April 26, 2012

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE

geek & poke

"EXPERT: IN
NO sQL”

Leverage the NoSQL boom

NoSQL Databases — Amir H. Payberah

Not Only SQL (NoSQL)
Databases

Amir H. Payberah
amir@sics.se

April 26, 2012 NoSQL Databases — Amir H. Payberah

SQL is Good

» Relational Databases Management Systems (RDMBSs) — mainstay of
business

* SQL is good

= Rich language

= Easy to use and integrate
= Rich toolset

= Many vendors

e They promise: ACID

April 26, 2012 NoSQL Databases — Amir H. Payberah

ACID Properties e

e Atomicity: all included statements in a transaction are either executed or
the whole transaction is aborted without affecting the database.

e Consistency: a database is in a consistent state before and after a
transaction.

* |solation: transactions can not see uncommitted changes in the database.

« Durability: changes are written to a disk before a database commits a
transaction so that committed data cannot be lost through a power failure.

April 26, 2012 NoSQL Databases — Amir H. Payberah

SQL is Good

* SQL is good, ...

\
L Xy
e ©
S

April 26, 2012 NoSQL Databases — Amir H. Payberah

NoSQL Databases — Amir H. Payberah

April 26, 2012

SQL Challenges

* Web-based applications caused spikes.

= Internet-scale data size
= High read-write rates +
= Frequent schema changes 8

= Large data

facebook

April 26, 2012 NoSQL Databases — Amir H. Payberah

The Past and the Moment

AN
= Circa 1975 Circa 201
j /-D lL *Online Applications” “Interactive Web Applications”
2,000 “online” users = End Point 2,000 “online” users = Starting Point
5
u
=
Static user population Dynamic user population
§ Business process automation Business process innovation
®
-
a
&- Highly structured data records Structured, semi-structured and unstructured data
Data networking in its infancy Universal high-speed data networking
@
:
3 Centralized computing (Mainframes Distributed computing (Network servers and
E and minicomputers) virtual machines)
E
Memory scarce and expensive Memory plentiful and cheap

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

April 26, 2012 NoSQL Databases — Amir H. Payberah

ﬁ

Let's Scale RDBMSs

« RDBMS were not designed to be distributed.

* Possible solutions:
= Replication
= Sharding

_ NoSQL Databases — Amir H. Payberah -

ﬁ

Let's Scale RDBMSs - Replication

» Master/Slave architecture

Master Server

e |t scales read operations

Slave Server1 Slave Server2

_ NoSQL Databases — Amir H. Payberah -

Let's Scale RDBMSs -

e Scaling out (horizontal scaling) based on data partitioning, i.e. dividing
the database across many (inexpensive) machines.

e This is how youtube, facebook,

yahoo all started. With sharded mysq|l. \pﬂ{d
25X
» It scales read and write operations, T
but you can't execute transactions 7 =

across shards (partitions). /// ‘E\

NoSQL Databases — Amir H. Payberah

April 26, 2012 11

Scaling RDBMSs is Expensive and Inefficient

Won’t §
scale :
beyond i

this |
point :

Application Response Time

System Cost

Users

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf]

April 26, 2012 NoSQL Databases — Amir H. Payberah

Not Only SQL

omSQL

What is NoSQL?

e Class of non-relational data storage systems.

« All NoSQL offerings relax one or more of the ACID properties.

= Social applications are not banks and they don't need the same level of ACID.

April 26, 2012 NoSQL Databases — Amir H. Payberah

14

NoSQL History

e It was first used in 1998 by Carlo Strozzi to name his relational
database that did not expose the standard SQL interface.

e The term was picked up again in 2009 when a Last.fm develper, Johan
Oskarsson, wanted to organize an event to discuss open-source
distributed databases.

e The name attempted to label the emergence of a growing number of
non-relational, distributed data stores that often did not attempt to
provide ACID.

NoSQL Databases — Amir H. Payberah

April 26, 2012 15

Categories of NoSQL Databases

e Key/Value stores

- Dynamo, Scalaris, Berkeley DB, ...

