
Graph Representation Matters in Device Placement
Milko Mitropolitsky

KTH Royal Institute of Technology
Stockholm, Sweden
milkom@kth.se

Zainab Abbas
KTH Royal Institute of Technology

Stockholm, Sweden
zainabab@kth.se

Amir H. Payberah
KTH Royal Institute of Technology

Stockholm, Sweden
payberah@kth.se

Abstract
Modern Neural Network (NN) models require more data and
parameters to perform ever more complicated tasks. One
approach to train a massive NN is to distribute it across
multiple devices. This approach raises a problem known as
the device placement problem. Most of the state-of-the-art
solutions that tackle this problem leverage graph embedding
techniques. In this work, we assess the impact of different
graph embedding techniques on the quality of device place-
ment, measured by (i) the execution time of partitioned NN
models, and (ii) the computation time of the graph embed-
ding technique. In particular, we expand Placeto, a state-of-
the-art device placement solution, and evaluate the impact of
two graph embedding techniques, GraphSAGE and P-GNN,
compared to the original Placeto graph embedding model,
Placeto-GNN. In terms of the execution time improvement,
we achieve an increase of 23.967% when using P-GNN com-
pared to Placeto-GNN, while GraphSAGE produces 1.165%
better results than Placeto-GNN. Regarding computation
time, GraphSAGE has a gain of 11.569% compared to Placeto-
GNN, whereas P-GNN is 6.95% slower than it.

CCS Concepts • Computing methodologies → Neural
networks.

Keywords Distributed Deep Learning, Model Paralleliza-
tion, Graph Embedding

ACM Reference Format:
Milko Mitropolitsky, Zainab Abbas, and Amir H. Payberah. 2020.
Graph Representation Matters in Device Placement. InWorkshop on
Distributed Infrastructures for Deep Learning (DIDL’20), December
7–11, 2020, Delft, Netherlands. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3429882.3430104

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DIDL’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8206-9/20/12. . . $15.00
https://doi.org/10.1145/3429882.3430104

Figure 1. The Placeto device placement pipeline (the image is adapted
from [1]).

1 Introduction
Nowadays, Neural Networks (NN) are increasingly being
used for complex tasks. Such NNs usually need massive
training datasets and a large number of model parameters
to keep up with the performance requirements in terms of
high accuracy. However, training big NN models with large
datasets is computationally expensive and time-consuming.
One approach to scaling the training process is to paral-
lelize the training task by splitting it over multiple machines
(devices) of a cluster.

In general, there are two common ways to implement par-
allelization in NNs, namely data parallelization and model
parallelization [2]. In data parallelization, a NNmodel is repli-
cated on multiple devices, and the training dataset is split
among all the devices. Each device, then, trains its assigned
NN in parallel to the other devices on a different part of the
input training dataset. It is the current go-to strategy for
spreading NNs across multiple devices [6, 12]. However, one
assumption in this approach is that a NN is small enough,
such that each device can load and process it. Thus, when a
model requires more memory than that of a single device,
the aforementioned technique falls short.
Model parallelization, on the other hand, is used mainly

when a model is too large to fit on one device. In this ap-
proach, a NN and its computation is split across multiple
devices, such that each device is assigned the computation
task of a certain part of the NN. Unlike data parallelization,
which is model agnostic, here a NN’s architecture is critical
to its partitioning strategy. Device placement is the study of
how to split a NN and disseminate its nodes (operations)
across different devices in order to minimize the training
time, called the execution time [1, 8, 9, 16, 17].

The current trend in device placement solutions considers
NNs as computation graphs and takes advantage of graph

https://doi.org/10.1145/3429882.3430104
https://doi.org/10.1145/3429882.3430104

DIDL’20, December 7–11, 2020, Delft, Netherlands Milko Mitropolitsky, Zainab Abbas, and Amir H. Payberah

embedding techniques to make a representation of them
before their partitioning [1, 10, 17]. Our main objective in
this paper is to study the impact of different graph embedding
techniques on device placement performance, evaluated by
the execution time of partitioned NNs, and the computation
time of the device placement process. To the best of our
knowledge, such a comparison between graph embedding
methods on device placement has not been made.
We base our work on Placeto [1], a state-of-the-art solu-

tion to the device placement problem, that leverages Rein-
forcement Learning (RL) to improve the placements for NNs
iteratively. Placeto applies a graph embedding technique on
the input NNs before feeding them to the RL method. Figure
1 shows the device placement pipeline in Placeto. Our con-
tributions include the expansion of Placeto with additional
state-of-the-art graph embedding models and the study of
their impact on partitioned NNs’ execution time and Placeto
computation time. Concretely, we have implemented Graph-
SAGE [3] and P-GNN [15], in addition to the Placeto Graph
Neural Network (Placeto-GNN), the default graph embed-
ding model in Placeto [1]. Our updates in the Placeto pipeline
are indicated in Figure 1.

