Operating Systems Benchmarking

Embedded OS Benchmarking

Technical Document

Amir Hossein Payberah

Page 1 of 13

Operating Systems Benchmarking

Table of Content

1 SOOI ettt ettt e 4
2 R LiNMUX e tttittie ittt ettt ettt ettt ettt ettt ettt ettt ettt ei e e eeetettt et ettt aaaa ettt taaettatas taaeeareeetaaeaaaaeees 4
I <1 O o 1 T OO 5
3.1 INTrOAUCHION 1iiiiiiiiiiieeee ettt ettt ettt et ettt et i e aeee teeerreiaaeeaaeeees 5
3.2 FEAtUIe SEt..iiiiiiiiieeee ettt ettt ettt et et et i e et e et e e e et e iaaaaaee een 6
3.3 ArCHIIECIUIE. ittt e e ettt . 7
3.3.1 Portability and PerformanCe.........euuuueiiiiiiiiiiieeieii ettt s 8

3.3.2 The KerNel ciieeeiiiiiiieeeeee ettt ettt ettt e et ettt e e e et et et s see teeereeeeeaneeens 8

4 RTEMS ..ot e ettt e et e et e e et ettt eeettee ettt iae et tarereeee eererbiaaeeeeeeees 9
41 INTrOAUCHION 1iiiiiiiiiiieee ettt ettt ettt ettt et ettt e e e e aeee teeerreiaaeeeaeeees 9
4.2 FEAUIe SEt..iiiiiii ittt ettt ettt ettt e ia ettt et e e e e e e i aaaaaee een 9
4.3 ArCHIIECIUIS. .o iiiiieiiiieeee ettt et e et et et e e ettt e et e et tbae eeeeeens 10
4.31 RTEMS Application ArchiteCtUre.........eeeuuuiiieieiiiii i eeeieeeeeeeeeeeeee ceeeeeeeeiieeeeeeess 10

4.3.2 RTEMS Internal Archit@Cture.......uueeeeeiiiiiiiiieiie ettt e 11

5 Benchmarking and CONCIUSION. ..o e e ee et e et et e e eeeees eeeteeeeeeeeesnnnnee, 12
B RETOIENCE. . ittt ittt ettt ettt et e eee tereeetaeeeeereeians 13

Page 2 of 13

Operating Systems Benchmarking

Index of Figures

FIigure 1- @008 ArCRITECIUIE.........eeii ettt e s bt e s s b e e e s bt e e sbee e e s +eennnnneeeees 7
Figure 2 - @C0S KerNel ODJECHIVE.uiiiiiiie ittt e s b e snre e e s annrrreeeees 9
Figure 3 — RTEMS Application ArChItECIIE.ei ettt e e e ceeeeeeaaaaeeeaans 11
Figure 4 - RTEMS Internal ArChitECIUIE.uei et aee e 1
Figure 5 - RTLinux and RTEMS DENCRMAIK.........c.oiiiiiiiiiiecee e e e e e e e 12
Figure 6 - eCos Kernel BENCHMAIKS.........c.oiiiiiiiie et e e raeee —eeeaannnnnneeees 13

Page 3 of 13

Operating Systems Benchmarking

1 Scope
This document is intended to describe the features of some embedded operating system (such as RTLinux,
eCos and RTEMS) and compare them.

2 RTLinux

RT-Linux is an operating system in which a small real-time kernel coexists with the Posix-like Linux kernel. The
intention is to make use of the sophisticated services and highly optimized average case behavior of a
standard time-shared computer system while still permitting real-time functions to operate in a predictable and
low-latency environment. At one time, real-time operating systems were primitive, simple executives that did
little more than offer a library of routines. But real-time applications now routinely require access to TCP/IP,
graphical display and windowing systems, file and data base systems, and other services that are neither
primitive nor simple. One solution is to add these non-real-time services to the basic real-time kernel, as has
been done for the venerable VxWorks and, in a different way, for the QNX microkernel. A second solution is to
modify a standard kernel to make it completely pre-emptable. This is the approach taken by the developers of
RT-IX (Modcomp). RT-Linux is based on a third path in which a simple real-time executive runs a non-real-
time kernel as its lowest priority task, using a virtual machine layer to make the standard kernel fully pre-
emptable.

