
Google File System

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 1 / 52



What is the Problem?

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 2 / 52



What is the Problem?

I Crawl the whole web.

I Store it all on one big disk.

I Process users’ searches on one big CPU.

I Does not scale.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 3 / 52



What is the Problem?

I Crawl the whole web.

I Store it all on one big disk.

I Process users’ searches on one big CPU.

I Does not scale.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 3 / 52



Motivation and Assumptions (1/3)

I Lots of cheap PCs, each with disk and CPU.
• How to share data among PCs?

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 4 / 52



Motivation and Assumptions (2/3)

I 100s to 1000s of PCs in cluster.
• Failure of each PC.
• Monitoring, fault tolerance,

auto-recovery essential.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 5 / 52



Motivation and Assumptions (3/3)

I Large files: ≥ 100 MB in size.

I Large streaming reads and small random reads.

I Append to files rather than overwrite.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 6 / 52



Motivation and Assumptions (3/3)

I Large files: ≥ 100 MB in size.

I Large streaming reads and small random reads.

I Append to files rather than overwrite.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 6 / 52



Motivation and Assumptions (3/3)

I Large files: ≥ 100 MB in size.

I Large streaming reads and small random reads.

I Append to files rather than overwrite.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 6 / 52



Reminder

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 7 / 52



What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 8 / 52



What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 8 / 52



Distributed Filesystems

I When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 9 / 52



Google File System
(GFS)

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 10 / 52



GFS

I Appears as a single disk

I Runs on top of a native filesystem.

I Fault tolerant: can handle disk crashes, machine crashes, ...

I Hadoop Distributed File System (HDFS) is an open source Java
product similar to GFS.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 11 / 52



GFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 12 / 52



GFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 12 / 52



GFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 12 / 52



GFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 13 / 52



GFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 13 / 52



GFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 13 / 52



Files and Chunks

I Files are split into chunks.

I Chunks
• Single unit of storage: a contiguous piece of information on a disk.
• Transparent to user.
• Chunks are traditionally either 64MB or 128MB: default is 64MB.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 14 / 52



GFS Architecture

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 15 / 52



GFS Architecture

I Main components:
• GFS master
• GFS chunk server
• GFS client

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 16 / 52



GFS Master

I Manages file namespace operations.

I Manages file metadata (holds all metadata in memory).
• Access control information
• Mapping from files to chunks
• Locations of chunks

I Manages chunks in chunk servers.
• Creation/deletion
• Placement
• Load balancing
• Maintains replication
• Garbage collection

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 17 / 52



GFS Master

I Manages file namespace operations.

I Manages file metadata (holds all metadata in memory).
• Access control information
• Mapping from files to chunks
• Locations of chunks

I Manages chunks in chunk servers.
• Creation/deletion
• Placement
• Load balancing
• Maintains replication
• Garbage collection

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 17 / 52



GFS Master

I Manages file namespace operations.

I Manages file metadata (holds all metadata in memory).
• Access control information
• Mapping from files to chunks
• Locations of chunks

I Manages chunks in chunk servers.
• Creation/deletion
• Placement
• Load balancing
• Maintains replication
• Garbage collection

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 17 / 52



GFS Chunk Server

I Manage chunks.

I Tells master what chunks it has.

I Store chunks as files.

I Maintain data consistency of chunks.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 18 / 52



GFS Client

I Issues control (metadata) requests to master server.

I Issues data requests directly to chunk servers.

I Caches metadata.

I Does not cache data.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 19 / 52



The Master Operations

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 20 / 52



The Master Operations

I Namespace management and locking

I Replica placement

I Creating, re-replicating and re-balancing replicas

I Garbage collection

I Stale replica detection

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 21 / 52



Namespace Management and Locking

I Represents its namespace as a lookup table mapping full pathnames
to metadata.

I Each master operation acquires a set of locks before it runs.

I Allowed concurrent mutations in the same directory.

I Read lock on directory prevents its deletion, renaming or snapshot.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 22 / 52



Namespace Management and Locking

I Represents its namespace as a lookup table mapping full pathnames
to metadata.

I Each master operation acquires a set of locks before it runs.

I Allowed concurrent mutations in the same directory.

I Read lock on directory prevents its deletion, renaming or snapshot.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 22 / 52



Namespace Management and Locking

I Represents its namespace as a lookup table mapping full pathnames
to metadata.