Through our experiments, we show that P-GNN, a position-
aware graph embedding, improves the execution time by
23.967% compared to the Placeto-GNN, and GraphSAGE pro-
duces 1.165% better results than Placeto-GNN. Regarding
the computation time, GraphSAGE has a gain of 11.569%
compared to Placeto-GNN, whereas P-GNN is 6.95% slower
than Placeto-GNN.

2 Preliminaries
In this section, we briefly present some basic concepts from
device placement and the graph embedding techniques we
use in this work.

2.1 Device Placement
A NN architecture can be modeled as a directed graph 𝐺 =

(𝑉 , 𝐸), where the operations of the NN are represented as
vertices, and their connections as edges of the graph. Each
vertex 𝑣 ∈ 𝑉 denotes a node (operation) of the NN graph,
and each edge 𝑒𝑢,𝑣 ∈ 𝐸 shows the connection between nodes
𝑢 and 𝑣 . Given 𝐷 = {𝑑1, ..., 𝑑𝑚} as the set of all the avail-
able devices, we want to divide 𝑉 into 𝑛 subsets, such that
∪𝑛
𝑖=1𝑉𝑖 = 𝑉 , and 𝑛 ≤ 𝑚. A device placement policy is defined

as 𝜋 : 𝑉 → 𝐷 that assigns a vertex 𝑣 ∈ 𝑉 to a device 𝑑 ∈ 𝐷 ,
i.e., 𝜋 (𝑣) = 𝑑 . If 𝑇 (𝐺, 𝜋) shows the execution time of 𝐺 , par-
titioned by the placement policy 𝜋 , then our goal is to find
the best placement policy 𝜋∗, such that 𝑇 (𝐺, 𝜋∗) is minimum.
Placeto [1] is a state-of-the-art device placement solu-

tion, based on which we conduct our study. It generalizes
placement policies for previously unseen NN graphs. As an
input, Placeto receives a NN𝐺 and an arbitrary device place-
ment policy 𝜋 . Then, it traverses all nodes 𝑣 ∈ 𝑉 , and for
each node it performs the following steps: (i) first it uses

Placeto’s graph embedding model (Placeto-GNN) to create
an embedding for 𝐺 , given node 𝑣 is selected, (ii) then, it
uses an RL-based policy 𝜋 to assign 𝑣 to a device 𝑑 ∈ 𝐷 , and
(iii) finally, it considers the execution time (training time)
𝑇 (𝐺, 𝜋) using the new placement of node 𝑣 and previous
placement of the remaining nodes as the reward function
to update the RL policy 𝜋 . Thus, the algorithm iteratively
proposes better placement policy 𝜋 for consecutive nodes
using the execution times as the reward function.
The required time to finish the steps above is called the

computation time, i.e., the time to find the best placement
policy 𝜋 , and we denote it by T (𝐺, 𝜋). To reduce the com-
putation time, Placeto groups the nodes of 𝐺 as proposed
in [8] and creates graph 𝐺 ′, such that |𝑉 ′ | ≪ |𝑉 |, where |.|
denotes the number of nodes. Each node 𝑣 ′ ∈ 𝑉 ′ consists of
a subset of𝑉 . Therefore, Placeto improves computation time
by traversing 𝑉 ′, which is much smaller than 𝑉 [1].

2.2 Graph Embedding
Graph embedding techniques are transformers that make low
dimensional embeddings of nodes in large graphs [3]. Here,
we briefly present the graph embeddings we use in our work:
Placeto-GNN [1], GraphSAGE [3], and P-GNN [15]. The em-
bedding principle in these techniques is to combine a node’s
features with an aggregation of that node’s neighbourhood
features using non-linear transformations.