In RT-Linux, all interrupts are initially handled by the Real-Time kernel and are passed to the Linux task only
when there are no real-time tasks to run. To minimize changes in the Linux kernel, it is provided with an
emulation of the interrupt control hardware. Thus, when Linux has "disabled" interrupts, the emulation
software will queue interrupts that have been passed on by the Real-Time kernel. Real-time and Linux user
tasks communicate through lock-free queues and shared memory in the current system. From the application
programmers point of view, the queues look very much like standard UNIX character devices, accessed via
POSIX read/write/open/ioctl system calls. Shared memory is currently accessed via the POSIX mmap calls.
RT-Linux relies on Linux for booting, most device drivers, networking, file-systems, Linux process control, and
for the loadable kernel modules which are used to make the real-time system extensible and easily modifiable.
Real-time applications consist of real-time tasks that are incorporated in loadable kernel modules and
Linux/UNIX processes that take care of data-logging, display, network access, and any other functions that are
not constrained by worst case behavior.

In practice, the RT-Linux approach has proven to be very successful. Worst case interrupt latency on a
486/33Mhz PC measures well under 30 microseconds, close to the hardware limit. Many applications appear
to benefit from a synergy between the real-time system and the average case optimized standard operating
system. For example, data-acquisition applications are usually composed a simple polling or interrupt driven
real-time task that pipes data through a queue to a Linux process that takes care of logging and display. In
such cases, the I/O buffering and aggregation performed by Linux provides a high level of average case
performance while the real-time task meets strict worst-case limited deadlines.

RT-Linux is both spartan and extensible in accord with two, somewhat contradictory design premises. The first
design premise is that the truly time constrained components of a real-time application are not compatible with
dynamic resource allocation, complex synchronization, or anything else that introduces either hard to bound
delays or significant overhead. The most widely used configuration of RT-Linux offers primitive tasks with only
statically allocated memory, no address space protection, a simple fixed priority scheduler with no protection
against impossible schedules, hard interrupt disabling and shared memory as the only synchronization
primitives between real-time tasks, and a limited range of operations on the FIFO queues connecting real-time
tasks to Linux processes. The environment is not really as austere as all that, however, because the rich

Page 4 of 13

Operating Systems Benchmarking

collection of services provided by the non-real-time kernel are easily accessed by Linux user tasks. Non-real-
time components of applications migrate to Linux. One area where we hope to be able to make particular use
of this paradigm is in QOS, where it seems reasonable to factor applications into hard real-time components
that collect or distribute time sensitive data, and Linux processes or threads that monitor data rates, negotiate
for process time, and adjust algorithms.

The second design premise is that little is known about how real-time systems should be organized and the
operating system should allow for great flexibility in such things as the characteristics of real-time tasks,
communication, and synchronization. The kernel has been designed with replaceable modules wherever
practical and the spartan environment described in the previous paragraph is easily "improved" (or "cluttered",
depending on one's point of view). There are alternative scheduling modules, some contributed by the user
community, to allow for EDF and rate-monotonic scheduling of tasks. There is a "semaphore module" and
there is active development of a richer set of system services. Linux makes it possible for these services to be
offered by loadable kernel modules so that the fundamental operation of the real-time kernel is run-time
(although not real-time) reconfigurable. It is possible to develop a set of tasks under RT-Linux, test a system
using a EDF schedule, unload the EDF scheduling module, load a rate monotonic scheduling module, and
continue the test. It should eventually be possible to use a memory protected process model, to test different
implementations of IPCs, and to otherwise tinker with the system until the right mix of services is found.

3 eCos
In this section the eCos OS features are shown.

