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A B S T R A C T

Despite the recent developments in deep learning models, their applications in clinical decision-support systems
have been very limited. Recent digitalisation of health records, however, has provided a great platform for the
assessment of the usability of such techniques in healthcare. As a result, the field is starting to see a growing
number of research papers that employ deep learning on electronic health records (EHR) for personalised
prediction of risks and health trajectories. While this can be a promising trend, vast paper-to-paper variability
(from data sources and models they use to the clinical questions they attempt to answer) have hampered the
field’s ability to simply compare and contrast such models for a given application of interest. Thus, in this paper,
we aim to provide a comparative review of the key deep learning architectures that have been applied to EHR
data. Furthermore, we also aim to: (1) introduce and use one of the world’s largest and most complex linked
primary care EHR datasets (i.e., Clinical Practice Research Datalink, or CPRD) as a new asset for training such
data-hungry models; (2) provide a guideline for working with EHR data for deep learning; (3) share some of the
best practices for assessing the “goodness” of deep-learning models in clinical risk prediction; (4) and propose
future research ideas for making deep learning models more suitable for the EHR data. Our results highlight the
difficulties of working with highly imbalanced datasets, and show that sequential deep learning architectures
such as RNN may be more suitable to deal with the temporal nature of EHR.

1. Introduction

Electronic health records (EHR) systems store data associated with
each individual’s health journey (including demographic information,
diagnoses, medications, laboratory tests and results, medical images,
clinical notes, and more) [1]. While the primary use of EHR was to
improve the efficiency and ease of access of health systems [2], it has
found a lot of applications in clinical informatics and epidemiology
[3–5]. In particular, EHR have been used for medical concept extraction
[6,7], disease and patient clustering [8,9], patient trajectory modelling
[10], disease prediction [11,12], and data-driven clinical decision
support [13,14], to name a few.

The early analyses of EHR relied on simpler and more traditional
statistical techniques [15]. More recently, however, statistical machine

learning techniques such as logistic regression [16], support vector
machines (SVM) [17], Cox proportional hazard model [18], and
random forest [19] have also been employed for mining reliable pre-
dictive patterns in EHR data. While the simplicity and interpretability
of such statistical models are desirable for medical applications, their
weakness in dealing with high-dimensional input, their reliance on
many assumptions, both statistical and structural, and their need for
hand-crafted features/markers (guided by a domain expertise) make
their use for comprehensive analyses of EHR data impractical [20–22].
To alleviate these issues, one needs to analyse each individual’s entire
medical history (i.e., a series mixed-type and multimodal data packed
in irregular intervals) [22], using modelling techniques that can dis-
cover and take into account complex nonlinear interactions among
variables [23,24].
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The past decade has witnessed the profound impact of DL in a broad
range of applications, including but not limited to its striking perfor-
mance in natural language processing [25], speech recognition [26],
computer vision [27], and reinforcement learning [28]. As a result, in
recent years, the field of health informatics has seen a growth in the use
of DL for a broad range of tasks [29]. For instance, DL has been ex-
tensively applied in the analysis of medical images [30], with Google’s
work on detection of diabetic retinopathy [31], and detection of cancer
metastases on gigapixel pathology images [32], being the most widely
known examples. In genomics, DL has helped identify common genetic
variations more accurately than conventional methods [33,34],
opening the doors to new directions in genomics research [35,36] and
drug discovery for personalised medicine [37]. In all these applications,
DL algorithms analysed big datasets to produce a compact general-
purpose set of features that can be used for personalised risk prediction,
treatment recommendations, and clinical trial recruitment [38,39].

The number of research projects using DL for the analysis of EHR
has been growing rapidly in the past few years (see Fig. 1). A quick
search will show that the key DL architectures (e.g., feed-forward
neural networks (FFNN), convolutional neural networks (CNN), and
recurrent neural networks (RNN)), have been employed for the analysis
and modelling of EHR. In one of the earliest such works, Tran et al. [40]
introduced eNRBM (electronic medical records-driven nonnegative re-
stricted Boltzmann machines), for learning a universal representation
from complete EHR data (i.e., an automatic feature extraction). eNRBM
introduced constraints for nonnegative coefficients (for explainability
of the learned parameters) and structural smoothness (to account for
disease hierarchy in classification coding schemes) to standard Ber-
noulli RBM; the resulting model showed a superior performance for
suicide risk prediction, when compared with “manual feature en-
gineering”. Furthermore, eNRBM was shown to be capable of providing
clinically meaningful clustering of patients and diseases. Similarly,
Miotto et al. [38] chose deep stacked denoising autoencoder (SDA) for
training a universal feature extractor, and showed that it outperforms
the expert-driven feature engineering in a variety of clinical risk-pre-
diction tasks, including diabetes mellitus with complications, cancer of
rectum and anus, cancer of liver and intrahepatic bile duct, congestive
heart failure (non-hypertensive), among others. In both approaches, a
supervised learning model (such as logistic regression, SVM, or random
forests) was needed to map the learned representation to the outcome
of interest. For this reason, we refer to such approaches as “modular”.

Neither eNRBM nor SDA considered the temporal information in the
EHR, explicitly; the attempt by Tran et al. [40] to split patients’ jour-
neys into non-overlapping time intervals, and concatenating them (see
the details in Section 2) was the closest that modular models have be-
come to considering time. In order to address this shortcoming, Nguyen

et al. [20] introduced a CNN architecture called Deepr (Deep record),
where a patient’s journey is modelled as a long sentence of medical
codes, with each code embedded into a new space to facilitate the
statistical and algebraic operations (i.e., similar to word embedding in
natural language processing [41]), and denoting the time between
events as “special words”. Deepr is an example of an “end-to-end”
model, trained to map the EHR history directly to the outcome of in-
terest. Such a model was validated on hospital data to predict un-
planned readmission after discharge, obtaining a slightly better per-
formance with an AUC of 0.80 (3-month prediction) and 0.819 (6-
month prediction), compared to logistic regression with bag-of-words
representation, where an AUC of 0.797 (3-month prediction) and 0.811
(6-month prediction) was obtained.