 Column-oriented databases

- BigTable, Hbase, Cassandra, ...

 Document databases

= MongoDB, Terrastore, SimpleDB, ...

April 26, 2012 NoSQL Databases — Amir H. Payberah

16

April 26, 2012

System Cost

NoSQL Cost

Application Response Time

Users

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf]

NoSQL Databases — Amir H. Payberah

17

April 26, 2012

System Cost

SQL vs. NoSQL

Database Scaleé Out
Just add more commodity databaseé servers

Users

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf]

NoSQL Databases — Amir H. Payberah

Application Response Time

18

Consistency

e Strong consistency

= Single storage image. Informally, after an update completes, any subsequent
access will return the updated value.

read{x)=x1 write(x,x2) read{x)=x2
A : :
read(x)=x1 read(x)=x2
| : | ’
read(x)=x1 : read(x)=x2 >

April 26, 2012 NoSQL Databases — Amir H. Payberah

19

Consistency

e Strong consistency

= Single storage image. Informally, after an update completes, any subsequent
access will return the updated value.

read{x)=x1 write(x,x2) read{x)=x2

A —! : >
read(x)=x1 read(x)=x2
| : | ’
C rEac{(x)=x1 readl(xj=x2 ’
e Eventual consistency |

= The system does not guarantee that subsequent accesses will return the updated
value.

= Inconsistency window.

= If no new updates are made to the object, eventually all accesses will return the
last updated value.

read(x)=x1 write(x,x2) read(x)=x1 read(x)=x2
A] :] :] >
read(x)=x1 read(x)=x1 read(x)=x2
B | :] : |)
read(x)=x1 read(x]zxzé read(x)=x2
| : | : |)
I |
Inconsistency Window
April 26, 2012 NoSQL Databases — Amir H. Payberah

20

Quorum Model

e N:the number of nodes to which a data item is replicated.

* R:the number of nodes a value has to be read from to be accepted.

e W: the number of nodes a new value has to be written to before the write operation is
finished.

e To enforce strong consistency: R + W > N

April 26, 2012 NoSQL Databases — Amir H. Payberah

21

Quorum Model

e N:the number of nodes to which a data item is replicated.

* R:the number of nodes a value has to be read from to be accepted.

e W: the number of nodes a new value has to be written to before the write operation is
finished.

e To enforce strong consistency: R + W > N

v 4

S

R=3,W=3,N=5 R=4,W=2,N=5

April 26, 2012 NoSQL Databases — Amir H. Payberah

22

Relaxing ACID Properties

e The large-scale applications have to be reliable: availability + redundancy

* These properties are difficult to achieve with ACID properties.

 The BASE approach forfeits the ACID properties of consistency and isolation in favour
of availability, graceful degradation, and performance.

April 26, 2012 NoSQL Databases — Amir H. Payberah

23

BASE Properties

 Basically Available: possibilities of faults but not a fault of the whole system.

» Soft state: copies of a data item may be inconsistent.

e Eventually consistent: copies becomes consistent at some later time if there are no
more updates to that data item.

April 26, 2012 NoSQL Databases — Amir H. Payberah

24

CAP Theorem

» Consistency: how a a system is in a consistent state after the execution of an
operation.

e Availability: clients can always read and write data in a specific period of time.

 Partition Tolerance: the ability of the system to continue operation in the
presence of network partitions.

You can choose only two!

NoSQL Databases — Amir H. Payberah

April 26, 2012 25

CAP Theorem

» Consistency: how a a system is in a consistent state after the execution of an
operation.

e Availability: clients can always read and write data in a specific period of time.

 Partition Tolerance: the ability of the system to continue operation in the
presence of network partitions.

e Very large systems will partition at some point.

= it is necessary to decide between C and A.
= traditional DBMS prefer C over A and P.

= most Web applications choose A.

You can choose only two!