3.1 Introduction

eCos is an open source, configurable, portable, and royalty-free embedded real-time operating system. eCos
is provided as an open source runtime system supported by the GNU open source development tools.
One of the key technological innovations in eCos is the configuration system. The configuration system allows
the application writer to impose their requirements on the run-time components, both in terms of their function-
ality and implementation, whereas traditionally the operating system has constrained the application's own im-
plementation. Essentially, this enables eCos developers to create their own application-specific operating sys-
tem and makes eCos suitable for a wide range of embedded uses. Configuration also ensures that the re-
source footprint of eCos is minimized as all unnecessary functionality and features are removed. The configur-
ation system also presents eCos as a component architecture. This provides a standardized mechanism for
component suppliers to extend the functionality of eCos and allows applications to be built from a wide set of
optional configurable run-time components. Components can be provided from a variety of sources including:
the standard eCos release; commercial third party developers or open source contributors.
eCos is designed to be portable to a wide range of target architectures and target platforms including 16, 32,
and 64 bit architectures, MPUs, MCUs and DSPs. The eCos kernel, libraries and runtime components are
layered on the Hardware Abstraction Layer (HAL), and thus will run on any target once the HAL and relevant
device drivers have been ported to the target's processor architecture and board. Currently eCos supports a
large range of different target architectures:

* ARM, Intel StrongARM and XScale

e Fujitsu FR-V

« Hitachi SH2/3/4

« Hitachi H8/300H

Page 5 of 13

Operating Systems Benchmarking

e Intel x86

« MIPS

e Matsushita AM3x

* Motorola PowerPC

* Motorola 68k/Coldfire

« NEC V850

e Sun SPARC
including many of the popular variants of these architectures and evaluation boards.
eCos has been designed to support applications with real-time requirements, providing features such as full
preemptability, minimal interrupt latencies, and all the necessary synchronization primitives, scheduling
policies, and interrupt handling mechanisms needed for these type of applications. eCos also provides all the
functionality required for general embedded application support including device drivers, memory manage-
ment, exception handling, C, math libraries, etc. In addition to runtime support, the eCos system includes all
the tools necessary to develop embedded applications, including eCos software configuration and build tools,
and GNU based compilers, assemblers, linkers, debuggers, and simulators.

3.2 Feature set
The key features of eCos are as follows:

« eCos is distributed under the GPL license with an exception which permits proprietary application
code to be linked with eCos without itself being forced to be released under the GPL.

« Powerful GUI-based configuration system allowing both large and fine grained configuration of eCos.
This allows the functionality of eCos to be customized to the exact requirements of the application.

» Full-featured, flexible, configurable, real time embedded kernel. The kernel provides thread schedul-
ing, synchronization, timer, and communication primitives. It handles hardware resources such as in-
terrupts, exceptions, memory and caches.

« The Hardware Abstraction Layer (HAL) hides the specific features of each supported CPU and plat-
form, so that the kernel and other run-time components can be implemented in a portable fashion.

e Support for pfITRON and POSIX Application Programmer Interfaces (APIs). It also includes a fully fea-
tured, thread-safe ISO standard C library and math library.

» Support for a wide variety of devices including many serial devices, ethernet controllers and FLASH
memories. There is also support for PCMCIA, USB and PCl interconnects.

« A fully featured TCP/IP stack implementing IP, IPv6, ICMP, UDP and TCP over ethernet. Support for
SNMP, HTTP, TFTP and FTP are also present.

+ The RedBoot ROM monitor is an application that uses the eCos HAL for portability. It provides serial
and ethernet based booting and debug services during development.

e Many components include test programs that validate the components behaviour. These can be used
both to check that hardware is functioning correctly, and as examples of eCos usage.

» eCos documentation included this User Guide, the Reference Manual and the Components Writer's
Guide. These are being continually updated as the system develops.

3.3 Architecture

As application complexity and project costs continue to rise, software portability and reuse are two prime con-
cerns of both engineers and managers. RTOSes typically address these issues with a layered software archi-
tecture that abstracts the details of the target hardware from the application, enhancing both application port-

Page 6 of 13

Operating Systems Benchmarking

ability and reuse. eCos follows this paradigm with a well-defined interface between application and target-spe-
cific components.

The dashed line in Figure 1 divides the layers of software components. The first layer above the dashed line,
the kernel, networking stack and file system are independent of the processing hardware or board product.
These components interface with the upper compatibility and library layers to present a consistent platform for
the application layer. Below the dashed line is the RedBoot ROM monitor, the HAL or Hardware Abstraction
Layer and the device drivers. These components are written, configured and optimized for the specific target
hardware and should be supplied by the hardware vendor.