In another end-to-end modelling endeavour, Choi et al. introduced
Med2Vec [42], an FFNN model for learning representations for both
visits (a group of medical codes) and medical codes, providing word
embeddings comparable to other techniques like Skip-gram [43], GloVe
[44], and stacked autoencoders [38]. Furthermore, in multiple studies
[45–47], Choi et al. extended their work by using an RNN architecture
to detect influential past visits and significant clinical variables while
remaining clinically interpretable. In particular, the RETAIN (REverse
Time AttentIoN) model [45] used two RNNs and a two-level neural
attention model to process sequential data using an end-to-end ap-
proach. The model obtained an AUC of 0.8705 when tested on heart
failure diagnosis from Sutter Health medical records, suggesting that
the model had a high predictive accuracy, while providing interpret-
ability in the results. Since its development, the RETAIN model has
been enhanced considerably. For instance, Kwon et al. [48] produced
an interactive visual interface named RetainVis, that offers insights into
how individual medical codes contribute to making risk predictions, Ma
et al. [49] developed an attention-based bidirectional RNN that mea-
sures the relationships of past and future visits (from Medicaid claims in
the US) to produce diagnosis prediction, while providing clinically
meaningful interpretations, and Choi et al. [50] built a graph-based
attention model, capable of using hierarchical information inherent to
medical ontologies, resulting in a 10% higher accuracy for predicting
rare diseases and 3% improved AUC for predicting heart failure using
an order of magnitude less training data.

RNN’s power in modelling language and other sequences [51,52],
when paired with their early success in learning new representations of
EHR (as introduced above) made it a popular choice for DL researchers
in this domain. Pham et al. [21] introduced an RNN architecture (called
DeepCare) to predict future medical outcomes based on the patients’
health trajectories. To do so, they used a modified long short-term
memory (LSTM) unit [53,54] with a forgetting mechanism and the
ability to handle irregular inter-visit intervals. The model was applied
to prediction of unplanned readmission within 12 months, where an F-
score of 0.791 was obtained, an improvement over traditional machine
learning techniques like SVM (F-score of 0.667) and random forests (F-
score of 0.714). Extending this idea, Rajkomar et al. [22] introduced an
ensemble model [55], which combined the strengths of three different
models: a weighted RNN, a feedforward model with time-aware at-
tention, and a boosted embedded time series model. The authors ap-
plied their model to EHR data from the University of California, San
Francisco, and the University of Chicago Medicine. They demonstrated
the effectiveness of this DL model in a variety of clinical tasks, including
mortality prediction (AUC of 0.93–0.95), unexpected readmission (AUC
of 0.76–0.77), and increased length of stay (AUC of 0.85–0.86). In
addition, Ma et al. [56] developed a hybrid network structure com-
posed of both an RNN and a CNN in order to extract comprehensive
multifaceted patient information patterns with attentive and time-
aware modulars. Such a network was applied in the prediction of heart
failure (SNOW dataset) and diabetes mellitus (EMRBots dataset), ob-
taining AUCs of 0.729 (heart failure) and 0.943 (diabetes mellitus),
outperforming other models like logistic regression (0.650/0.790) and
RETAIN (0.668/0.767).

1 1 6

38

94

252
267

0

100

200

2012 2013 2014 2015 2016 2017 2018
Year

N
um

be
r o

f P
ub

lic
at

io
ns

Fig. 1. Published studies found on Semantic Scholar (https://www.
semanticscholar.org/) through October 2018 using keywords “deep learning”
AND (“electronic health records” OR “electronic medical records”) in the title
or abstract.

J.R. Ayala Solares, et al. Journal of Biomedical Informatics 101 (2020) 103337

2

https://www.semanticscholar.org/
https://www.semanticscholar.org/


Despite the growth in the number of DL papers for EHR, the ma-
jority of these papers have used data from different countries and
healthcare systems, employed different data cleaning and preparation
processes (e.g., inclusion/exclusion criteria, input fields, and sample
size), developed and used different DL architectures, while answering
different clinical questions; even when assessing the models for risk
prediction, the reviewed papers were not consistent in the quantifica-
tion of model performance (see Table 1). Such wide paper-to-paper
variability will hamper the ability of the field to compare and contrast
the relevant papers for a clinical question at hand.

This paper primarily aims to provide a comparative review of the
key DL architectures that have been used for the analysis of EHR data;
describing their corresponding strengths and weaknesses for various
real-world challenges when applied to a single complex EHR. We fo-
cused our work on getting an efficient patient representation to tackle
two important but diverse clinical prediction challenges: predicting
emergency admission, or heart failure. In addition to being the first
comparative review of key DL architectures for EHR data, this paper
also aims to: (1) introduce and use one of the world’s largest and most
complex databases of linked primary care EHR (i.e., Clinical Practice
Research Datalink, or CPRD) that captures 30 years of medical history
of patients, as a new asset for training such data-hungry models; (2)
review some of the approaches for working with such data for DL; (3)
share some of the best practices for assessing the performance of DL
models in clinical risk prediction tasks; (4) and propose ideas of future
research for making DL models even more suitable for EHR data.

2. Materials and methods

2.1. Overview

Our comparative review assessed four main DL architectures that
have been employed so far for the analysis of EHR data: AE (auto-
encoders), SDA, CNN, and RNN (for complete reference, please see
Table 1 with the corresponding abbreviations available in Appendix A).
In particular, we used the following models: eNRBM [40], Deep Patient
[38], Deepr [20], and RETAIN [45]; this is the best representative
subset for all the key DL architectures in the field [3–5].

2.2. Clinical Practice Research Datalink (CPRD)

Over 98% of the UK population are registered with a general
practice (GP), the first point of contact for healthcare in the UK
National Health Service [57]. The CPRD is a service that collects de-
identified longitudinal primary care data from a network of GPs in the
UK, which are linked to secondary care and other health and area-based
administrative databases [58]. Among these linked databases include
the Hospital Episode Statistics (for data on hospitalisations, outpatient
visits, accident and emergency attendances, and diagnostic imaging),
the Office of National Statistics (death registration), Public Health
England (cancer registration), and the Index of Multiple Deprivation.
Around 1 in 10 GP units contribute data to the CPRD. To date, the CPRD
covers 35 million patient lives among whom 10 million were currently
registered patients from 674 GP units, making it one of the largest
primary care EHR databases in the world.

Patients included in the CPRD database were largely nationally re-
presentative in terms of age, sex and ethnicity, covering around 7% of
the UK population. Given the data on demographics, diagnoses, thera-
pies, and tests together with its linkage to other health-related data-
bases, the CPRD is a valuable source of healthcare data [57]. Because
CPRD contains detailed personal information, the dataset is not readily
available to the public, and its usage depends on approval from the
CPRD Research Ethics Committee [58].