April 26, 2012 NoSQL Databases — Amir H. Payberah

26

Visual Guide to NoSQL Systems

Availability:

Each client can i
always read Data Modeils Kay-valle

el v Column-Oriented/Tabular
o Wrniie

Document-Criented

Dynamo Cassandra
Voldemort SimpleDB
Tokyo Cabinet CouchDB
KAI Riak

Pick Two

Consistency: CP Partition Tolerance:

have the same view BigTable MongoDB Berkeley DB
of the data. Hypertable Terrastore MemcacheDB

Hbase Scalaris Redis

All chients alwavys

April 26, 2012 NoSQL Databases — Amir H. Payberah

April 26, 2012

Dynamo

amazon

N ~

NoSQL Databases — Amir H. Payberah

28

ﬁ

Dynamo

 Build a distributed storage system:
= Scalability
= Simple: key-value (put/get operations)
= Highly available

= Guarantee Service Level Agreements (SLA)

_ NoSQL Databases — Amir H. Payberah -

Design Consideration

e It sacrifices strong consistency for availability

= Always writeable
e Conflict resolution

= Who: data store or application

= When: during read operation instead of write operation

Incremental scalability

Symmetry

= Every node should have the same set of responsibilities as its peers

Decentralization

Heterogeneity

April 26, 2012 NoSQL Databases — Amir H. Payberah

30

API

e get(key)

= Return single object or list of objects with conflicting version and context

e put(key, context, object)
= Store object and context under key

= Context encodes system meta-data, e.g., version number

April 26, 2012 NoSQL Databases — Amir H. Payberah

31

Dynamo Implementation

 Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

April 26, 2012 NoSQL Databases — Amir H. Payberah

32

ﬁ

Dynamo Implementation

» Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

_ NoSQL Databases — Amir H. Payberah -

Data Partitioning

e Based on consistent hashing

e Hash key and put on responsible node

= H("Fatemeh") = 12
= H("Cosmin") =2

= H("Seif") =

= H("Jim") =14

= H("Tallat") = 4

NoSQL Databases — Amir H. Payberah

April 26, 2012

34

ﬁ

Load Imbalance

» Consistent hashing may lead to imbalance

_ NoSQL Databases — Amir H. Payberah -

Load Imbalance

« Consistent hashing may lead to imbalance

= Node identifiers may not be balanced

April 26, 2012 NoSQL Databases — Amir H. Payberah

36

Load Imbalance

« Consistent hashing may lead to imbalance

= Node identifiers may not be balanced

= Data identifiers may not be balanced

® - node
W - data

NoSQL Databases — Amir H. Payberah

April 26, 2012 37

Load Imbalance

« Consistent hashing may lead to imbalance

= Node identifiers may not be balanced

= Data identifiers may not be balanced

= Hot spots

April 26, 2012

jim.mp3

fatemeh.mp3

tallat.mp3

adele.mp3

® - node
W - data

NoSQL Databases — Amir H. Payberah

38

Load Imbalance

« Consistent hashing may lead to imbalance

= Node identifiers may not be balanced
= Data identifiers may not be balanced
= Hot spots

= Heterogeneous nodes

April 26, 2012 NoSQL Databases — Amir H. Payberah

® - node
H - data

39

Load Balancing via Virtual Servers

e Each physical node picks multiple random identifiers.

= Each identifier represents a virtual server

= Each node runs multiple virtual servers

e Each node responsible for non-contiguous regions.

4

NoSQL Databases — Amir H. Payberah

April 26, 2012 40

ﬁ

Dynamo Implementation

e Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

_ NoSQL Databases — Amir H. Payberah -

Replication

e To achieve high availability and durability, Dynamo replicates its data
on multiple hosts.

e The list of nodes that is responsible for storing a particular key is called
the preference list.

13

12

9 7

April 26, 2012 NoSQL Databases — Amir H. Payberah

42

Replication

e To achieve high availability and durability, Dynamo replicates its data
on multiple hosts.

e The list of nodes that is responsible for storing a particular key is called

the preference list.
15

13

12

9 7

NoSQL Databases — Amir H. Payberah

April 26, 2012 43

ﬁ

Dynamo Implementation

e Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

_ NoSQL Databases — Amir H. Payberah -

Data Versioning

e Updates are propagated asynchronously.