I Each master operation acquires a set of locks before it runs.

I Allowed concurrent mutations in the same directory.

I Read lock on directory prevents its deletion, renaming or snapshot.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 22 / 52



Replica Placement

I Maximize data reliability, availability and bandwidth utilization.

I Replicas spread across machines and racks, for example:
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on the different rack.

I The master determines replica placement.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 23 / 52



Creation, Re-replication and Re-balancing

I Creation
• Place new replicas on chunk servers with below-average disk usage.
• Limit number of recent creations on each chunk servers.

I Re-replication
• When number of available replicas falls below a user-specified goal.

I Rebalancing
• Periodically, for better disk utilization and load balancing.
• Distribution of replicas is analyzed.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 24 / 52



Creation, Re-replication and Re-balancing

I Creation
• Place new replicas on chunk servers with below-average disk usage.
• Limit number of recent creations on each chunk servers.

I Re-replication
• When number of available replicas falls below a user-specified goal.

I Rebalancing
• Periodically, for better disk utilization and load balancing.
• Distribution of replicas is analyzed.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 24 / 52



Creation, Re-replication and Re-balancing

I Creation
• Place new replicas on chunk servers with below-average disk usage.
• Limit number of recent creations on each chunk servers.

I Re-replication
• When number of available replicas falls below a user-specified goal.

I Rebalancing
• Periodically, for better disk utilization and load balancing.
• Distribution of replicas is analyzed.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 24 / 52



Garbage Collection

I File deletion logged by master.

I File renamed to a hidden name with deletion timestamp.

I Master regularly deletes files older than 3 days (configurable).

I Until then, hidden file can be read and undeleted.

I When a hidden file is removed, its in-memory metadata is erased.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 25 / 52



Garbage Collection

I File deletion logged by master.

I File renamed to a hidden name with deletion timestamp.

I Master regularly deletes files older than 3 days (configurable).

I Until then, hidden file can be read and undeleted.

I When a hidden file is removed, its in-memory metadata is erased.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 25 / 52



Garbage Collection

I File deletion logged by master.

I File renamed to a hidden name with deletion timestamp.

I Master regularly deletes files older than 3 days (configurable).

I Until then, hidden file can be read and undeleted.

I When a hidden file is removed, its in-memory metadata is erased.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 25 / 52



Stale Replica Detection

I Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

I Need to distinguish between up-to-date and stale replicas.

I Chunk version number:
• Increased when master grants new lease on the chunk.
• Not increased if replica is unavailable.

I Stale replicas deleted by master in regular garbage collection.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 26 / 52



Stale Replica Detection

I Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

I Need to distinguish between up-to-date and stale replicas.

I Chunk version number:
• Increased when master grants new lease on the chunk.
• Not increased if replica is unavailable.

I Stale replicas deleted by master in regular garbage collection.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 26 / 52



Stale Replica Detection

I Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

I Need to distinguish between up-to-date and stale replicas.

I Chunk version number:
• Increased when master grants new lease on the chunk.
• Not increased if replica is unavailable.

I Stale replicas deleted by master in regular garbage collection.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 26 / 52



Stale Replica Detection

I Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

I Need to distinguish between up-to-date and stale replicas.

I Chunk version number:
• Increased when master grants new lease on the chunk.
• Not increased if replica is unavailable.

I Stale replicas deleted by master in regular garbage collection.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 26 / 52



System Interactions

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 27 / 52



GFS API

I Not POSIX compliant
• Supports only popular FS operations, and semantics are different.

I API:
• Read operation: read
• Update operations: write and append
• Delete operation

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 28 / 52



Read Operation (1/2)

I 1. Application originates the read request.

I 2. GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 29 / 52



Read Operation (1/2)

I 1. Application originates the read request.

I 2. GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 29 / 52



Read Operation (1/2)

I 1. Application originates the read request.

I 2. GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 29 / 52



Read Operation (2/2)

I 4. The client picks a location and sends the request.

I 5. The chunk server sends requested data to the client.

I 6. The client forwards the data to the application.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 30 / 52



Read Operation (2/2)

I 4. The client picks a location and sends the request.

I 5. The chunk server sends requested data to the client.

I 6. The client forwards the data to the application.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 30 / 52



Read Operation (2/2)

I 4. The client picks a location and sends the request.

