
Hive and Shark

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 1 / 45



Motivation

I MapReduce is hard to program.

I No schema, lack of query languages, e.g., SQL.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 2 / 45



Solution

I Adding tables, columns, partitions, and a subset of SQL to unstruc-
tured data.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 3 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 4 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 4 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 4 / 45



Hive

I A system for managing and querying structured data built on top
of Hadoop.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

I Focuses on scalability and extensibility.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 4 / 45



Scalability

I Massive scale out and fault tolerance capabilities on commodity
hardware.

I Can handle petabytes of data.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 5 / 45



Extensibility

I Data types: primitive types and complex types.

I User Defined Functions (UDF).

I Serializer/Deserializer: text, binary, JSON ...

I Storage: HDFS, Hbase, S3 ...

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 6 / 45



RDBMS vs. Hive

RDBMS Hive

Language SQL HiveQL

Update Capabilities INSERT, UPDATE, and DELETE INSERT OVERWRITE; no UPDATE or DELETE

OLAP Yes Yes

OLTP Yes No

Latency Sub-second Minutes or more

Indexes Any number of indexes No indexes, data is always scanned (in parallel)

Data size TBs PBs

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 7 / 45



RDBMS vs. Hive

RDBMS Hive

Language SQL HiveQL

Update Capabilities INSERT, UPDATE, and DELETE INSERT OVERWRITE; no UPDATE or DELETE

OLAP Yes Yes

OLTP Yes No

Latency Sub-second Minutes or more

Indexes Any number of indexes No indexes, data is always scanned (in parallel)

Data size TBs PBs

I Online Analytical Processing (OLAP): allows users to analyze
database information from multiple database systems at one time.

I Online Transaction Processing (OLTP): facilitates and manages
transaction-oriented applications.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 7 / 45



Hive Data Model

I Re-used from RDBMS:
• Database: Set of Tables.
• Table: Set of Rows that have the same schema (same columns).
• Row: A single record; a set of columns.
• Column: provides value and type for a single value.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 8 / 45



Hive Data Model - Table

I Analogous to tables in relational databases.

I Each table has a corresponding HDFS directory.

I For example data for table customer is in the directory
/db/customer.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 9 / 45



Hive Data Model - Partition

I A coarse-grained partitioning of a table based on the value of a
column, such as a date.

I Faster queries on slices of the data.

I If customer is partitioned on column country, then data with a
particular country value SE, will be stored in files within the directory
/db/customer/country=SE.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 10 / 45



Hive Data Model - Bucket

I Data in each partition may in turn be divided into buckets based on
the hash of a column in the table.

I For more efficient queries.

I If customer country partition is subdivided further into buckets,
based on username (hashed on username), the data for each bucket
will be stored within the directories:
/db/customer/country=SE/000000 0

...

/db/customer/country=SE/000000 5

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 11 / 45



Column Data Types

I Primitive types
• integers, float, strings, dates and booleans

I Nestable collections
• array and map

I User-defined types
• Users can also define their own types programmatically

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 12 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I Query operations
• Select, Filter, Join, Groupby

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 13 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I Query operations
• Select, Filter, Join, Groupby

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 13 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I Query operations
• Select, Filter, Join, Groupby

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 13 / 45



Hive Operations

I HiveQL: SQL-like query languages

I DDL operations (Data Definition Language)
• Create, Alter, Drop

I DML operations (Data Manipulation Language)
• Load and Insert (overwrite)
• Does not support updating and deleting

I Query operations
• Select, Filter, Join, Groupby

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 13 / 45



DDL Operations (1/3)

I Create tables

-- Creates a table with three columns

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

I Create tables with partitions

-- Creates a table with three columns and a partition column

-- /db/customer2/country=SE;

-- /db/customer2/country=IR;

CREATE TABLE customer2 (id INT, name STRING, address STRING)

PARTITION BY (country STRING)

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 14 / 45



DDL Operations (1/3)

I Create tables

-- Creates a table with three columns

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

I Create tables with partitions

-- Creates a table with three columns and a partition column

-- /db/customer2/country=SE;

-- /db/customer2/country=IR;

CREATE TABLE customer2 (id INT, name STRING, address STRING)

PARTITION BY (country STRING)

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 14 / 45



DDL Operations (2/3)

I Create tables with buckets

-- Specify the columns to bucket on and the number of buckets

-- /db/customer3/000000_0

-- /db/customer3/000000_1

-- /db/customer3/000000_2

set hive.enforce.bucketing = true;

CREATE TABLE customer3 (id INT, name STRING, address STRING)

CLUSTERED BY (id) INTO 3 BUCKETS;

I Browsing through tables

-- lists all the tables

SHOW TABLES;

-- shows the list of columns

DESCRIBE customer;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 15 / 45



DDL Operations (2/3)