For this work, we only considered practices providing healthcare
data that met research quality standards within the period from 01/
January/1985 to 31/December/2014, and whose records were linkedTa
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to the Hospital Episode Statistics database. Furthermore, we focused on
patients aged 16 years or older who have been registered with their GP
for at least 1 year. This resulted in a dataset of 4, 272, 833 patients, and
is profiled in Table 2.

2.3. Modeling pipeline

While CPRD contains many data fields, we limited our analyses to
two main scenarios: demographics + diagnoses, and demo-
graphics + diagnoses + medications (denoted as DD and DDM, re-
spectively), as these are common predictors that were used by all
models in Table 1, and were very likely to exist in all EHR systems. The
demographics variables that we took into account were sex (binary),
age (continuous), ethnicity (categorical with 12 classes), and region
(categorical with 10 classes). In CPRD, diagnoses were coded using
Read codes [59] (for primary care) and ICD-10 codes [60] (for Hospital
Episode Statistics), while medications were coded using prodcodes
(CPRD unique code for the treatment selected by the GP). In their raw
format, these coding schemes were unsuitable to work with given their
high cardinality, i.e., there were around 110,000 Read codes, 14,000
ICD-10 codes and 55,000 prodcodes. For this reason, we mapped di-
agnoses from Read and ICD-10 to the CCS (Clinical Classifications
Software) [61] coding scheme. For medications, we mapped the prod-
codes to level 2 of BNF (British National Formulary) [62] codes. These
mappings are known as “clinical groupers” and are commonly used in
clinical tasks to reduce the number of medical codes commonly found
in EHR.

In our work, we decided to use CCS because it was the most
common approach in the papers that we compared. Furthermore, this
approach helps address the sparsity issue that is common in medical
records, and makes statistical analyses and reporting easier [61]; de-
fining the diseases at a higher granularity will lead to lower frequencies
of their occurrences and hence hampers the models’ ability of learning
meaningful patterns about them. Furthermore, using clinical groupers
canhelp avoid the memory issues, as raised by Choi et al. [45,50], and
from a practical point of view, using the full vocabulary of ICD codes
(i.e., more than 10,000 diseases) is not a tractable option for the
eNRBM and Deep Patient models, given that such architectures do not
use embedding layers and therefore, the memory in the GPUs does not
have enough space to allocate such information. In addition to this,
diagnoses and medications with a cumulative sum of less than 0.5% of
the total number of medical codes (recorded from 01/January/1985 to
31/December/2014), were grouped into the Drare and Mrare cate-
gories, respectively. This resulted in a total of 222 codes for diagnoses
and 104 for medications.

For both the DD and DDM scenarios, we focused on two separate
outcomes: predicting emergency admission, or heart failure. We chose
these two outcomes to capture two important but diverse clinical pre-
diction challenges. Overall, emergency hospital admission is of great
importance in healthcare service delivery. Predicting such an outcome
helps in planning to ensure services are available to meet unscheduled
hospitalisations [63]. The reader can find the emergency admission
codes used in this study in Appendix B. Furthermore, heart failure is an
important cause of mortality and morbidity, which could be associated

with poor prognosis. Recent trends suggest that the burden of heart
failure is increasing, not least because of the trend towards an ageing
population [64]. In this study we focused on CCS code 108, i.e. Con-
gestive Heart Failure; Nonhypertensive. The reader can find the related
ICD codes in Appendix C. In both cases, we considered a prediction
window of 6 months, and the outcome was treated as a binary classi-
fication task. Patients were split into separate groups, randomly
keeping 53% for training of DL models, 7% for training the top layer
classifier in the modular DL architectures (i.e., a random forest in our
study), 20% for validation (hyperparameter tuning), and 20% for
testing. All groups included data from 01/January/1985, but the time
window was different for each of them. The training group covered
until 31/December/2012, the validation group until 31/December/
2013 and the test group until 31/December/2014. The purpose of this
time-splitting is to have a form of external validation (i.e., out of time,
out of sample) that is typical in clinical studies, where we want to
predict future events based on everything we know up to a certain
baseline. In all cases, the prediction interval was used to create the
target variable and corresponded to the last six months previous to the
end of the corresponding time window (i.e. whether a patient had an
emergency admission, or whether he had a heart failure during these six
months). Overall, the ratio of emergency admission cases is 0.011,
while the ratio of heart failure cases is 0.0015. The statistics of the
outcome variables are shown in Tables 3,4. Data before these six-month
windows are used for feature generation (see a visual representation of
this approach in Fig. 2). Patients who died before the corresponding
prediction interval are excluded from the analysis. For heart failure
cases, we did not focus on new incidences since we wanted to identify
any heart failure presentation (whether first event or recurrence) given
the patient’s history up to a baseline.

While using the same source of data and the same inclusion and
exclusion criteria, each model in Table 1 requires a different format for
its input data, as described below:

• eNRBM: Each patient’s medical history (i.e., the data before dashed
line in Fig. 2) was split into five non-overlapping intervals:
(0 3), (3 6), (6 12), (12 24), and +(24 ) months before the
prediction window. The information in each interval is formatted as
a long sparse vector of length equal to 222 for DD scenario and 326
for DDM scenario, where each entry corresponds to the number of
times a single disease (or medication) was diagnosed (or prescribed)
in the given interval. All categorical features are converted to
dummy variables, and age is scaled between 0 and 1 using in-
formation from the training set. This resulted in a sparse vector that,
together with demographics information, has 1,135 input variables
for DD scenario, and 1,655 for DDM scenario.
• Deep Patient: Each patient’s medical history was aggregated into a
sparse vector, where each entry corresponds to the number of times
a single disease (or medication) was diagnosed (or prescribed). All
categorical features are converted to dummy variables, and age is
scaled between 0 and 1 using information from the training set.
Together with demographic information, this resulted in 247 input
variables for DD scenario, and 351 for DDM scenario.
• Deepr: It deals with the sequence of events (i.e., diagnoses and

Table 2
Statistics of CPRD dataset from 01/January/1985 to 31/December/2014. (SD:
Standard Deviation, IQR: Interquartile Range, D:Diagnosis, M:Medication).

Number of patients 4, 272, 833

Number of visits 283, 996, 690
Number of visits per patient, Mean (SD) 66.47 (91.1)

Number of visits per patient, Median (IQR) 30 (79)
Number of medical codes 326 (D:222, M:104)

Number of codes in a visit, Mean (SD) 2.34 (1.92)
Number of codes in a visit, Median (IQR) 2 (2)

Table 3
Statistics of the outcome variables for the different data partitions for the
Demographics + Diagnoses scenario.