Placeto-GNN. Placeto-GNN is the embedding technique
presented in the Placeto paper [1]. To form the graph embed-
ding of a node 𝑣 , its features, including its total runtime, the
output tensor size, and the current placement, are collected.
Moreover, the information about the graph from the perspec-
tive of the node 𝑣 is collected by passing messages to all 𝑣 ’s
parent nodes (nodes that can reach 𝑣 via their outgoing con-
nections), 𝑣 ’s children nodes (nodes that can be reached by 𝑣
via outgoing connections), and 𝑣 ’s parallel nodes (nodes that
cannot be reached by 𝑣). At the end, all these components
are passed through a dense NN to form the final embedding.

GraphSAGE. GraphSAGE [3], initially, creates an embed-
ding for each node 𝑣 based on the node’s features, including
text attributes, node profile information, and node degrees.
It then combines the embedding of each node with the aggre-
gated features of its neighbourhood nodes. The neighbour-
hood of a node consists of layers of nodes up to distance 𝐾
from that node. Given the neighbourhood of a node 𝑣 , the
feature aggregation starts with the nodes located 𝐾 hops
away from 𝑣 . Since these nodes have no further neighbours
within the current neighbourhood (i.e., 𝑣 ’s neighbourhood),
their embedding is only their local feature embedding. Nodes
at the next level (𝐾 − 1) form their embeddings by aggregat-
ing their neighbours’ features from the previous level (𝐾)
and concatenating them with their features at the current
level. Finally, this concatenation is passed through a fully

Graph Representation Matters in Device Placement DIDL’20, December 7–11, 2020, Delft, Netherlands

connected layer with a non-linear function to create the next
level’s input representation. The process is repeated 𝐾 times
until node 𝑣 gets all the information needed to form its em-
bedding.

P-GNN. One of the limitations of methods, such as Placeto-
GNN and GraphSAGE, is that they miss the positioning
and location information of the nodes while making the
graph embedding, as they only capture the local neighbour-
hood of each node. This causes a problem in cases when two
nodes with the same neighbourhood structure, are located
in different parts of a graph, because they will end up in an
identical place in the vector space of the graph embedding.
P-GNN [15] tackles this issue by introducing sets of nodes
within the graph, called anchor sets. To make a representation
of a node, in addition to the neighbourhood aggregation, the
information from the anchor sets is also taken into account.
This additional information is weighed based on the distance
of a node to the anchor set that enables capturing locality
of the nodes in the graph. P-GNN first calculates the anchor
sets in the input graph 𝐺 . It, then, creates an embedding for
each node 𝑣 and its relation to each anchor set. The result
is a vector, whose elements correspond to the aggregation
of the relation of node 𝑣 to each anchor set. This vector is
passed through a fully connected layer to produce the final
embedding of the node 𝑣 .

3 Implementation
In this work, we aim to explore the impact of different graph
embedding techniques on the current device placementmeth-
ods. To this end, we conduct our study on Placeto [1], one of
the latest solutions in device placement. As Figure 1 shows,
the Placeto framework consists of two main components:
the graph neural network and the policy network. The latter
component is a multilayer fully connected network with a
softmax layer that returns a probability distribution over
the available devices for each node of the input NN. This
component gets the graph representation as a vector gener-
ated by the former component, the graph embedding model,
called Placeto-GNN. Here, we substitute the Placeto-GNN
with GraphSAGE [3] and P-GNN [15], and study their impact
on Placeto’s performance.

The graph representation comprises of the following fea-
tures for each node: (i) the runtime of the node, (ii) its output
size, (iii) the node placement, (iv) whether it is the current
node, and (v) if the node has been visited before. The run-
time of a node shows how much time it takes to compute
the operation in that node. The output size of a node is the
number of outgoing edges of the node. The node placement
feature represents the device that the node is located cur-
rently, and the last two features are meta flags. In the Placeto
implementation in [1], different operations are calculated
on real hardware, and are used in the Placeto simulator to
evaluate placement policies.

Figure 2. Example of GraphSAGE node embeddings. Left: Sample graph
and node features. Middle: Neighbourhood embedding. Right: Aggregated
neighbourhood embedding.

Figure 3. Creating node embeddings with the P-GNN implementation.
Left: Create GraphSAGE embedding for the current node. Different sized
random anchor sets (AS1 and AS2) are picked. Right: The relation between
a node and each anchor sets is combined using function F.