= Replicas eventually become consistent.

e Each update/modification of an item results in a new and immutable
version of the data.

= Multiple versions of an object may exist.

 New versions can subsume older versions.

April 26, 2012 NoSQL Databases — Amir H. Payberah

45

Data Versioning

e Version branching can happen due to node failures, network
failures/partitions, etc.

= Target applications are aware that multiple versions can exist.

* Use vector clocks for capturing causality, in the form of (node, counter)

= If causal: older version can be forgotten

= If concurrent: conflict exists, requiring reconciliation

e A put requires a context, i.e., which version to update

NoSQL Databases — Amir H. Payberah

April 26, 2012

46

Data Versioning

e Client C1 writes new object via Sx

* C1 updates the object via Sx

e C1 updates the object via Sy

e C2 reads D2 and updates the object via Sz
e C3 reads D3 and D4 via Sx

= The read's context is a

summary of the clocks

of D3 and D4: [(Sx, 2), (Sy, 1), (Sz, 1)]

* Reconciliation

April 26, 2012

L J

v

write
handled by Sy

D3 ([Sx,2].[Sy.1])

\

write
handled by Sx

D1 ([Sx,1])

write
handled by Sx

D2 ([Sx,2])

write
handied by Sz

D4 ([Sx,2],[S5z,1])

reconciled
and Wm‘ten by

D5 ([Sx,3].[Sy,1][Sz,1])

NoSQL Databases — Amir H. Payberah

47

ﬁ

Dynamo Implementation

e Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

_ NoSQL Databases — Amir H. Payberah -

Execution of Operations

e put and get operations

e Client can send the request

= to the node responsible for the data (coordinator)
Save on latency, code on client

= to a generic load balancer

Extra hope

April 26, 2012 NoSQL Databases — Amir H. Payberah

49

Put

e Coordinator generates new vector clock and

= writes the new version locally

 Send to N nodes

e Wait for response from W-1 nodes

e Using W=1
= High availability for writes

= Low durability

NoSQL Databases — Amir H. Payberah

April 26, 2012 50

Get

e Coordinator requests existing versions from N

= Wait for response from R nodes

If multiple versions, return all versions that are causally unrelated

Divergent versions are then reconciled

Reconciled version written back

Using R=1

= High performance read engine

April 26, 2012 NoSQL Databases — Amir H. Payberah

51

ﬁ

Dynamo Implementation

e Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

_ NoSQL Databases — Amir H. Payberah -

Membership Management

e Administrator explicitly adds and removes nodes.

* Receiving node stores changes with time stamp.

e (Gossiping to propagate membership changes.

= Eventually consistent view

= O(1) hop overlay

April 26, 2012 NoSQL Databases — Amir H. Payberah

53

Adding Node

* A new node X added to system

= X is assigned key ranges w.r.t. its virtual servers

= For each key range, it transfers the data items

v
eden tode

Data: (A, X]

Node A

X=Data\(X,B)
Data=Data\(A,X)
Drop G

Node G

Node B Node A = X:B\(XfB)

Drop A
ata:
& Drop A
Node C Node B

April 26, 2012 NoSQL Databases — Amir H. Payberah

54

Failure Detection

o Passive failure detection

= Use pings only for detection from failed to alive
= A detects B as failed if it doesn't respond to a message

= A periodically checks if B is alive again

 |In the absence of client requests, A doesn't need

= to know if B is alive

April 26, 2012 NoSQL Databases — Amir H. Payberah

55

ﬁ

Dynamo Implementation

e Data partitioning

Replication

Data versioning

Execution of put and get operations

Membership

Handling failure

_ NoSQL Databases — Amir H. Payberah -

Handling Transient Failures

e Due to partitions, quorums might not exist

= Sloppy quorum

= Create transient replicas
* N healthy nodes from the preference list

= Reconcile after partition heals

e Say A is unreachable
o “put” will use D
o Later, D detects A is alive

= send the replicato A @

= remove the replica

April 26, 2012 NoSQL Databases — Amir H. Payberah

57

Handling Permanent Failure

e Anti-entropy for replica synchronization.