Data partition # of Emergency
Admission cases

# of Heart Failure
cases

Training (53%) 20,430 (1.08%) 2,754 (0.15%)
Training (modular models)

(7%)
2,773 (1.08%) 378 (0.15%)

Validation (20%) 8,262 (1.14%) 1,114 (0.15%)
Testing (20%) 7,115 (0.98%) 982 (0.14%)
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medications) directly, while discretising the time between two
events as: (0 1], (1 3], (3 6], (6 12], and 12+ months, e.g.
(0 1] corresponds to a duration that goes from 0 (exclusive) to 1
(inclusive) months between medical events. Each time interval is
assigned a unique identifier, which is treated as a word; for instance,
0-1m is a word for the (0 1] interval gap. Each patient’s medical
history is expressed as a long sentence of medical codes, where the
duration between two consecutive visits will appear in the sequence
as one of the five preserved interval words. Similar to the approach
of Nguyen et al. [20], the sentences were trimmed to keep the last
100 words in order to avoid the effects of some patients, who have
very long sentences, that could severely skew the data distribution.
• RETAIN: Each patient’s information was split in three components.
The first one was made of a list of sublists, where each sublist
contained all the medical codes that were recorded on a single date.
These sublists were sequentially ordered from oldest to newest. The
second component consisted of a list with the demographics in-
formation. Finally, the third component, was made of a list of values
indicating the difference in days between consecutive visits. These
values were ordered from oldest to newest, and the first of these
differences was set to zero, given that this information was not
available for the first visit.

This input formatting was carried out after the data partitioning
process. A short description of the inclusion criteria and outcomes of
interest of the selected works are shown in the Appendix D. For more

details, readers are directed to the corresponding publications.
All four models selected were coded based on the description found

in the corresponding publications, except for the RETAIN model, which
has the code available online [65]. Note that the original model in
Nguyen et al. [20] for the Deepr architecture only considered dynamic
information as the input of the convolutional layer (after embedding).
However, for the sake of a fair comparison with the other selected
models, we had to include static information (i.e. demographics) into
the network. This resulted in a slight modification of the original ar-
chitecture, via the parallel processing of two kinds of inputs (multi-
input network). This adjustment amounted to merging two networks:
the first (processing dynamic information) had the same structure as
Deepr, whereas the second (processing static information) consisted of
one fully connected layer. The two intermediate outputs were then
merged together through a further fully connected layer, before the
final classification task (see Fig. 3).

The implementations were done with PyTorch 0.4.1 [66], Keras
2.2.2 [67] and scikit-learn 0.20.0 [68] using two NVIDIA Titan Xp
graphics cards. Furthermore, all DL models selected have several hy-
perparameters as shown in Appendix E. In order to tune these hy-
perparameters, we used a tree-based Bayesian Optimisation approach
[69,70], as implemented in Scikit-Optimize [71]. We chose a batch size
of 1,024 patients for all models, except for RETAIN, where we used a
batch size of 256 patients due to memory constraints in the GPUs. To
benchmark our results, we used bag-of-words representation with lo-
gistic regression (BOW + LR), and a simple RBM with the same input
format as in Tran et al. [40]. For the random forest in the modular DL
models, we used 200 trees while the remaining hyperparameters were
optimised using the same tree-based Bayesian Optimisation approach1.

2.4. Performance metrics

Model performance was evaluated using the area under the ROC
curve (AUROC), similar to what the majority of the articles in Table 2
reported. The AUROC is a discrimination metric equivalent to the
probability that a classification model will rank a randomly chosen
positive instance higher than a randomly chosen negative instance
[72,73]. Thus, the AUROC ranges from 0.5 (no discrimination ability)
to 1 (perfect discrimination). However, this metric can be misleading
when the classes are very imbalanced [74–76]. To avoid this, the area
under the precision-recall curve (AUPRC) is useful as it considers the
tradeoff between precision (a measure of result relevancy) and recall (a
measure of how many truly relevant results are returned) for different
thresholds [77,78]. The AUPRC range goes from 0 to 1, with higher
values preferred overall [79]. In addition, the F1-Score is also taken
into account given that it is a weighted average of the precision and
recall, ranging from 0 (worst score) to 1 (best score) [80].

3. Results

The performances of all the tested models are shown in Tables 5,6
for the DD scenario, and Tables 7,8 for the DDM scenario. The models
were trained 5 times independently to provide summary statistics and
95% confidence intervals. In general, the RETAIN model has the best
performance when compared to other DL models; in both scenarios, and
across a range of metrics. This agrees with the results presented in Choi
et al. [45] in terms of AUROC, and emphasises the advantage of using
RNN to exploit the sequential nature of EHR. In addition, the inclusion
of medications provides an improvement in the AUROC and AUPRC for
the majority of the models in these two prediction tasks. The best hy-
perparameters found for all the DL and baseline models are shown in
Appendix E.

When compared to simpler techniques such as BOW + LR, all DL

Table 4
Statistics of the outcome variables for the different data partitions for the
Demographics + Diagnoses + Medications scenario.

Data partition # of Emergency
Admission cases

# of Heart Failure
cases

Training (53%) 23,200 (1.18%) 2,764 (0.14%)
Training (modular models)

(7%)
3,064 (1.16%) 385 (0.15%)

Validation (20%) 9,308 (1.24%) 1,032 (0.14%)
Testing (20%) 7,998 (1.07%) 947 (0.13%)

Training (53%)

Validation (20%)

Testing (20%)

Training (modular 
models) (7%)

1985 2012 2013 2014

Feature extraction interval

Prediction interval (6 months)

Fig. 2. Study Design. A total of 4, 272, 833 patients were split into training,
validation and test sets. A small portion of the training (7%) was kept apart for
the modular deep learning architectures. Red region corresponded to the pre-
diction interval, which consisted of the last six months of the respective time
window. This region was used to create the two separate outcomes (i.e. whether
or not a patient had an emergency admission, or a heart failure during these six
months). All data previous to these six months (marked with a dashed line) was
used for feature extraction. Patients who died before the corresponding pre-
diction interval are excluded from the analysis. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)