3.1 GraphSAGE
Here, for each node, we first pass its aforementioned features
through a simple multilayer fully connected NN to create
the initial node embedding. We refer to the initial embed-
ding of a node 𝑣 as h0𝑣 . Then, for each node 𝑣 we choose a
random sample of neighbouring nodes from its immediate
neighbourhood. The sample size is a hyperparameter. We
then proceed to build the subsequent embedding levels using
the embeddings we have already created. The representation
in each level 𝑘 is computed as below:

h𝑘𝑣 = fnn(concat(h𝑘−1𝑣 , agg(h𝑘−1N(𝑣)))), 𝑘 ∈ [1, 𝐾],

where h𝑘𝑣 is the embedding of node 𝑣 at level𝑘 , and agg(h𝑘−1N(𝑣))
is the aggregation of representation of 𝑣 ’s neighbours at
previous level, 𝑘 − 1. We can apply any order invariant ag-
gregation function, such as mean or sum, but we use mean
in our implementation. The aggregation result is then con-
catenated with the node’s representation generated at the
previous level. The output is given to fnn, a three layer fully
connected NN, that creates the representation of this layer.

Figure 2 shows an example of how the embedding process
works. Here, we assume the neighbourhood depth𝐾 = 2. For
node 𝑣 (the dashed one), we start from neighbourhood nodes
two hops away and make their initial representations. Next,
the embedding of the node one hop away from 𝑣 is created
by concatenating its representation with the aggregation of
representation of the nodes two hops away from 𝑣 . Since
here there is only one node in each neighbourhood layer,
the aggregation function returns its input. The result is then
passed through the fnn (not shown in the figure), and its
output is used in the next iteration. The same process is
repeated for node 𝑣 by concatenating its representation with

DIDL’20, December 7–11, 2020, Delft, Netherlands Milko Mitropolitsky, Zainab Abbas, and Amir H. Payberah

the representation of the node one hope away (generated in
the previous iteration), and giving it to fnn again.

3.2 P-GNN
We build P-GNN [15] using our GraphSAGE implementa-
tion and make the initial embedding in P-GNN as we do in
GraphSAGE. To add locality to the embeddings, after the
initial embedding of nodes, we choose the anchor sets 𝑆 . The
number of anchor sets is 𝑐.𝑙𝑜𝑔2 (𝑛), where 𝑛 is the number of
the nodes, and 𝑐 is a hyperparameter. The sets are of varying
sizes, and their nodes are chosen randomly. The next step is
to create an embedding for each node considering the anchor
sets. To do so, we compute the aggregation of each anchor
set and concatenate it with each node’s embedding. The con-
catenation is then multiplied by the distance between the
node and anchor sets.
More formally, the relation between a node 𝑣 and an an-

chor set 𝑆𝑖 is defined as below:
𝐹 (𝑣, 𝑆𝑖) = dist(𝑣, 𝑆𝑖) .concat(h𝑣, h𝑆𝑖),

where h𝑣 is the initial embedding of node 𝑣 , and h𝑆𝑖 is the
embedding of anchor 𝑆𝑖 , which is an aggregation of the em-
beddings of the nodes in 𝑆𝑖 . We use 𝑚𝑎𝑥 as the aggrega-
tion function in the implementation of 𝐹 (𝑣, 𝑆𝑖). The function
dist(𝑣, 𝑆𝑖) is the distance between 𝑣 and 𝑆𝑖 . Given𝑚𝑎𝑥 as
the aggregation function, this distance is the maximum dis-
tance between 𝑣 and a node 𝑢 ∈ 𝑆𝑖 , where 𝑢 is the furthest
node in 𝑆𝑖 to 𝑣 . Conversely, the concatenation between h𝑣
and h𝑆𝑖 is equal to the concatenation of h𝑣 and h𝑢 . When
a node calculates its relation to each anchor set, those re-
lations are aggregated into the ultimate node embedding
using the mean aggregation. Figure 3 represents an example
of how this process works. The initial embedding of a node
𝑣 (the dashed one) is made using GraphSAGE. Then, two
anchor sets 𝑆1 and 𝑆2 are selected, and 𝐹 (𝑣, 𝑆1) and 𝐹 (𝑣, 𝑆2)
are computed as explained above.

4 Evaluation
In this section, we explain the experimental setup, and present
the results of applying different graph embedding models on
Placeto device placement performance.

