Introduction to Operating Systems (Part II)

Amir H. Payberah amir@sics.se

Amirkabir University of Technology (Tehran Polytechnic)

Computer System Architecture

Computer System Architecture

- A computer system can be organized in a number of different ways, e.g., number of general-purpose processors:
 - Single processor systems
 - Multiprocessor systems
 - Clustered systems

Multiprocessor Systems

► Also known as parallel systems or tightly-coupled systems.

Multiprocessor Systems

- ► Also known as parallel systems or tightly-coupled systems.
- Advantages include:
 - Increased throughput
 - Economy of scale
 - Increased reliability

Multiprocessor Systems

- ► Also known as parallel systems or tightly-coupled systems.
- Advantages include:
 - Increased throughput
 - Economy of scale
 - Increased reliability
- New trends in multiprocessor systems:
 - Multicore systems
 - Blade servers

Including multiple computing cores on a single chip.

- Including multiple computing cores on a single chip.
- ► They can be more efficient than multiple chips with single cores:

- Including multiple computing cores on a single chip.
- They can be more efficient than multiple chips with single cores:
 - Faster communication

- Including multiple computing cores on a single chip.
- They can be more efficient than multiple chips with single cores:
 - Faster communication
 - Less power consumption

Blade Servers

- Multiple processor boards, I/O boards, and networking boards are placed in the same chassis.
- Each blade-processor board boots independently and runs its own operating system.

Clustered Servers

- ► Like multiprocessor systems, but multiple systems working together.
- ► Usually sharing storage via a storage-area network (SAN).

[General structure of a clustered system]

Operating System Structure

Multiprogramming (1/2)

Multiprogramming (batch system).

Multiprogramming (1/2)

- Multiprogramming (batch system).
- ► CPU always has one to execute: efficiency.

Multiprogramming (2/2)

• A subset of total jobs in system is kept in memory.

Multiprogramming (2/2)

- A subset of total jobs in system is kept in memory.
- One job selected and run via job scheduling.

0	operating system
	job 1
	job 2
	job 3
ax	job 4

Μ

Multiprogramming (2/2)

- A subset of total jobs in system is kept in memory.
- One job selected and run via job scheduling.
- When it has to wait (for I/O for example), OS switches to another job.

0	
Ĭ	operating system
	job 1
	job 2
	job 3
ax	job 4

M

Timesharing (multitasking)

• Providing each user with a small portion of a time-shared computer.

- Providing each user with a small portion of a time-shared computer.
- Each user has at least one separate program in memory, called a process.

- Providing each user with a small portion of a time-shared computer.
- Each user has at least one separate program in memory, called a process.
- Each process typically executes for only a short time.

- Providing each user with a small portion of a time-shared computer.
- Each user has at least one separate program in memory, called a process.
- Each process typically executes for only a short time.
- If several jobs ready to run at the same time $ightarrow {\sf CPU}$ scheduling

Dual-Mode Operation (1/2)

The OS and the users share the hardware and software resources of the computer system.

Dual-Mode Operation (1/2)

- The OS and the users share the hardware and software resources of the computer system.
- ► We need to make sure that an error in a user program could cause problems only for the one program running.
 - E.g., stuck on an infinite loop

Dual-Mode Operation (2/2)

 Dual-mode operation allows OS to protect itself and other system components. Dual-Mode Operation (2/2)

- Dual-mode operation allows OS to protect itself and other system components.
 - User mode and kernel mode.

[Transition from user to kernel mode]

Dual-Mode Operation (2/2)

- Dual-mode operation allows OS to protect itself and other system components.
 - User mode and kernel mode.
 - System call changes mode to kernel, return from call resets it to user.

[Transition from user to kernel mode]

Operating System Structure

User Space

► Kernel: the program running at all times on a computer.

- ► Kernel: the program running at all times on a computer.
- Everything else is either:
 - a system program, or
 - an application program

► Most users' view of an OS is defined by system programs.

System Programs (1/4)

- ► Most users' view of an OS is defined by system programs.
- System programs include:
 - File manipulation
 - Status information
 - Programming language support
 - Communications
 - Background services

System Programs (2/4)

► File management

• Create, delete, copy, rename, print, dump, list, and generally manipulate files and directories.

System Programs (2/4)

File management

• Create, delete, copy, rename, print, dump, list, and generally manipulate files and directories.

File modification

- Text editors to create and modify files.
- Special commands to search contents of files or perform transformations of the text.
System Programs (3/4)

Status information

• Asking the system info: date, time, amount of available memory, ...

System Programs (3/4)

Status information

• Asking the system info: date, time, amount of available memory, ...

Programming-language support

• Compilers, assemblers, debuggers and interpreters sometimes provided.

System Programs (4/4)

Communications

• A mechanism to make connections among processes, users, and computers.

System Programs (4/4)

Communications

• A mechanism to make connections among processes, users, and computers.