1 For the interested readers, our codes will be shared upon request.
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models show better performance. For instance, when considering
Emergency Admission in the DD scenario, the RETAIN model outper-
forms the BOW + LR model by 25% in AUROC, 264% in AUPRC, and
174% in F1-Score. Similarly, for Heart Failure cases, the RETAIN model
outperforms the same by 18% in AUROC, 490% in AUPRC, and 350% in
F1-Score. On the other hand, when considering Emergency Admission
in the DDM scenario, the RETAIN model outperforms the BOW + LR
model by 31% in AUROC, 336% in AUPRC, and 183% in F1-Score.
Similarly, for Heart Failure cases, the RETAIN model outperforms the
same by 39% in AUROC, 800% in AUPRC, and 515% in F1-Score.
Overall, this is likely due to the ability of the DL models to reduce a
complex input space (made out of hundreds of diagnosis and medica-
tion codes) to a small yet predictive representation of the EHR sequence
for predicting either emergency admission or heart failure. Similarly,
when compared with the simple RBM model, the eNRBM has a similar
performance in both classification tasks, as expected, given the similar
layout of both models (see Table E.11). Further, both Deep Patient and
Deepr have a slightly worse performance compared to the simple RBM
when predicting emergency admission, but this is improved when
predicting heart failure. Finally, the RETAIN model has the best per-
formance in both tasks for the DD and DDM scenarios.

4. Discussions and future work

DL is becoming the ubiquitous approach for the analysis of EHR
data, because of the models’ ability to process huge amounts of data
without the need to perform explicit feature engineering by domain

Fig. 3. Modified Deepr architecture in order to consider demographics and
have a fair comparison with the other selected models. EHR are processed
through a series of steps that include sequencing, embedding, convolution,
pooling and classification. Static information (i.e., demographics) is merged
together and passed through a fully connected layer before the final classifi-
cation task.

Table 5
Comparison for the Demographics + Diagnoses scenario (Emergency Admission).

Model AUROC AUPRC F1-Score

eNRBM 0.803 (0.803–0.804) 0.051 (0.051–0.051) 0.052 (0.052–0.052)
Deep Patient 0.801 (0.801–0.802) 0.047 (0.047–0.047) 0.053 (0.053–0.053)

Deepr 0.815 (0.813–0.817) 0.053 (0.052–0.054) 0.112 (0.107–0.117)
RETAIN 0.822 (0.819–0.826) 0.062 (0.061–0.064) 0.118 (0.109–0.127)

BOW + LR 0.654 (0.627–0.681) 0.017 (0.015–0.018) 0.043 (0.031–0.054)
RBM 0.807 (0.807–0.808) 0.050 (0.050–0.050) 0.053 (0.053–0.053)

∗ Data represented as: Mean (95% Confidence Interval).

Table 6
Comparison for the Demographics + Diagnoses scenario (Heart Failure).

Model AUROC AUPRC F1-Score

eNRBM 0.912 (0.911–0.913) 0.018 (0.017–0.018) 0.017 (0.017–0.017)
Deep Patient 0.948 (0.948–0.949) 0.040 (0.039–0.041) 0.024 (0.024–0.024)

Deepr 0.938 (0.907–0.969) 0.049 (0.036–0.063) 0.110 (0.089–0.131)
RETAIN 0.951 (0.949–0.952) 0.065 (0.061–0.069) 0.135 (0.126–0.144)

BOW + LR 0.801 (0.775–0.827) 0.011 (0.009–0.012) 0.030 (0.025–0.034)
RBM 0.897 (0.897–0.898) 0.016 (0.016–0.017) 0.015 (0.015–0.015)

∗ Data represented as: Mean (95% Confidence Interval).

Table 7
Comparison for the Demographics + Diagnoses + Medications scenario (Emergency Admission).

Model AUROC AUPRC F1-Score

eNRBM 0.831 (0.831–0.832) 0.071 (0.071–0.071) 0.063 (0.062–0.063)
Deep Patient 0.813 (0.813–0.813) 0.060 (0.060–0.061) 0.059 (0.059–0.059)

Deepr 0.829 (0.828–0.831) 0.069 (0.067–0.071) 0.131 (0.118–0.144)
RETAIN 0.847 (0.845–0.849) 0.083 (0.082–0.083) 0.153 (0.151–0.154)

BOW + LR 0.646 (0.576–0.717) 0.019 (0.015–0.023) 0.054 (0.046–0.063)
RBM 0.840 (0.840–0.840) 0.072 (0.072–0.073) 0.066 (0.066–0.066)

∗Data represented as: Mean (95% Confidence Interval).
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experts unlike more traditional statistical models. In this work, we
carried out a comparative review of the common DL architectures for
EHR, to compare their properties while standardising the common
sources of paper-to-paper variability (e.g., dataset, sample size, medical
codes, clinical questions, and performance metrics). To the best of our
knowledge, this is the first paper that has carried out such research.

Most of the DL research in this field, however, analysed EHR data
that came from private hospitals [40,38,20,45]. These datasets vary in
terms of sample size and the information they contain (demographics,
clinical data, vital signs, laboratory tests and medications, among
others), and hence DL’s performance on them might not be reproduced
across other EHR datasets (and hence different populations). Among
EHR data sources, CPRD is one of the largest accessible EHR datasets for
a patient population that is largely representative of the UK population
in terms of age, sex, and ethnicity. The CPRD not only includes data on
demographics, diagnoses, therapies, and tests, but it is also linked to
data on hospitalisations, outpatient visits, accident and emergency at-
tendances, diagnostic imaging, death registration, cancer registration,
and socioeconomic status [57]. It is a valuable source of healthcare data
that enables models to be trained in a real healthcare ecosystem.

Although CPRD has been around for over a decade with hundreds of
publications and widespread use in epidemiology [81–83,64,84], its
potential for machine learning and DL is currently untapped and its use
only in early stages (i.e., Rahimian et al. [19]). With this study being
the first to employ DL on CPRD, we aimed to show the richness of this
database for various types of DL frameworks, given its large sample
size, variety of information, and representativeness of the UK popula-
tion, which can be used on a large range of analyses on risk predictions
and disease trajectories.

In this work, we used four models that covered the main DL ar-
chitectures found in the literature. The eNRBM and Deep Patient
models were trained in a modular way. First, they aimed to get a
meaningful unsupervised representation that identifies hierarchical
regularities and dependencies in the input data; such a representation is
then used as input for a supervised learning algorithm (i.e., a random
forest in our study). Given both models’ inability to deal with sequential
data explicitly, they require to represent a patient’s journey as a sparse
vector, which ignores the elapsed time between visits. In practice,
however, time between and since events is clinically relevant. For in-
stance, Rahimian et al. [19] have shown a 10.8% higher AUC (0.848
with a gradient boosting classifier compared to 0.740 with a Cox pro-
portional hazards model) for prediction of risk of emergency admission
within 24 months using engineering features that represented time
since diagnoses. Thus, most recent developments in the use of DL for
modelling EHR data has been using sequential models such as RNN.