4.1 Experimental Setup
We implement all the different models and conduct the ex-
periments on the simulator provided by Placeto [1]. The
settings of the simulator are identical in all the experiments,
and we only change the graph embedding component, as
shown in Figure 1. Here, we assume that each device has
enough resource to store all the nodes of an input NN, thus
for the initial placement we put all the nodes of each input
NN on a single device. The purpose of this assumption is to
show that even in situations that we can store the whole NN
graph on a device, the model parallelization approach can
improve its execution time. We also consider the placement

using Placeto-GNN as the baseline. We use the following
metrics for performance evaluation:

• Execution time: the training time of a NN after applying
device placement policy based on a particular graph
embedding technique.

• Computation time: the time to find the best device
placement policy.

• Execution-Computation (EC) ratio: the relation between
the execution time improvement and the computation
time for a device placement policy.

Datasets
We use three datasets in the experiments as presented in the
Placeto paper [1]. We refer to them as cifar10, ptb, and
nmt. All three datasets are generated synthetically. cifar10
and ptb are made by ENAS [4], an automated RL-based
system that generates models by finding subgraphs of a
bigger graph of operations. The cifar10 dataset consists of
convolutional NN graphs, whereas ptb contains recurrent
NN graphs. nmt is generated by varying hyperparameters
of the Neural Machine Translation (NMT) model [14]. To
reduce the graph sizes, the nodes in all the graphs in all the
datasets are grouped together, as proposed in [8]. After the
operation grouping, the NN graphs in the cifar10, ptb, and
nmt have on average 300, 500, and 190 nodes, respectively.

Training Environment
We conduct experiments on the described datasets using
different numbers of devices: three, five, and eight devices.
For each dataset, the placement policy assigns input NN
nodes to these devices. That adds up to nine experiments in
total (i.e., three datasets times three sets of devices). Each
experiment runs the simulation over 51 randomly picked
input graphs (17 graphs for each dataset). Each input graph
passes through 20 episodes. We choose 20 episodes, as the
improvements on average reach a plateau after about 10 to 15
episodes. All the details of our implementation are available
on the following link1.

4.2 Results
ExecutionTime.Here, we apply Placeto-GNN, GraphSAGE,
and P-GNN on the three datasets and measure the execu-
tion time improvement compared to the initial placement
(i.e., the input NN’s nodes are on a single device). Table 1
shows the execution time improvement on cifar10, nmt,
and ptb compared to the initial placement, respectively, on
different numbers of devices. We see in Table 1 that in the
experiment on cifar10 over three devices, model paralleliza-
tion in Placeto using Placeto-GNN provides a significant im-
provement to the initial placement with 24.585%. However,
its improvement is less than the improvements provided by
the GraphSAGE, 29.566%. P-GNN achieves the most promi-
nent and most consistent improvement of 32.717%. Similarly,
1https://github.com/mmitropolitsky/device-placement

Graph Representation Matters in Device Placement DIDL’20, December 7–11, 2020, Delft, Netherlands

Table 1. The execution time improvements on cifar10, nmt, and ptb on
different number of devices compared to the initial placement.

Graph Embedding 3 devices 5 devices 8 devices
cifar10

Placeto-GNN 24.585% 28.250% 34.339%
GraphSAGE 29.566% 30.567% 31.374%

P-GNN 32.717% 36.084% 37.114%
nmt

Placeto-GNN 28.107% 36.042% 38.813%
GraphSAGE 27.037% 34.177% 32.388%

P-GNN 30.232% 39.350% 42.399%
ptb

Placeto-GNN 8.981% 11.304% 15.831%
GraphSAGE 12.492% 14.658% 16.625%

P-GNN 17.930% 21.117% 23.536%

Figure 4. The average execution time improvement over different num-
bers of devices for the three datasets compared to theinitial placement.

we see the same pattern of improvement on five devices.
The experiment on eight devices also confirms P-GNN pro-
vides the best results with 37.114% average execution time
improvement. However, here Placeto-GNN performs better
than GraphSAGE, and its difference with P-GNN is quite
small, i.e., 2.775%. Table 1 also confirms that P-GNN has the
most improvement on ptb and nmt datasets. Moreover, it
shows that GraphSAGE works better than Placeto-GNN on
the ptb dataset, but not on the nmt dataset.