Aaplicatian

|

Target Specific
ROk
Monior | || iterrupts | [Exceptions | [vestors || | [Fiasn | [Serial | | Exnemet |
The eCos Layered Software Archifecture

The eCos Layered Soitware Architeclure abstracts target defails from the high-level
application, providing excellent platiorm portability, while still mainfaining performance at
the low-level taraet drivers and services

Figure 1- eCos Architecture

3.3.1 Portability and Performance

The HAL is a key component in eCos portability. It presents a consistent API to the upper OS layer, allowing
the same application code to run on any platform that is supported with a HAL. This means that each hard-
ware platform requires its own HAL to support the specific processor and peripheral set of the target.

As a complete package, the HAL often includes components for platform-specific resources, loading and boot-
ing, interrupt handling, context switch support, cache startup support, source level debugging, ROM monitor
support, as well as other features. In keeping with the eCos goal of configurability, only HAL components that
are actually required for a specific platform or application are built into the kernel. Selecting which components
are built is simplified through the eCos Configuration Tool. This Graphical User Interface (GUI) displays details
of each component and allows the user to choose which components will be built.

The HAL also provides some important board-specific, real-time facilities including an exception handler, an
interrupt handler and virtual vectors. The exception handler allows an embedded system to recover from hard-

Page 7 of 13

Operating Systems Benchmarking

ware exceptions like overflow, a bad memory access or a divide-by-zero operation. An unrecoverable situation
in a military system might prove disastrous. Virtual vectors support the ROM-based monitor, allowing applica-
tion debugging over an Ethernet or serial communication channel.

Handling external interrupts is a fundamental requirement of most embedded real-time systems and how they
are handled is crucial to overall performance. The HAL supports two types of interrupts. Interrupt Service
Routines (ISR) are used for simple tasks that can be dispatched quickly. Deferred Service Routines (DSR) are
used for complex tasks that can be implemented as soon as possible, but with interrupts re-enabled to main-
tain low latency for the ISRs. Having both types of interrupt handling available lets a user prioritize interrupts
according to system needs and still guarantee low latency.

3.3.2 The Kernel
The eCos kernel was designed to satisfy four main objectives:
1) Low interrupt latency, the time it takes to respond to an interrupt and begin executing an ISR.
2) Low task switching latency, the time it takes from when a thread becomes available to when actual ex-
ecution begins.
3) Small memory footprint, memory resources for both program and data are kept to a minimum by al-
lowing all components to configure memory as needed.
4) Deterministic behavior, throughout all aspects of execution, the kernel’s performance must be predict-
able and bounded to meet real-time application requirements.
Figure 2 lists these key metrics.

Four Key Kernel Metrics for RTOS Performance

Metric Description Requirement

Inesrupl The fime il akes b respond [0 an Many erebedded real-time Sysiems must respond b exlenad eviss thiough
Latency exlermal inlerrupt and begin execuling hee haere inlesropls and mus) senice Tem approprilely. Low indenpl

an ISR {inlernapt Sarvice Routine) |atancy ks crucial in many applications
Task Swilching The fime it tzkes from when a thiead Owerall sysiem pefonmance bs dependant on low |ask switching lalency.
Latency tecomes avaiable lo when achal

eidn eging
Memary IMermory resounces nesde lor bolh Embedied sysiems bypically hive limied memory esources due o size,
Foorgeint peogram and dala power and ¢ost cosatrainls. The ATOS mast maintzn & small footpeint o

makich tha limited available memony.

[eteministic The kemel's abdity 12 consistently and In many real-lime processing applications, dala is iefroduced o the sysiem

Behpror predclatly periem tasks ard expescled oul of the syshem al @ conesland rale, Theoughcul ab aspects of
execulion, the kemels perlormance mus! be peedictabls and baunded by mesl
the real-lima procassing reganements,

Figure 2 - eCos Kernel Objective

eCos offers an interesting feature to further improve application performance: the option to build with or
without an actual kernel. In simple applications that don’t require scheduling or multi-tasking, eCos functions
to set up and run the hardware can be built without the kernel, improving execution speed and reducing the
memory footprint. In many traditional DSP applications this type of processing is common.