Deepr and RETAIN models, on the other hand, are trained using an
end-to-end approach, directly connecting the input (e.g., medical codes
and other information) to the outcome of interest. This can be an ad-
vantage if the aim is to identify meaningful patterns for a specific
clinical question, but if this is not the case, a different model needs to be
trained for each given outcome. Nevertheless, since these models in-
corporate the elapsed time between visits, they are more suitable for
modelling patient trajectories. While Deepr employed an interesting

approach to characterise time between events by defining special words
that represent time intervals, RETAIN considered time between visits as
an additional feature. Overall, the RETAIN model has the best perfor-
mance in both tasks for the DD and DDM scenarios. This highlights the
strength of RNN and attention mechanisms for analysing sequential
data, thus various modifications to RNN are currently the state of the
art research in DL for EHR.

Regardless of which classification model one uses, one of the most
common ways to assess such model performance is the AUROC. In our
study, we achieved a high AUROC that is comparable to what other
papers reported [20,45,48]. Furthermore, we employed an additional
metric, AUPRC, which most papers in the literature did not report, and
with respect to which our models performed poorly. Such observations
have been previously reported by others, e.g., Davis and Goadrich [85],
when datasets were highly imbalanced.It is possible that focusing on
more specific or relevant clinical subgroups may improve the prediction
as models are likely to incorporate more relevant parameters for the
condition of interest than for all the patient population. This highlights
the difficulty that even these models encounter when dealing with
imbalanced clinical tasks. Such a scenario is typical in many healthcare
applications where the minority class is buried by the majority class.
Several approaches have been proposed for dealing with imbalanced
datasets, including the work by Chawla et al. [86] and Lemaitre et al.
[87], but further research is required, particularly for DL models.

One of the key strengths of DL models is their ability to map one’s
full medical record to a low-dimensional representation. In our ana-
lyses, the patient representations (projected onto 2D using a UMAP
(Uniform Manifold Approximation and Projection) [88] for visual
clarity) are shown in Figs. 4 and 5. Note that the representations from
modular models tend to form clusters, while the representations from
the end-to-end models seem to form a continuum. Nevertheless, it can
be observed that cases of emergency admission (in blue) and heart
failure (in red) tend to get grouped in separable regions. Further pro-
filing of these clusters can help identify and assess common char-
acteristics of patients to improve the performance of the models and to
guide future clinical research.

As part of the objectives of this work to provide a guideline to work
with DL for EHR, we identified that the main issues are related to the
choice of inclusion criteria and preprocessing of the data. The inclusion
criteria usually depends on the clinical question and outcome of in-
terest; it is a key part of a good study design. Furthermore, it is of great
importance to properly split the data into the usual training, validation
and test sets as this would help to avoid overfitting and properly
evaluate the DL models. In terms of data preprocessing, we highlighted
the importance of using clinical groupers to reduce the cardinality of
both diagnoses and medications. This could be thought as a form of
dimensionality reduction that prevents very long and sparse input
vectors that would hamper the training process of the DL models. In this
work, we used the CCS coding scheme, but other clinical [89] and drug
[90] classification systems could be used depending on the study re-
quirements.

One important consideration when working with DL models is the
tuning of the corresponding hyperparameters (as shown in Appendix

Table 8
Comparison for the Demographics + Diagnoses + Medications scenario (Heart Failure).

Model AUROC AUPRC F1-Score

eNRBM 0.920 (0.920–0.921) 0.020 (0.019–0.021) 0.014 (0.014–0.014)
Deep Patient 0.947 (0.947–0.948) 0.040 (0.039–0.041) 0.023 (0.022–0.023)

Deepr 0.949 (0.947–0.952) 0.039 (0.032–0.046) 0.085 (0.049–0.120)
RETAIN 0.950 (0.946–0.954) 0.054 (0.053–0.056) 0.117 (0.098–0.136)

BOW + LR 0.682 (0.613–0.752) 0.006 (0.002–0.009) 0.019 (0.011–0.027)
RBM 0.917 (0.917–0.917) 0.023 (0.022–0.023) 0.014 (0.014–0.014)

∗ Data represented as: Mean (95% Confidence Interval).
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E). In this work, we employed a tree-based Bayesian Optimisation ap-
proach [69,70], as implemented in Scikit-Optimize [71], to find the
most appropriate values. This approach takes fewer evaluations to
achieve a similar result compared with exhaustive grid search and
random search given that it learns from its evaluation history and
suggests better hyperparameters to test as the search progresses. Still,
Bayesian optimisation can be time-consuming as the models become
larger and more complex, so a lot of research has been done to make
this process more robust and scalable [91–94]. Nowadays, new best
practices are proposed constantly in this fast-evolving field, so it is hard
to provide a general set of rules for efficient hyperparameter tuning.
The work by Howard et al. [95] has been highly influential as the au-
thors suggest that the learning rate is the most important hyperpara-
meter when training a DL model, and advocate for a more iterative
approach using techniques like differential learning rates, cyclical
learning rates [96], learning rate schedulers, and stochastic gradient
descent with restarts [97], which seem to work irrespectively of the DL
architecture.

Overall, there is no DL model that dominates the current state-of-
the-art for the analysis of EHR, and that outperforms all expert-driven
models yet (as shown in the works of Jacobs et al. [98] and Rahimian

et al. [19]). Furthermore, DL models remain difficult to interpret and
unable to provide uncertainty estimation, which is undesirable in
clinical settings. Although, the works by Gal et al. [99,100], Tran et al.
[101] and Chakraborty et al. [102] have contributed to overcome these
issues, further research is required.