Figure 4 shows the average execution time improvement
over different numbers of devices for the three datasets com-
pared to the initial placement. We observe that the larger
the input graphs are, the smaller the average execution time
improvement is achieved. For example, P-GNN reaches over
37% with nmt that contains the smallest graphs of around 190
nodes, and only around 20% with ptb, whose input graphs
have 500 nodes in average. Regardless of graphs size, the
locality added by P-GNN enables it to provide the best exe-
cution time improvements with any dataset.

Computation Time. Table 2 shows the average compu-
tation time of different graph embedding models on cifar10,
nmt, and ptb datasets. In our experiments on the cifar10
dataset with the different number of devices, the results con-
sistently meet our expectations that the P-GNN requires
more time to complete than GraphSAGE, due to more com-
plexmodel. However, Placeto-GNN is the slowest of the three.
Moreover, the experiments on the nmt and ptb datasets show
that GraphSAGE needs the least computation time compared

Table 2. The average computation time (sec.) on cifar10, nmt, and ptb
on different number of devices.

Graph Embedding 3 devices 5 devices 8 devices
cifar10

Placeto-GNN 110.730 112.030 108.118
GraphSAGE 89.116 91.930 93.443

P-GNN 101.170 105.721 103.420
nmt

Placeto-GNN 47.054 47.519 48.996
GraphSAGE 42.504 43.788 43.550

P-GNN 47.787 49.009 49.670
ptb

Placeto-GNN 335.376 327.175 321.450
GraphSAGE 288.443 298.736 298.210

P-GNN 362.761 368.460 371.815

Figure 5. Average computation time per dataset in seconds.

to the other models. Furthermore, in these two datasets, we
observe that Placeto-GNN provides a better computation
time than P-GNN.

Figure 5 represents the average computation time over the
different number of devices for different datasets. Here, we
can see that the computation time in all the graph embedding
models is proportional to the size of the input graphs, i.e.,
the NNs in the ptb dataset require the most computation
time, whereas the NNs in the nmt dataset require the least.
EC ratio. The EC ratio is a metric that gives a hint about

the usefulness of a graph embedding model. It takes into
account the execution time improvement compared to the
initial placement, and relates it to the computation time.
More formally, we define the EC of a NN 𝐺 as 𝐸𝐶 (𝐺) =
𝑇 (𝐺,𝜋)−𝑇 (𝐺,𝜋0)

T (𝐺,𝜋) , where𝑇 (𝐺, 𝜋) and𝑇 (𝐺, 𝜋0) are the execution
time of training𝐺 partitioned by the placement policy 𝜋 and
the execution time of training 𝐺 in the initial placement
using 𝜋0, respectively. T (𝐺, 𝜋) is the computation time of
training 𝐺 partitioned by the placement policy 𝜋 (Section 2).
As Table 3 shows, the average EC ratio of Placeto-GNN

over all the datasets and the different number of devices is
0.009, GraphSAGE scores 0.01, and P-GNN has the highest
ratio of 0.011. Despite having the slowest computation time,
P-GNN still brings the highest EC gain due to its large exe-
cution time improvements. On the other hand, GraphSAGE
achieves similar execution time improvements to Placeto-
GNN. However, due to its comparatively fast speeds, it has a
higher EC ratio than Placeto-GNN.

DIDL’20, December 7–11, 2020, Delft, Netherlands Milko Mitropolitsky, Zainab Abbas, and Amir H. Payberah

Table 3. Complete summary of all results for all tested parameters.

Execution time improvements
compared to the initial placement Computation times (seconds) EC ratio

Average Improvement compared to
the baseline Average Improvement compared to

the baseline Average Improvement compared to
the baseline

Placeto-GNN 25.139% - 162.050 - 0.009 -
GraphSAGE 25.432% 1.165% 143.302 11.569% 0.01 11%

P-GNN 31.164% 23.967% 173.313 -6.95% 0.011 22%

Table 3 shows a summary of the graph embeddeing results
that include the average of execution time improvement, the
average of computation time, and the average of EC ratio
over all the datasets and the different numbers of devices.
Placeto-GNN provides an execution time improvement of
25.139% compared to the initial placement, and the computa-
tion time required is 162.050 seconds. GraphSAGE provides
the execution time improvements very similar to Placeto-
GNN, 25.432%, and the computation time is 143.302 seconds
on average, which is 11.569% faster than the baseline. P-GNN
has the most complex graph embedding architecture, and it
achieves 31.164% execution time improvement compared to
the initial placement, which is 23.967% more than Placeto-
GNN. The computation time in P-GNN is 173.313 seconds
on average, which is 6.95% slower than Placeto-GNN.