Moving in the other direction, eCos can be a full-featured OS with a complete set of kernel and core compon-
ents including: scheduling and synchronization, interrupt and exception handling, counters, clocks, alarms,
timers, POSIX and pITRON compatibility layers, ROM monitors, RAM and ROM file systems, PCl support,
TCP/IP networking support, as well as features continuously being added and contributed by third parties. As
mentioned earlier, the eCos Configuration Tools allow easy configuration and building of the kernel.

Page 8 of 13

Operating Systems Benchmarking

4 RTEMS

In this section RTEMS as real time OS is introduced.

4.1 Introduction

RTEMS (Real-Time Executive for Multiprocessor Systems) is a commercial grade real-time operating system
designed for deeply embedded systems. It is a free open source solution that supports multi-processor
systems. RTEMS is designed to support applications with the most stringent real-time requirements while
being compatible with open standards. Development hosts include both MS-Windows and Unix (GNU/Linux,
FreeBSD, Solaris, MacOS X, etc.) platforms. The RTEMS project is managed by OAR Corporation with

invaluable development input from the vibrant and talented members of the RTEMS community
4.2 Feature set
RTEMS features are as follows:

POSIX 1003.1b APl including threads
RTEID/ORKID based Classic API (similar to pSOS+)
TCP/IP including BSD Sockets
ulTRON 3.0 API
GNU Toolset Supports Multiple Language Standards
o ISO/ANSIC
0 ISO/ANSI C++ including Standard Template Library
0 Ada95 with GNAT/RTEMS
Multitasking capabilities
Homogeneous and heterogeneous multiprocessor systems
Event-driven, priority-based pre-emptive scheduling
Optional rate-monotonic scheduling
Intertask communication and synchronization
Priority inheritance
Responsive interrupt management
Dynamic memory allocation
High level of user configurability
Portable to many target environment.
High performance port of FreeBSD TCP/IP stack
UDP, TCP
ICMP, DHCP, RARP, BOOTP, PPPD
Client Services
0 Domain Name Service (DNS) client
o Trivial FTP (TFTP) client
0 Network Filesystem System (NFS) client
Servers
o FTP server (FTPD)
o Web Server (HTTPD)
0 Telnet Server (Telnetd)
Sun Remote Procedure Call (RPC)
Sun eXternal Data Representation (XDR)
CORBA

Page 9 of 13

Operating Systems Benchmarking

e In-memory filesystem (IMFS)

« mini-IMFS (reduced services and footprint)
 MS-DOS FAT32, FAT16, and FAT12

e TFTP client filesystem

* NFS client

4.3 Architecture
We show two side of RTEMS architecture here: Application architecture and internal architecture.

4.3.1 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers of typical real-time
systems. As shown in the following figure, RTEMS serves as a buffer between the project dependent applica-
tion code and the target hardware. Most hardware dependencies for real-time applications can be localized to
the low level device drivers.

Application Dependent Software

Standard Application Components

RTEMS
Device Drivers Executive

Target Hardware

Figure 3 — RTEMS Application Architectre

The RTEMS I/O interface manager provides an efficient tool for incorporating these hardware dependencies
into the system while simultaneously providing a general mechanism to the application code that accesses
them. A well designed real-time system can benefit from this architecture by building a rich library of standard
application components which can be used repeatedly in other real-time projects.

4.3.2 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide a set of services to a
real-time application system. The executive interface presented to the application is formed by grouping direct-
ives into logical sets called resource managers. Functions utilized by multiple managers such as scheduling,
dispatching, and object management are provided in the executive core. The executive core depends on a
small set of CPU dependent routines. Together these components provide a powerful run time environment
that promotes the development of efficient real-time application systems. The following figure illustrates this or-
ganization:

Page 10 of 13

Operating Systems Benchmarking

Initialization% Task
Fatal Error ° i

Event

Message

Interrupt

Semaphore - Dual Ported Memory

Partition

Rate
Monotonic ultiprocessing

Figure 4 - RTEMS Internal Architecture

Subsequent chapters present a detailed description of the capabilities provided by each of the following
RTEMS managers:
e initialization

e task

e interrupt
e clock

e timer

e semaphore
* message

e event

+ signal

e partition

* region

e dual ported memory
- 1/0

- fatal error

e rate monotonic
e user extensions
« multiprocessing

5 Benchmarking and Conclusion

This section gathers some comparing between these three OS.