Finally, there seems to be a trend towards the use of RNN archi-
tectures given the sequential nature of medical records. Several works
have been developed recently where RNN are applied to a series of case
studies like early detection of sepsis [103], hospital readmission for
lupus patients [104], and detection of adverse medical events in EHR
[105]. Furthermore, the field of natural language processing has greatly
advanced as evidenced by the works of Transformers [106,107], con-
textualised word representations [108], and transfer learning for lan-
guage models [109]. Given the similarities between natural language

Fig. 4. Patient representations obtained by each DL model in the DD scenario,
after projection to 2D using UMAP. Each point corresponds to a patient in the
test set; blue and red dots correspond to cases of emergency admission or heart
failure, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Patient representations obtained by each DL model in the DDM scenario,
after projection to 2D using UMAP. Each point corresponds to a patient in the
test set; blue and red dots correspond to cases of emergency admission or heart
failure, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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processing tasks and EHR, the application of these techniques provides
interesting research directions that could result in the development of
medical embeddings for analysis of EHR [110,111], understanding of
disease clusters and trajectories [112], generation of synthetic EHR
[113], and the use of pretrained models to avoid the need for starting
from scratch every time a new clinical question comes. The application
of DL to EHR seems to have an exciting future.

5. Conclusions

The use of DL to analyse EHR data has increased over the past years;
a growth that is continuing to be facilitated by the availability of more
data (EHR and beyond), developments in DL (specifically, models for
sequential data), and innovative ways of combining these two trends. In
this work, we implemented key deep learning architectures to learn an
efficient patient representation for predicting emergency admission,
and heart failure. Our objective here was to help the field have a
comparative view of these approaches, and to assess their strengths and
weaknesses when it comes to EHR.

Along this work, we introduced CPRD, which is one of the world’s
largest primary care databases, and showed how data from primary
care can provide predictions that can be of value in policy and practice
of care. Given the complexity of primary care EHR (heterogeneous
events recorded in irregular intervals with varying degree of richness
and quality across different individuals), and its importance in provi-
sion of care in many parts of the world, we believe that the set of best
practices we shared for them (e.g., inclusion criteria, preprocessing,
medical codes/grouping, performance metrics, and hyperparameter
tuning) will be of great value in helping DL research in EHR.

Our work showed the strength of recurrent neural networks in
dealing with the temporal nature of the EHR. This was consistent with
the developments in modelling EHR-like data from other domains, such
as natural language and time series data. Our future research aims to
explore techniques and methodologies from such domains, and apply
them to other types of data from different healthcare systems.
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Appendix A. Abbreviations

The following abbreviations are used throughout the document:

• EHR: Electronic Health Records
• SVM: Support Vector Machines
• DL: Deep Learning
• FFNN: Feed-Forward Neural Networks
• CNN: Convolutional Neural Networks
• RNN: Recurrent Neural Networks
• eNRBM: Electronic Medical Records-driven nonnegative restricted Boltzmann machines
• SDA: Stacked Denoising Autoencoder
• RETAIN: Reverse Time Attention
• CPRD: Clinical Practice Research Datalink
• GP: General Practice
• ICD: International Statistical Classification of Diseases and Related Health Problems
• ACHI: Australian Classification of Health Interventions
• ACS: Australian Coding Standard
• ATC: Anatomical Therapeutic Chemical Classification
• CPT: Current Procedural Terminology
• NDC: National Drug Codes
• GPI: Generic Product Identifier
• KCD: Korean Statistical Classification of Diseases and Related Health Problems
• SD: Standard Deviation
• IQR: Interquartile Range
• BOW: Bag of Words
• LR: Logistic Regression
• AUROC: Area Under the Receiver Operating Characteristic Curve
• AUPRC: Area Under the Precision-Recall Curve
• ND: Not Defined

J.R. Ayala Solares, et al. Journal of Biomedical Informatics 101 (2020) 103337

9



• DD: Demographics + Diagnoses
• DDM: Demographics + Diagnoses + Medications

Appendix B. Emergency Admission Codes

Table B.9 shows the Medcodes considered to identify emergency admissions.

Appendix C. Heart Failure Codes

Table C.10 shows the ICD codes that are mapped to CCS code 108 (Congestive Heart Failure; Nonhypertensive).

Table B.9
Medcodes considered to identify emergency admissions.

Medcode Description

140 Cauterisation of internal nose
314 Diagnostic endoscopic examination and biopsy lesion larynx
1081 Herpes simplex disciform keratitis
1158 Other operation on cornea NOS
3488 Rebound mood swings
6269 Herpesviral infection of perianal skin and rectum
6885 Congenital aortic valve stenosis
7058 Admit diabetic emergency
7059 [V]Palliative care
7242 FESS/Post operative division of adhesions
7503 [D]Heart murmur, undiagnosed
8082 Other specified other repair of vagina
8265 Closed fracture lumbar vertebra, wedge
9409 [X]Cut by glass
11413 Other finger injuries NOS
11963 Repair of chest wall
12038 [SO]Leg region
12243 [SO]Tricuspid valve
13706 Stroke/transient ischaemic attack referral
22296 Trucut transperineal biopsy of prostate
22374 Fracture of carpal bone
23106 Serum alkaline phosphatase NO
25057 Seen by ear, nose and throat surgeon
29190 Sensorineural hear loss, unilateral unrestricted hear/contralat side
29988 Gittes endoscopic bladder neck suspension
30027 Fracture of malar and maxillary bones
32898 Peritonitis - tuberculous
35328 Pressure ulcer assessment
37543 Ecstasy poisoning
38379 Mechanical complication of tendon graft
43828 Removal of onychophosis
46824 Congenital malformation of aortic and mitral valves unspecified
48729 Acute duodenal ulcer with haemorrhage and perforation
66764 Closed skull vlt no intracranial injury
67786 Encephalitis due to meningococcus
95163 Labyrinthine round window fistula
99761 Acute lower respiratory tract infection
102555 Tiabendazole poisoning

Table C.10
ICD codes mapped to CCS code 108 (Congestive Heart Failure; Nonhypertensive).

ICD CCS Description

I0981 108 Rheumatic heart failure
I501 108 Left ventricular failure, unspecified
I5020 108 Unspecified systolic (congestive) heart failure
I5021 108 Acute systolic (congestive) heart failure
I5022 108 Chronic systolic (congestive) heart failure
I5023 108 Acute on chronic systolic (congestive) heart failure
I5030 108 Unspecified diastolic (congestive) heart failure
I5031 108 Acute diastolic (congestive) heart failure
I5032 108 Chronic diastolic (congestive) heart failure
I5033 108 Acute on chronic diastolic (congestive) heart failure
I5040 108 Unspecified combined systolic and diastolic (congestive) heart

failure
I5041 108 Acute combined systolic and diastolic (congestive) heart failure
I5042 108 Chronic combined systolic and diastolic heart failure

(continued on next page)
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Appendix D. Data: inclusion criteria and outcome

D.1. eNRBM

Tran et al. [40] used a mental health cohort extracted from a large regional hospital in Australia and collected between January 2009 and March
2012. Any patient who had at least one encounter with the hospital services, as well as one risk assessment for suicide, was included. Each
assessment was considered as a data point from which a prediction would be made. The sample size was 7, 578 patients (49.3% male, 48.7% under 35),
for a total of 17, 566 assessments. The future outcomes within 3 months following an assessment were stratified in 3 ordinal levels of risk: no-risk,
moderate-risk (non-fatal consequence), and high-risk (fatal consequence). The risk classes related to a diagnosis were decided in relation to the ICD-
10 codes. If there were more than one outcome class, the highest risk class was chosen. There were 86.9% no-risk outcomes, 8.2% moderate-risk and
4.9% high-risk. Since the completed suicides were rare, the class distributions were quite imbalanced.