5 Related Work
J. Dean et al. present the initial idea of training large NNs
in [2], where they introduce different parallelization issues:
data-parallel and model-parallel training. R. Mayer et al. [7]
present one of the earliest works onmodel parallelization and
device placement, in which they propose several heuristics
for this problem. One of the first AI-based device placement
solutions was presented by A. Mirhoseini et al. [8], where
they propose amethod that learns how to optimize the device
placement of TensorFlow graphs using RL. To achieve this,
they model the RL policy as an encoder-decoder Recurrent
Neural Networks (RNN). In [9], A. Mirhoseini et al. extend
their previous work [8] by adding a grouper component to
co-locate operations in groups using a softmax layer before
feeding them to the decoder.

Spotlight [16] is another RL approach that uses Long Short-
TermMemory (LSTM) [5] layer to produce device placements
per group of devices. Spotlight uses Proximal Policy Opti-
mization (PPO) [11] as the placement policy. Y. Zhou et al.
propose GDP [17] to learn and generalize graph structures.
This work, first, makes a representation of the input NNs
using GraphSAGE [3], and then utilizes a Transformer net-
work [13] for proposing device placement. Placeto [1] is the
state-of-the-art solution in this domain that we covered in
the previous sections, and thus we do not repeat it here. Al-
though there are a few device placement solutions that use
graph embedding, there is no study on the impact of this
module on the execution time of the final placement, and
this is the gap we tried to fill in this work.

6 Conclusions
In this work, we study the impact of different graph embed-
ding models (i.e., Placeto-GNN, GraphSAGE, and P-GNN)
on the device placement policies’ performance. We measure
the performance for the execution time of NNs partitioned
across multiple devices, and the computation time of apply-
ing a graph embeddingmodel on them.We conduct our study
over Placeto, a state-of-the-art device placement solution.
Through our experiments, we show that a position-aware
graph embedding technique, such as P-GNN, can improve
the overall device placement performance, i.e., the ratio of
the execution time improvement to the computation time.

References
[1] R. Addanki et al. 2019. Placeto: Learning generalizable device place-

ment algorithms for distributed machine learning. arXiv:1906.08879
(2019).

[2] J. Dean et al. 2012. Large scale distributed deep networks. In Advances
in neural information processing systems. 1223–1231.

[3] W. Hamilton et al. 2017. Inductive representation learning on large
graphs. (2017), 1024–1034.

[4] P. Hieu et al. 2018. Efficient neural architecture search via parameter
sharing. arXiv:1802.03268 (2018).

[5] S. Hochreiter et al. 1997. Long short-termmemory. Neural computation
9, 8 (1997), 1735–1780.

[6] Y. Huang et al. 2018. Flexps: Flexible parallelism control in parameter
server architecture. VLDB Endowment 11, 5 (2018), 566–579.

[7] R. Mayer et al. 2017. The tensorflow partitioning and scheduling
problem: it’s the critical path!. In DIDL. 1–6.

[8] A. Mirhoseini et al. 2017. Device placement optimization with rein-
forcement learning. arXiv:1706.04972 (2017).

[9] A. Mirhoseini et al. 2018. A hierarchical model for device placement.
(2018).

[10] A. Nazi et al. 2019. Gap: Generalizable approximate graph partitioning
framework. arXiv:1903.00614 (2019).

[11] J Schulman et al. 2017. Proximal policy optimization algorithms.
arXiv:1707.06347 (2017).

[12] A. Sergeev et al. 2018. Horovod: fast and easy distributed deep learning
in TensorFlow. arXiv:1802.05799 (2018).

[13] A Vaswani et al. 2017. Attention is all you need. In Advances in neural
information processing systems. 5998–6008.

[14] Y.Wu et al. 2016. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv:1609.08144
(2016).

[15] J You et al. 2019. Position-aware graph neural networks.
arXiv:1906.04817 (2019).

[16] G. Yuanxiang et al. 2018. Spotlight: Optimizing device placement for
training deep neural networks. In ICML. 1676–1684.

[17] Y. Zhou et al. 2019. GDP: Generalized Device Placement for Dataflow
Graphs. arXiv:1910.01578 (2019).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Device Placement
	2.2 Graph Embedding

	3 Implementation
	3.1 GraphSAGE
	3.2 P-GNN

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusions
	References