I Create tables with buckets

-- Specify the columns to bucket on and the number of buckets

-- /db/customer3/000000_0

-- /db/customer3/000000_1

-- /db/customer3/000000_2

set hive.enforce.bucketing = true;

CREATE TABLE customer3 (id INT, name STRING, address STRING)

CLUSTERED BY (id) INTO 3 BUCKETS;

I Browsing through tables

-- lists all the tables

SHOW TABLES;

-- shows the list of columns

DESCRIBE customer;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 15 / 45



DDL Operations (3/3)

I Altering tables

-- rename the customer table to alaki

ALTER TABLE customer RENAME TO alaki;

-- add two new columns to the customer table

ALTER TABLE customer ADD COLUMNS (job STRING);

ALTER TABLE customer ADD COLUMNS (grade INT COMMENT ’some comment’);

I Dropping tables

DROP TABLE customer;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 16 / 45



DDL Operations (3/3)

I Altering tables

-- rename the customer table to alaki

ALTER TABLE customer RENAME TO alaki;

-- add two new columns to the customer table

ALTER TABLE customer ADD COLUMNS (job STRING);

ALTER TABLE customer ADD COLUMNS (grade INT COMMENT ’some comment’);

I Dropping tables

DROP TABLE customer;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 16 / 45



DML Operations

I Loading data from flat files.

-- if ’LOCAL’ is omitted then it looks for the file in HDFS.

-- the ’OVERWRITE’ signifies that existing data in the table is deleted.

-- if the ’OVERWRITE’ is omitted, data are appended to existing data sets.

LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

-- loads data into different partitions

LOAD DATA LOCAL INPATH ’data1.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’SE’);

LOAD DATA LOCAL INPATH ’data2.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’IR’);

I Store the query results in tables

INSERT OVERWRITE TABLE customer SELECT * From old_customers;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 17 / 45



DML Operations

I Loading data from flat files.

-- if ’LOCAL’ is omitted then it looks for the file in HDFS.

-- the ’OVERWRITE’ signifies that existing data in the table is deleted.

-- if the ’OVERWRITE’ is omitted, data are appended to existing data sets.

LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

-- loads data into different partitions

LOAD DATA LOCAL INPATH ’data1.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’SE’);

LOAD DATA LOCAL INPATH ’data2.txt’ OVERWRITE INTO TABLE customer2

PARTITION (country=’IR’);

I Store the query results in tables

INSERT OVERWRITE TABLE customer SELECT * From old_customers;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 17 / 45



Query Operations (1/3)

I Selects and filters

SELECT id FROM customer2 WHERE country=’SE’;

-- selects all rows from customer table into a local directory

INSERT OVERWRITE LOCAL DIRECTORY ’/tmp/hive-sample-out’ SELECT *

FROM customer;

-- selects all rows from customer2 table into a directory in hdfs

INSERT OVERWRITE DIRECTORY ’/tmp/hdfs_ir’ SELECT * FROM customer2

WHERE country=’IR’;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 18 / 45



Query Operations (2/3)

I Aggregations and groups

SELECT MAX(id) FROM customer;

SELECT country, COUNT(*), SUM(id) FROM customer2 GROUP BY country;

INSERT TABLE high_id_customer SELECT c.name, COUNT(*) FROM customer c

WHERE c.id > 10 GROUP BY c.name;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 19 / 45



Query Operations (3/3)

I Join

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

CREATE TABLE order (id INT, cus_id INT, prod_id INT, price INT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

SELECT * FROM customer c JOIN order o ON (c.id = o.cus_id);

SELECT c.id, c.name, c.address, ce.exp FROM customer c JOIN

(SELECT cus_id, sum(price) AS exp FROM order GROUP BY cus_id) ce

ON (c.id = ce.cus_id) INSERT OVERWRITE TABLE order_customer;

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 20 / 45



User-Defined Function (UDF)

package com.example.hive.udf;

import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.io.Text;

public final class Lower extends UDF {

public Text evaluate(final Text s) {

if (s == null) { return null; }

return new Text(s.toString().toLowerCase());

}

}

-- Register the class

CREATE FUNCTION my_lower AS ’com.example.hive.udf.Lower’;

-- Using the function

SELECT my_lower(title), sum(freq) FROM titles GROUP BY my_lower(title);

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 21 / 45



Executing SQL Questions

I Processes HiveQL statements and generates the execution plan
through three-phase processes.

1 Query parsing: transforms a query string to a parse tree representa-
tion.

2 Logical plan generation: converts the internal query representation
to a logical plan, and optimizes it.

3 Physical plan generation: split the optimized logical plan into multiple
map/reduce and HDFS tasks.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 22 / 45



Optimization (1/2)

I Column pruning
• Projecting out the needed columns.

I Predicate pushdown
• Filtering rows early in the processing, by pushing down predicates to

the scan (if possible).