I 5. The chunk server sends requested data to the client.

I 6. The client forwards the data to the application.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 30 / 52



Update Order (1/2)

I Update (mutation): an operation that changes the contents or
metadata of a chunk.

I For consistency, updates to each chunk must be ordered in the same
way at the different chunk replicas.

I Consistency means that replicas will end up with the same version
of the data and not diverge.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 31 / 52



Update Order (1/2)

I Update (mutation): an operation that changes the contents or
metadata of a chunk.

I For consistency, updates to each chunk must be ordered in the same
way at the different chunk replicas.

I Consistency means that replicas will end up with the same version
of the data and not diverge.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 31 / 52



Update Order (2/2)

I For this reason, for each chunk, one replica is designated as the
primary.

I The other replicas are designated as secondaries

I Primary defines the update order.

I All secondaries follows this order.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 32 / 52



Primary Leases (1/2)

I For correctness, at any time, there needs to be one single primary
for each chunk.

I At any time, at most one server is primary for each chunk.

I Master selects a chunk-server and grants it lease for a chunk.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 33 / 52



Primary Leases (1/2)

I For correctness, at any time, there needs to be one single primary
for each chunk.

I At any time, at most one server is primary for each chunk.

I Master selects a chunk-server and grants it lease for a chunk.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 33 / 52



Primary Leases (2/2)

I The chunk-server holds the lease for a period T after it gets it, and
behaves as primary during this period.

I The chunk-server can refresh the lease endlessly, but if the chunk-
server can not successfully refresh lease from master, he stops being
a primary.

I If master does not hear from primary chunk-server for a period, he
gives the lease to someone else.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 34 / 52



Primary Leases (2/2)

I The chunk-server holds the lease for a period T after it gets it, and
behaves as primary during this period.

I The chunk-server can refresh the lease endlessly, but if the chunk-
server can not successfully refresh lease from master, he stops being
a primary.

I If master does not hear from primary chunk-server for a period, he
gives the lease to someone else.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 34 / 52



Write Operation (1/3)

I 1. Application originates the request.

I 2. The GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 35 / 52



Write Operation (1/3)

I 1. Application originates the request.

I 2. The GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 35 / 52



Write Operation (1/3)

I 1. Application originates the request.

I 2. The GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 35 / 52



Write Operation (2/3)

I 4. The client pushes write data to all locations. Data is stored in
chunk-server’s internal buffers.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 36 / 52



Write Operation (3/3)

I 5. The client sends write command to the primary.

I 6. The primary determines serial order for data instances in its buffer
and writes the instances in that order to the chunk.

I 7. The primary sends the serial order to the secondaries and tells
them to perform the write.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 37 / 52



Write Operation (3/3)

I 5. The client sends write command to the primary.

I 6. The primary determines serial order for data instances in its buffer
and writes the instances in that order to the chunk.

I 7. The primary sends the serial order to the secondaries and tells
them to perform the write.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 37 / 52



Write Operation (3/3)

I 5. The client sends write command to the primary.

I 6. The primary determines serial order for data instances in its buffer
and writes the instances in that order to the chunk.

I 7. The primary sends the serial order to the secondaries and tells
them to perform the write.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 37 / 52



Write Consistency

I Primary enforces one update order across all replicas for concurrent
writes.

I It also waits until a write finishes at the other replicas before it
replies.

I Therefore:
• We will have identical replicas.
• But, file region may end up containing mingled fragments from

different clients: e.g., writes to different chunks may be ordered
differently by their different primary chunk-servers

• Thus, writes are consistent but undefined state in GFS.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 38 / 52



Write Consistency

I Primary enforces one update order across all replicas for concurrent
writes.

I It also waits until a write finishes at the other replicas before it
replies.

I Therefore:
• We will have identical replicas.
• But, file region may end up containing mingled fragments from

different clients: e.g., writes to different chunks may be ordered
differently by their different primary chunk-servers

• Thus, writes are consistent but undefined state in GFS.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 38 / 52



Record Append Operation (1/3)

I Operations that append data to a file.
• Same as write, but no offset (GFS choses the offset)

I Important operation at Google
• Merging results from multiple machines in one file.
• Using file as producer-consumer queue.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 39 / 52



Record Append Operation (2/3)

I 1. Application originates record append request.