Background services

- Launch at boot time, called services or daemons.
- Provide facilities like disk checking, process scheduling, error logging, printing.

Application Programs

Run by users.

Not typically considered part of OS.

Launched by command line, mouse click, finger poke.

▶ Web browsers, word processors, database systems, compilers, games, ...

User Operating System Interface

- Almost all operating systems have a user interface (UI).
 - Command Line Interface (CLI)
 - Graphics User Interface (GUI)
 - Batch

• Allows direct command entry.

- Allows direct command entry.
- Sometimes implemented in kernel, sometimes by systems program.

- Allows direct command entry.
- Sometimes implemented in kernel, sometimes by systems program.
- Sometimes commands built-in, sometimes just names of programs.

- Allows direct command entry.
- Sometimes implemented in kernel, sometimes by systems program.
- Sometimes commands built-in, sometimes just names of programs.
- Sometimes multiple flavors implemented shell.

😣 🗇 🗊 amir@rakhsh: ~										
	Edit	View		arch Ti	erminal	Help				
tot	al 1	8930)48							
drw	krwx			amir	amir	4096	May	13	15:01	3gsim
drw	krwx			amir	amir	4096	Mar		2013	backup
				amir	amir	1936458240	Jun	12	18:58	csl.ova
drw	kr-x			amir	amir	4096	Apr	15	16:39	Desktop
drw	kr-x			amir	amir	4096	Jun	12	19:00	Documents
drw	kr-x		16	amir	amir	40960	Jul	30	12:07	Downloads
drw	K		13	amir	amir	4096	Jul	25	08:18	Dropbox
drw	kr-x			amir	amir	4096	Mar	14	17:02	Music
drw	kr-x		24	amir	amir	4096	Jun	23	13:50	Pictures
drw	krwx		11	amir	amir	4096	Mar	25	14:01	Projects
drw	kr-x		13	amir	amir	4096	Jun	12	19:02	Public
drw	kr-x		23	amir	amir	4096	Nov		2010	Src
d rw	krwx		5	amir	amir	4096	Apr	30	14:08	Temp
drw	kr-x		2	amir	amir	4096	May	24	2012	Templates
d rw	kr-x		5	amir	amir	4096	Jun	18	16:22	Tools
drw	krwx		6	amir	amir	4096	May	30	15:08	trafmod
drw	Krwx		2	amir	amir	4096	May	31	2012	Ubuntu One
drw	kr-x		4	amir	amir	4096	Sep	17	2013	University
d rw	kr-x		2	amir	amir	4096	May	24	2012	Videos
d rw	K			amir	amir	4096	Jun	12	19:00	VirtualBox VMs
drw	krwx			amir	amir	4096	May	14	11:44	webtrafmod
drw	kr-x		25	amir	amir	4096	Nov	5	2013	workspace
ami	r@ra	khsł	1:~3	5 W						
13	:06:	17 ι	ib 1	L8 da	ys, 22	2:49, 3 use	ers,	lo	ad ave	erage: 0.23, 0.54, 0.70
USE	R	TT	Y		FROM		L00	SIN@	i IDI	LE JCPU PCPU WHAT
ami		tt	:y7				11J(1114	18day	ys 2:47m 3.42s gnome-sessionsession=g
ami		pt	s/(:0.0		08:4	14	1.00	0s 0.35s 0.00s w
ami		pt	s/1		:0.0		10:5	56	2:10	0m 0.21s 0.21s /bin/bash

Graphical Line Interface (1/2)

• User-friendly desktop metaphor interface.

Graphical Line Interface (1/2)

- User-friendly desktop metaphor interface.
- ▶ Icons represent files, programs, actions, ...

Graphical Line Interface (1/2)

- User-friendly desktop metaphor interface.
- ▶ Icons represent files, programs, actions, ...
- Various mouse buttons over objects in the interface cause various actions.

Graphical Line Interface (2/2)

Batch Interface

 Commands and directives to control those commands are entered into files, and those files are executed. Kernel Space

Operating System Structure

Splitting the Kernel

► The kernel's role can be split into the following parts

- Process management
- Memory management
- Storage management and File system
- Device control and I/O subsystem
- Protection and security

• A process is a program in execution.

- A process is a program in execution.
 - Program is a passive entity, process is an active entity.

- A process is a program in execution.
 - Program is a passive entity, process is an active entity.
- A process needs resources to accomplish its task.
 - CPU, memory, I/O, files, initialization data, ...

- A process is a program in execution.
 - Program is a passive entity, process is an active entity.
- A process needs resources to accomplish its task.
 - CPU, memory, I/O, files, initialization data, ...
- ► Process termination requires reclaim of any reusable resources.

Process management activities:

- Process management activities:
 - Scheduling processes and threads on the CPUs.

- Process management activities:
 - Scheduling processes and threads on the CPUs.
 - Creating and deleting both user and system processes.