I Partition pruning
• Pruning out files of partitions that do not satisfy the predicate.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 23 / 45



Optimization (2/2)

I Map-side joins
• The small tables are replicated in all the mappers and joined with

other tables.
• No reducer needed.

I Join reordering
• Only materialized and kept small tables in memory.
• This ensures that the join operation does not exceed memory limits

on the reducer side.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 24 / 45



Hive Components (1/8)

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 25 / 45



Hive Components (2/8)

I External interfaces
• User interfaces, e.g., CLI and web UI
• Application programming interfaces, e.g., JDBC and ODBC
• Thrift, a framework for cross-language services.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 26 / 45



Hive Components (3/8)

I Driver
• Manages the life cycle of a HiveQL statement during compilation,

optimization and execution.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 27 / 45



Hive Components (4/8)

I Compiler (Parser/Query Optimizer)
• Translates the HiveQL statement into a a logical plan, and

optimizes it.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 28 / 45



Hive Components (5/8)

I Physical plan
• Transforms the logical plan into a DAG of Map/Reduce jobs.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 29 / 45



Hive Components (6/8)

I Execution engine
• The driver submits the individual mapreduce jobs from the DAG to

the execution engine in a topological order.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 30 / 45



Hive Components (7/8)

I SerDe
• Serializer/Deserializer allows Hive to read and write table rows in

any custom format.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 31 / 45



Hive Components (8/8)

I Metastore
• The system catalog.
• Contains metadata about the tables.
• Metadata is specified during table creation and reused every time the

table is referenced in HiveQL.
• Metadatas are stored on either a traditional relational database, e.g.,

MySQL, or file system and not HDFS.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 32 / 45



Hive on Spark

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 33 / 45



Spark RDD - Reminder

I RDDs are immutable, partitioned collections that can be created
through various transformations, e.g., map, groupByKey, join.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 34 / 45



Executing SQL over Spark RDDs

I Shark runs SQL queries over Spark using three-step process:

1 Query parsing: Shark uses Hive query compiler to parse the query
and generate a parse tree.

2 Logical plan generation: the tree is turned into a logical plan and
basic logical optimization is applied.

3 Physical plan generation: Shark applies additional optimization and
creates a physical plan consisting of transformations on RDDs.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 35 / 45



Hive Components

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 36 / 45



Shark Components

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 37 / 45



Shark and Spark

I Shark extended RDD execution model:

• Partial DAG Execution (PDE): to re-optimize a running query after
running the first few stages of its task DAG.

• In-memory columnar storage and compression: to process relational
data efficiently.

• Control over data partitioning.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 38 / 45



Partial DAG Execution (1/2)

I How to optimize the following query?

SELECT * FROM table1 a JOIN table2 b ON (a.key = b.key)

WHERE my_crazy_udf(b.field1, b.field2) = true;

I It can not use cost-based optimization techniques that rely on ac-
curate a priori data statistics.

I They require dynamic approaches to query optimization.

I Partial DAG Execution (PDE): dynamic alteration of query plans
based on data statistics collected at run-time.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 39 / 45



Partial DAG Execution (1/2)

I How to optimize the following query?

SELECT * FROM table1 a JOIN table2 b ON (a.key = b.key)

WHERE my_crazy_udf(b.field1, b.field2) = true;

I It can not use cost-based optimization techniques that rely on ac-
curate a priori data statistics.

I They require dynamic approaches to query optimization.

I Partial DAG Execution (PDE): dynamic alteration of query plans
based on data statistics collected at run-time.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 39 / 45



Partial DAG Execution (2/2)

I The workers gather customizable statistics at global and per-
partition granularities at run-time.

I Each worker sends the collected statistics to the master.

I The master aggregates the statistics and alters the query plan based
on such statistics.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 40 / 45



Columnar Memory Store

I Simply caching Hive records as JVM objects is inefficient.

I 12 to 16 bytes of overhead per object in JVM implementation:
• e.g., storing a 270MB table as JVM objects uses approximately 971

MB of memory.

I Shark employs column-oriented storage using arrays of primitive ob-
jects.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 41 / 45



Data Partitioning

I Shark allows co-partitioning two tables, which are frequently joined
together, on a common key for faster joins in subsequent queries.

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 42 / 45



Shark/Spark Integration

I Shark provides a simple API for programmers to convert results from
SQL queries into a special type of RDDs: sql2rdd.

val youngUsers = sql2rdd("SELECT * FROM users WHERE age < 20")

println(youngUsers.count)

val featureMatrix = youngUsers.map(extractFeatures(_))

kmeans(featureMatrix)

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 43 / 45



Summary

I Operators: DDL, DML, SQL

I Hive architecture vs. Shark architecture

I Add advance features to Spark, e.g., PDE, columnar memory store

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 44 / 45



Questions?

Amir H. Payberah (Tehran Polytechnic) Hive and Shark 1393/8/19 45 / 45


