

```
val scc = new StreamingContext(master, appName, batchDuration,
[sparkHome], [jars])
```

D-Stream API (2/4)

- ► Transformations: modify data from on DStream to a new DStream.
 - Standard RDD operations (stateless/stateful operations): map, join, ...

D-Stream API (2/4)

- ► Transformations: modify data from on DStream to a new DStream.
 - Standard RDD operations (stateless/stateful operations): map, join, ...

 Window operations: group all the records from a sliding window of the past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.

Slide interval: the interval at which the operation is performed.

D-Stream API (3/4)

- ▶ Output operations: send data to external entity
 - saveAsHadoopFiles, foreach, print, ...

D-Stream API (3/4)

- Output operations: send data to external entity
 - saveAsHadoopFiles, foreach, print, ...
- Attaching input sources

```
ssc.textFileStream(directory)
ssc.socketStream(hostname, port)
```

D-Stream API (4/4)

► Stream + Batch: It can be used to apply any RDD operation that is not exposed in the DStream API.

```
val spamInfoRDD = sparkContext.hadoopFile(...)
// join data stream with spam information to do data cleaning
val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))
```

D-Stream API (4/4)

Stream + Batch: It can be used to apply any RDD operation that is not exposed in the DStream API.

```
val spamInfoRDD = sparkContext.hadoopFile(...)
// join data stream with spam information to do data cleaning
val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))
```

► Stream + Interactive: Interactive queries on stream state from the Spark interpreter

```
freqs.slice("21:00", "21:05").topK(10)
```

D-Stream API (4/4)

Stream + Batch: It can be used to apply any RDD operation that is not exposed in the DStream API.

```
val spamInfoRDD = sparkContext.hadoopFile(...)
// join data stream with spam information to do data cleaning
val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))
```

► Stream + Interactive: Interactive queries on stream state from the Spark interpreter

```
freqs.slice("21:00", "21:05").topK(10)
```

► Starting/stopping the streaming computation

```
ssc.start()
ssc.stop()
ssc.awaitTermination()
```

Fault Tolerance

- ➤ Spark remembers the sequence of operations that creates each RDD from the original fault-tolerant input data (lineage graph).
- ► Batches of input data are replicated in memory of multiple worker nodes.
- Data lost due to worker failure, can be recomputed from input data.

Example 1 (1/3)

► Get hash-tags from Twitter.

```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)

DStream: a sequence of RDD representing a stream of data
```

Twitter streaming API batch @ t batch @ t+1 batch @ t+2 batch @ t+2 tweets DStream Stored in memory as an RDD (immutable, distributed)

Example 1 (2/3)

► Get hash-tags from Twitter.

Example 1 (3/3)

► Get hash-tags from Twitter.

```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```


Example 2

► Count frequency of words received every second.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs = ones.reduceByKey(_ + _)
```


Example 3

Count frequency of words received in last minute.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x \Rightarrow (x, 1))
val freqs = ones.reduceByKey(_ + _)
val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)
                      window length
                                          window movement
           words
                   ones
                           freas
                                                                      freas 60s
 Time = 0 - 1 map reduce
                                          freqs 60s
 Time = 1 - 2 map reduce window
 Time = 2 - 3 map reduce
```

Example 3 - Simpler Model

Count frequency of words received in last minute.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))
```


Example 3 - Incremental Window Operators

► Count frequency of words received in last minute.

```
// Associative only
freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))
// Associative and invertible
freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))
```


Associative and invertible

Example 4 - Standalone Application (1/2)

```
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.storage.StorageLevel
object NetworkWordCount {
 def main(args: Array[String]) {
   val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
    val lines = ssc.socketTextStream(args(1), args(2).toInt)
    val words = lines.flatMap(_.split(" "))
    val ones = words.map(x => (x, 1))
    freqs = ones.reduceByKey(_ + _)
   freqs.print()
    ssc.start()
    ssc.awaitTermination()
```

Example 4 - Standalone Application (2/2)

▶ sics.sbt:

```
name := "Stream Word Count"

version := "1.0"

scalaVersion := "2.10.3"

libraryDependencies ++= Seq(
    "org.apache.spark" %% "spark-core" % "0.9.0-incubating",
    "org.apache.spark" %% "spark-streaming" % "0.9.0-incubating"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"
```

Summary

▶ SEEP

- Make operator state an external entity
- Primitives for state management: checkpoint, backup/restore, partition

Spark Stream

- Run a streaming computation as a series of very small, deterministic batch jobs.
- DStream: sequence of RDDs
- Operators: Transformations (stateless, stateful, and window) and output operations

Questions?

Acknowledgements

Some slides and pictures were derived from Matei Zaharia (MIT University) and Peter Pietzuch (Imperial College) slides.