I 2. The client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

I 4. The client pushes write data to all locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 40 / 52



Record Append Operation (2/3)

I 1. Application originates record append request.

I 2. The client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

I 4. The client pushes write data to all locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 40 / 52



Record Append Operation (2/3)

I 1. Application originates record append request.

I 2. The client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

I 4. The client pushes write data to all locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 40 / 52



Record Append Operation (2/3)

I 1. Application originates record append request.

I 2. The client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

I 4. The client pushes write data to all locations.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 40 / 52



Record Append Operation (3/3)

I 5. The primary checks if record fits in specified chunk.

I 6. If record does not fit, then the primary:
• Pads the chunk,
• Tells secondaries to do the same,
• And informs the client.
• The client then retries the append with the next chunk.

I 7. If record fits, then the primary:
• Appends the record,
• Tells secondaries to do the same,
• Receives responses from secondaries,
• And sends final response to the client

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 41 / 52



Record Append Operation (3/3)

I 5. The primary checks if record fits in specified chunk.

I 6. If record does not fit, then the primary:
• Pads the chunk,
• Tells secondaries to do the same,
• And informs the client.
• The client then retries the append with the next chunk.

I 7. If record fits, then the primary:
• Appends the record,
• Tells secondaries to do the same,
• Receives responses from secondaries,
• And sends final response to the client

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 41 / 52



Record Append Operation (3/3)

I 5. The primary checks if record fits in specified chunk.

I 6. If record does not fit, then the primary:
• Pads the chunk,
• Tells secondaries to do the same,
• And informs the client.
• The client then retries the append with the next chunk.

I 7. If record fits, then the primary:
• Appends the record,
• Tells secondaries to do the same,
• Receives responses from secondaries,
• And sends final response to the client

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 41 / 52



Delete Operation

I Meta data operation.

I Renames file to special name.

I After certain time, deletes the actual chunks.

I Supports undelete for limited time.

I Actual lazy garbage collection.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 42 / 52



Fault Tolerance

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 43 / 52



Fault Tolerance for Chunks

I Chunks replication (re-replication and re-balancing)

I Data integrity
• Checksum for each chunk divided into 64KB blocks.
• Checksum is checked every time an application reads the data.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 44 / 52



Fault Tolerance for Chunk Server

I All chunks are versioned.

I Version number updated when a new lease is granted.

I Chunks with old versions are not served and are deleted.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 45 / 52



Fault Tolerance for Master

I Master state replicated for reliability on multiple machines.

I When master fails:
• It can restart almost instantly.
• A new master process is started elsewhere.

I Shadow (not mirror) master provides only read-only access to file
system when primary master is down.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 46 / 52



Fault Tolerance for Master

I Master state replicated for reliability on multiple machines.

I When master fails:
• It can restart almost instantly.
• A new master process is started elsewhere.

I Shadow (not mirror) master provides only read-only access to file
system when primary master is down.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 46 / 52



Fault Tolerance for Master

I Master state replicated for reliability on multiple machines.

I When master fails:
• It can restart almost instantly.
• A new master process is started elsewhere.

I Shadow (not mirror) master provides only read-only access to file
system when primary master is down.

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 46 / 52



High Availability

I Fast recovery
• Master and chunk-servers have to restore their state and start in

seconds no matter how they terminated.

I Heartbeat messages:
• Checking liveness of chunk-servers
• Piggybacking garbage collection commands
• Lease renewal

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 47 / 52



High Availability

I Fast recovery
• Master and chunk-servers have to restore their state and start in

seconds no matter how they terminated.

I Heartbeat messages:
• Checking liveness of chunk-servers
• Piggybacking garbage collection commands
• Lease renewal

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 47 / 52



Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 48 / 52



HDFS

I Sub-project of Apache Hadoop project

I Inspired by the Google File System

I Namenode: master

I Datanode: chunk server

I Block: chunk

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 49 / 52



Summary

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 50 / 52



Summary

I Google File System (GFS)

I Files and chunks

I GFS architecture: master, chunk servers, client

I GFS interactions: read and update (write and update record)

I Master operations: metadata management, replica placement and
garbage collection

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 51 / 52



Questions?

Amir H. Payberah (Tehran Polytechnic) GFS 1394/3/5 52 / 52