- Process management activities:
 - Scheduling processes and threads on the CPUs.
 - Creating and deleting both user and system processes.
 - Suspending and resuming processes.

- Process management activities:
 - Scheduling processes and threads on the CPUs.
 - Creating and deleting both user and system processes.
 - Suspending and resuming processes.
 - Providing mechanisms for process synchronization.

- Process management activities:
 - Scheduling processes and threads on the CPUs.
 - Creating and deleting both user and system processes.
 - Suspending and resuming processes.
 - Providing mechanisms for process synchronization.
 - Providing mechanisms for process communication.

To execute a program all (or part) of the instructions must be in memory.

- To execute a program all (or part) of the instructions must be in memory.
- All (or part) of the data that is needed by the program must be in memory.

- To execute a program all (or part) of the instructions must be in memory.
- All (or part) of the data that is needed by the program must be in memory.
- Memory management determines what is in memory and when.

Memory management activities:

- Memory management activities:
 - Keeping track of which parts of memory are currently being used and by whom.

- Memory management activities:
 - Keeping track of which parts of memory are currently being used and by whom.
 - Deciding which processes (or parts of) and data to move into and out of memory.

- Memory management activities:
 - Keeping track of which parts of memory are currently being used and by whom.
 - Deciding which processes (or parts of) and data to move into and out of memory.
 - Allocating and deallocating memory space as needed.
► OS provides uniform and logical view of information storage.

- ► OS provides uniform and logical view of information storage.
- ► OS abstracts physical properties to logical storage unit, called file.

- ► OS provides uniform and logical view of information storage.
- ► OS abstracts physical properties to logical storage unit, called file.
 - A file is a collection of related information (programs or data).

- ► OS provides uniform and logical view of information storage.
- ► OS abstracts physical properties to logical storage unit, called file.
 - A file is a collection of related information (programs or data).
 - Files usually organized into directories.

- ► OS provides uniform and logical view of information storage.
- ► OS abstracts physical properties to logical storage unit, called file.
 - A file is a collection of related information (programs or data).
 - Files usually organized into directories.
- OS maps files onto physical media and accesses these files via the storage devices, e.g., disk drive, tape drive.

File management activities:

- File management activities:
 - Creating and deleting files and directories.

- File management activities:
 - Creating and deleting files and directories.
 - Primitives to manipulate files and directories.

- File management activities:
 - Creating and deleting files and directories.
 - Primitives to manipulate files and directories.
 - Mapping files onto secondary storage.

- File management activities:
 - Creating and deleting files and directories.
 - Primitives to manipulate files and directories.
 - Mapping files onto secondary storage.
 - Backup files onto stable (non-volatile) storage media.

Usually disks used to store data that does not fit in main memory or data that must be kept for a long period of time.

- Usually disks used to store data that does not fit in main memory or data that must be kept for a long period of time.
- Disk management activities:
 - Free-space management
 - Storage allocation
 - Disk scheduling

Caching

Copying information from slower to faster storage temporarily.

Caching

- Copying information from slower to faster storage temporarily.
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast).
 - If not, data copied to cache and used there.

- ▶ Hides the details of the hardware devices from users.
- The I/O subsystem consists of several components, e.g., device drivers for specific hardware devices.

Protection and Security (1/2)

 Protection: any mechanism for controlling access of processes or users to resources defined by the OS.

Protection and Security (1/2)

- Protection: any mechanism for controlling access of processes or users to resources defined by the OS.
- ► Security: defense of the system against internal and external attacks.
 - E.g., denial-of-service, worms, viruses, identity theft, theft of service, ...

Protection and Security (2/2)

 Systems generally first distinguish among users, to determine who can do what.

Protection and Security (2/2)

- Systems generally first distinguish among users, to determine who can do what.
- ► User IDs include name and associated number, one per user.
 - The User ID is then associated with all files and processes of that user to determine access control.

Protection and Security (2/2)

- Systems generally first distinguish among users, to determine who can do what.
- ► User IDs include name and associated number, one per user.
 - The User ID is then associated with all files and processes of that user to determine access control.
- Group ID allows set of users to be defined and controls managed, then also associated with each process, file.

 Computer-system architecture: (multi-core, blade), clustered single-processor, multiprocessor

- Computer-system architecture: single-processor, multiprocessor (multi-core, blade), clustered
- ► Operating-system structure: user-space, system calls, kernel-space

Summary

- Computer-system architecture: single-processor, multiprocessor (multi-core, blade), clustered
- ► Operating-system structure: user-space, system calls, kernel-space
- ► User-space: system programs, application programs
- ► Kernel-space

Summary

- Computer-system architecture: single-processor, multiprocessor (multi-core, blade), clustered
- ► Operating-system structure: user-space, system calls, kernel-space
- ► User-space: system programs, application programs
- Kernel-space

Questions?

Acknowledgements

Some slides were derived from Avi Silberschatz slides.