» Use Merkle trees for fast inconsistency detection and minimum
transfer of data.

= Nodes maintain Merkle tree of each key range.

= Exchange root of Merkle tree to check if the key ranges are up-to-date.

e . —_—

1
> Data items: D2, D3, D4, D5

NoSQL Databases — Amir H. Payberah

April 26, 2012

58

April 26, 2012

Dynamo Summary

CAP

Key/Value storage: put and get

Data partitioning: consistent hashing
Load balancing: virtual server
Replication: several nodes, preference list

Data versioning: vector clock, resolve conflict at read time by the
application

Membership management: join/leave by admin, gossip-based to update the
nodes' views, ping to detect failure

Handling transient failure: sloppy quorum

Handling permanent failure: Merkle tree

NoSQL Databases — Amir H. Payberah

59

April 26, 2012

BigTable
Google

NoSQL Databases — Amir H. Payberah

60

BigTable

« Highly available distributed storage for structured data that is designed to scale to a very large
size.

« Built with structured data in mind
- URLs: content, metadata, links, anchors, page rank
- User data: preferences, account info, recent queries

- Geography: roads, satellite images, points of interest, annotations

« Used at:

- Google Finance
= Orkut
- Google Earth & Google Maps

= Dozens of others...

NoSQL Databases — Amir H. Payberah

April 26, 2012 61

BigTable Goals

e Want asynchronous processes to be continuously updating different
pieces of data.

= Want access to most current data at any time

e Need to support:

= Very high read/write rates (millions of ops per second)
= Efficient scans over all or interesting subsets of data

= Efficient joins of large one-to-one and one-to-many datasets

e Often want to examine data changes over time

- E.g. Contents of a web page over multiple crawls

April 26, 2012 NoSQL Databases — Amir H. Payberah

62

Table Model

 Distributed multi-dimensional sparse map

e (row, column, timestamps) — value

April 26, 2012 NoSQL Databases — Amir H. Payberah

63

Table Model - Rows

e Every read or write in a row is atomic.

e Rows sorted in lexicographical order.

“‘com.cnn.www” >

April 26, 2012 NoSQL Databases — Amir H. Payberah

64

Table Model - Columns

e Column families

= Group of (the same type) column keys

= The basic unit of data access

= Created before data being stored

= Column key naming: family:qualifier

April 26, 2012

Column family Column family

A A
r N N

“content:” “anchor:cnnsi.com” “anchor:my.look.ca
|] |

“‘com.cnn.www” _|

SRR

NoSQL Databases — Amir H. Payberah

65

Table Model - Timestamps

e Each column family may contain multiple versions

* Version indexed by a 64-bit timestamp
= Real time or assigned by client
» Per-column-family settings for garbage collection

= Keep only latest n versions

= Or keep only versions written since time t

e Retrieve most recent version if no version specified

“content:” “anchor:cnnsi.com” “anchor:my.look.ca
| | 1

S

“‘com.cnn.www” _|

April 26, 2012 NoSQL Databases — Amir H. Payberah

66

Tablets: Pieces of a Table

* A table starts as one tablet.

= As it grows, it it split into multiple tablet.