The first compare is between RTLinux and RTEMS. This benchmarking shows Interrupt latency and context
switching of these two OSes. The test was performed on the same hardware under the RTL, RTEMS and Vx-
Works systems. 2’000°000 timer interrupts were generated at a rate of 4kHz and the maximal and average
latencies were recorded. Measurements were made under both, idle and loaded conditions. Figure 5 shows
the result:

Page 11 of 13

Operating Systems Benchmarking

Interrupt Latency Context Switching
max avgto max avgto
Idie System

RTL 135 (1.7+02) 331 (8.7 0.5)
RTEMS! 149 (1301 169 (23+ 0.1)
ETEMS 151 (13+0.1) 164 (22+ 0.1)
v Works 131 (2.0+£02) 190 (3.1+ 03)
Loaded Svstem

RTL | 1968 (21+33) 1939 (112+ 45)
RTEMS! 192 (24+1.7) 2130 (104+£127)
ETEMS | 205 (294£18) 513 (3.7 2.0)
veaWorks | 252 (294135) 388 (95+ 32)

lysing pthreads

Figure 5 - RTLinux and RTEMS benchmark

eCos also has a kernel benchmark as follow. For example when eCos was run on the Pentek Model 4205 600
MHz, MPC7455 G4 PowerPC with 2 Mbytes of external L3 cache, thread switch time was recorded at 0.98
psec. Switch times between 1 and 10 psec are typically considered very good for commercially available
RTOSes or for optimized versions of real-time Linux. Figure 6 shows execution times recorded for some of the
other key scheduling and synchronization functions.

eCos Kernel Benchmarks

eCos
Function Average Time
(usec)
Thread Swilch 0.98
Put or Get
Mailbox 0z
Mailbox Put/Get 1.27
Post Semaphore 0.22
Wait Semaphore 0.26
Post/Wail
Semaphore 133
Wait for Flag
[AND] L

Figure 6 - eCos Kernel Benchmarks

A side effect of a fully configurable system is that it is just about impossible to answer questions like "What is
the memory footprint of the kernel?" or "What is the interrupt latency?" These figures depend in large part on

Page 12 of 13

Operating Systems Benchmarking

the configuration options selected by the user. For example if a simple application does not require the kernel
at all, directly or indirectly, then the kernel package can be disabled completely and its memory footprint is 0
bytes.

These features show that eCos and RTEMS have better performance than Linux, but there are some
important things that we should consider. The first one is we want to use the applications as a built in modules
in kernel so the context switching and interrupt latency are not important. The other thing is security. In Linux
kernel there is a Netfilter structure to implement security but this structure is not available in RTEMS kernel
and eCos. We can use this structure to implement some features such as NAT, packet filtering and And the
final note is we have a better knowledge in Linux than the other ones.

6 Reference

[1] http://ecos.sourcware.org

[2] http://www.cotsjournalonline.com/home/article.php?id=100164

[3] http://www.rtems.com

[4] T. Straumann, “OPEN SOURCE REAL TIME OPERATING SYSTEMS OVERVIEW”, Menlo Park, USA,
2001

Page 13 of 13

http://www.rtems.com/
http://www.cotsjournalonline.com/home/article.php?id=100164
http://ecos.sourcware.org/

	1 Scope
	2 RTLinux
	3 eCos
	3.1 Introduction
	3.2 Feature set
	3.3 Architecture
	3.3.1 Portability and Performance
	3.3.2 The Kernel

	4 RTEMS
	4.1 Introduction
	4.2 Feature set
	4.3 Architecture
	4.3.1 RTEMS Application Architecture
	4.3.2 RTEMS Internal Architecture

	5 Benchmarking and Conclusion
	6 Reference