« Tablet = range of contiguous rows

April 26, 2012

‘com.aaa’

“‘com.cnn.www”’

“‘com.cnn.www/tech”

“content;” “anchor:cnnsi.com” “anchor:my.look.ca

A A A A A A A A AN AN AN R AR EEE R NN AN AR AR R RN A EREAEAEAEAEA R R R AR NN R RERAREREAEARARREARARARERER

“‘com.weather”

“‘com.wikipedia”

“com.zoom”

NoSQL Databases — Amir H. Payberah

67

API

e Create/delete tables & column families

e Change cluster, table, and column family metadata
e Write or delete values

» Read values from specific rows

* |terate over a subset of data in a table

e Atomic read-modify-write row operations

April 26, 2012 NoSQL Databases — Amir H. Payberah

68

API — Writing Example

// Open the table
Table *T = OpenOrDie ("/bigtable/web/webtable") ;

// Write a new anchor and delete an old anchor
RowMutation rl (T, "com.cnn.www") ;

rl.Set ("anchor:www.c-span.org", "CNN") ;

rl .Delete ("anchor:www.abc.com") ;

Operation op;

Apply (&op, &rl);

April 26, 2012 NoSQL Databases — Amir H. Payberah

APl — Reading Example

Scanner scanner (T) ;
scanner.Lookup ("com.cnn.www") ;

ScanStream *stream;

stream = scanner.FetchColumnFamily ("anchor") ;

stream->SetReturnAllVersions () ;

for (; !stream->Done(); stream->Next()) ({
printf ("%$s %s %11d %s\n",
scanner .RowName () ,
stream->ColumnName () ,
stream->MicroTimestamp () ,
stream->Value()) ;

April 26, 2012 NoSQL Databases — Amir H. Payberah

70

BigTable Supporting Services (1/2)

* Google File System (GFS)

= For storing log and data files

e Cluster management system

= For scheduling jobs, monitoring health, dealing with failures

» Google SSTable

= |nternal file format

= Provides a persistent, ordered, immutable map from keys to values

« Memory or disk based

64K 64K 64K SSTable

block block block

Index

April 26, 2012 NoSQL Databases — Amir H. Payberah

BigTable Supporting Services (2/2)

e Chubby

= Highly-available & persistent distributed lock (lease) service

= Five active replicas; one elected as master to serve requests

= Majority must be running

= Paxos used to keep replicas consistent

« Chubby is used to:

= Ensure there is only one active master

= Store bootstrap location of BigTable data

= Discover tablet servers

= Store BigTable schema information

= Store access control lists

April 26, 2012

NoSQL Databases — Amir H. Payberah

72

ﬁ

BigTable Implementation

e Major components
e Tablet location
* Tablet assignment
» Tablet serving

e Compactions

_ NoSQL Databases — Amir H. Payberah -

ﬁ

BigTable Implementation

e Major components
o Tablet location
e Tablet assignment
e Tablet serving

 Compactions

_ NoSQL Databases — Amir H. Payberah -

ﬁ

Major Components

e Tablet server
» Master server

 Client library

_ NoSQL Databases — Amir H. Payberah -

Major Components — Tablet Server

e Many tablet servers

e Can be added or removed dynamically

e Each manages a set of tablets (typically 10-1000 tablets/server)
e Handles read/write requests to tablets

e Splits tablets when too large

April 26, 2012 NoSQL Databases — Amir H. Payberah

76

Major Components — Master Server

 One master server
e Assigns tablets to tablet server
» Balances tablet server load

» Garbage collection of unneeded files in GFS

April 26, 2012 NoSQL Databases — Amir H. Payberah

77

Major Components — Client Library

e Library that is linked into every client

 Client data does not move though the master

» Clients communicate directly with tablet servers for reads/writes

April 26, 2012 NoSQL Databases — Amir H. Payberah

78

April 26, 2012

BigTable Cell
BigTable Client
i BigTable Client
BigTable Master Library
Performs metadata ops
and load balancing
BigTable Tablet Server BigTable Tablet Server
I |
Serves data Serves data
Cluster scheduling system GFS Chubby
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

NoSQL Databases — Amir H. Payberah

79

ﬁ

BigTable Implementation

e Major components
e Tablet location
e Tablet assignment
e Tablet serving

 Compactions

_ NoSQL Databases — Amir H. Payberah -

Table Location — Finding a Tablet

e Three-level hierarchy

* Root tablet contains location of all tablets in a special METADATA table
« METADATA table contains location of each tablet under a row
key = f(tablet table ID, end row)

e The client library caches tablet

locations. UserTablet
/ Other \ /.,::::.:.E:::
METADATA v e ———
tablets A #f TTT LT
F----------=-F
Root tablet ::::::_:f::::: \
Chubby file {15t METADATA mblat]ﬁ: ZzIzziDIzzs 5
C— ——{\[} serTabion

Master Server

April 26, 2012 NoSQL Databases — Amir H. Payberah

81

ﬁ

BigTable Implementation

e Major components
o Tablet location
e Tablet assignment
e Tablet serving

 Compactions

_ NoSQL Databases — Amir H. Payberah -

Tablet Assighment

e 1 tablet — 1 tablet server

Master keeps tracks of set of live tablet serves and unassigned tablets.

Master sends a tablet load request for unassigned tablet to the tablet
server.

BigTable uses Chubby to keep track of tablet servers.

Master detects the status of the lock of each tablet server by checking
periodically.

= Master is responsible for finding when tablet server is no longer serving
its tablets and reassigning those tablets as soon as possible.

April 26, 2012 NoSQL Databases — Amir H. Payberah

83

ﬁ

BigTable Implementation

e Major components
o Tablet location
e Tablet assignment
» Tablet serving

 Compactions

_ NoSQL Databases — Amir H. Payberah -

Tablet Serving

* Updates committed to a commit log.

e Recently committed updates are stored in memory — memtable

e Older updates are stored in a sequence of SSTables.

Recent updates kept sorted

Memtable and sstables are merged to

in memory serve a read request
memtable > read
1
Memeory
GFS tabletJ [\
log sstable | | sstable

—>| write

Write operations are logged

April 26, 2012

NoSQL Databases — Amir H. Payberah

85

Tablet Serving

e Strong consistency

= Only one tablet server is responsible for a given piece of data.
= Replication is handled on the GFS layer
e Trade-off with availability

= If a tablet server fails, its portion of data is temporarily unavailable until a new
server is assigned.

Client request | Master [Tablet server]
server ‘e

9(,%1'

[Tablet server]

Tablet server]

response

[Tablet server]

April 26, 2012 NoSQL Databases — Amir H. Payberah

ﬁ

BigTable Implementation

e Major components
o Tablet location
e Tablet assignment
e Tablet serving

e Compactions

_ NoSQL Databases — Amir H. Payberah -

Compactions

 When in-memory is full

e Minor compaction

= convert the memtable into an SSTable

= Reduce memory usage and log traffic on restart
e Merging Compaction
= Reduces number of SSTables

= Reads the contents of a few SSTables and the memtable, and writes out a new
SSTable

e Major Compaction

= Merging compaction that results in only one SSTable

= No deleted records, only sensitive live data

April 26, 2012 NoSQL Databases — Amir H. Payberah

88

BigTable Summary

 CAP
e Column-oriented storage: (row, column, timestamps) — string

» A table is divided into a number of tablets, and each tablet is one or
more SSTable file in GFS.

 One master server that communicates only with tablet servers.
e Multiple tablet servers that perform actual client accesses

e Chubby lock service holds metadata, e.g., the location of the root
metadata tablet for the table.

e Three-level hierarchy

« Compactions: minor/merging/major

April 26, 2012 NoSQL Databases — Amir H. Payberah

89

Cassandra

amazoncom

=]

NoSQL Databases — Amir H. Payberah

April 26, 2012

From Dynamo

e Symmetric p2p architecture

» Gossip based discovery and error detection

e Distributed key-value store
= Partitioning

= Topology discovery

e Eventual consistency

April 26, 2012 NoSQL Databases — Amir H. Payberah

92

From BigTable

« Sparse Column oriented sparse array

e SSTable disk storage

= Append-only commit log
- Memtable (buffering and sorting)
= Immutable sstable files

= Compaction

April 26, 2012 NoSQL Databases — Amir H. Payberah

93

Any Questions?

NoSQL Databases — Amir H. Payberah

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