D.2. Deep Patient

In this work, the authors used the Mount Sinai data warehouse. All patients with at least one diagnosed disease (expressed as numerical ICD-9)
between 1980 and 2014, inclusive, were considered in Miotto et al. [38]. This led to a dataset of about 1.2 million patients, with every patient having
an average of 88.9 records. All patients with at least one recorded ICD-9 code were split in three independent datasets for evaluation purposes (i.e.,
every patient appeared in only one dataset). First, the authors retained 81, 214 patients having at least one new ICD-9 diagnosis assigned in 2014 and
at least ten records before that. These patients composed validation (i.e., 5, 000 patients) and test (i.e., 76, 214 patients) sets for the supervised
evaluation (i.e., future disease prediction). In particular, all the diagnoses in 2014 were used to evaluate the predictions computed using the patient
data recorded before December 31, 2013. The requirement of having at least ten records per patient was set to ensure that each test case had some
minimum of clinical history that could lead to reasonable predictions. A random subset of 200, 000 different patients was sampled with at least five
records before the split-point (December 31, 2013) to use as training set for the disease prediction experiment. Finally, the authors created the
training set for the unsupervised feature learning algorithms using the remaining patients having at least five records by December 2013. This led to
a dataset composed of 704, 587 patients and 60, 238 clinical descriptors.

D.3. Deepr

Data in Nguyen et al. [20] were collected from a large private hospital chain in Australia from July 2011 to December 2015, using Australian
Coding Standards (ICD-10-AM for diagnoses and the Australian Classification of Health Interventions for procedures). Data consisted of 590, 546
records (around 300, 000 patients), each corresponding to an admission (characterised by an admission time and a discharge time). The outcome
consisted in unplanned readmission (corresponding to nearly 2% of the sample). The risk group was made of patients with at least one unplanned
readmission within 6 months (4, 993 patients), or within 3 months (3, 788 patients) from a discharge, regardless of the admitting diagnosis. For each
risk case, a control case was randomly picked from the remaining patients. For each risk/control group, 16.7% of patients were used for model tuning,
16.7% for testing, and the rest for training. A discharge (except for the last one in the risk groups) was randomly selected as the prediction point, from
which the future risk would be predicted.

D.4. RETAIN

In Choi et al. [45], the authors focused on heart failure prediction. The dataset consisted of EHR from Sutter Health, including patients from 50 to
80 years of age. Diagnosis, medication and procedure codes were extracted from the encounter records, medication orders, procedure orders and
problem lists, and then aggregated into existing medical groupers so as to reduce the dimensionality while preserving the clinical information of the
input variables. From the source dataset, 3, 884 cases were selected and approximately 10 controls were considered for each case correspondingly
(28, 903 controls). Medical codes were extracted in the 18-month window before the baseline. The patient cohort was divided into the training,
validation and test sets in a 0.75: 0.1: 0.15 ratio. The validation set was used to determine the values of the hyperparameters.

Appendix E. Hyperparameters

Tables E.11, E.14, E.16 show the different hyperparameters for each of the selected DL models together with the values identified using a tree-
based Bayesian Optimisation approach [69,70], as implemented in Scikit-Optimize [71]. Tables E.12 and E.13 show the corresponding

Table C.10 (continued)

ICD CCS Description

I5043 108 Acute on chronic combined systolic and diastolic heart failure
I50810 108 Right heart failure, unspecified
I50811 108 Acute right heart failure
I50812 108 Chronic right heart failure
I50813 108 Acute on chronic right heart failure
I50814 108 Right heart failure due to left heart failure
I5082 108 Biventricular heart failure
I5083 108 High output heart failure
I5084 108 End stage heart failure
I5089 108 Other heart failure
I509 108 Heart failure, unspecified
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Table E.11
Hyperparameters’ values for modular deep learning architectures.

Scenario

Model Hyperparameter DD DDM

eNRBM # hidden units 234 259
Learning rate 0.332 0.154

Nonnegativity cost 0.002 0.001
Smoothness cost 0.014 0.018

Epochs 38 20

Deep Patient # hidden units 181 159
# hidden layers 1 1
Learning rate 0.018 0.014
Noise level 0.004 0.13
Epochs 14 27

RBM # hidden units 214 154
Learning rate 0.451 0.332

Epochs 25 19

Table E.12
Hyperparameters’ values for modular deep learning architectures with emergency admission as the outcome.

Scenario

Model Hyperparameter DD DDM

eNRBM Fraction of features to consider 0.209 0.162
Minimum number of samples at a leaf node 1206 1363

Deep Patient Fraction of features to consider 0.185 0.477
Minimum number of samples at a leaf node 1136 1050

RBM Fraction of features to consider 0.367 0.440
Minimum number of samples at a leaf node 1225 1244

Table E.13
Hyperparameters’ values for modular deep learning architectures with heart failure as the outcome.

Scenario

Model Hyperparameter DD DDM

eNRBM Fraction of features to consider 0.416 0.397
Minimum number of samples at a leaf node 1153 4976

Deep Patient Fraction of features to consider 0.493 0.396
Minimum number of samples at a leaf node 1657 1285

RBM Fraction of features to consider 0.467 0.286
Minimum number of samples at a leaf node 2170 3605

Table E.14
Hyperparameters’ values for end-to-end deep learning architectures with emergency admission as the outcome.

Scenario

Model Hyperparameter DD DDM

Deepr Filters 45 31
Kernel size 5 3

Fully connected units - dynamic info 25 34
Fully connected units - static info 41 46

Fully connected units - after merging 8 6
Dropout - dynamic info 0.256 0.423
Dropout - static info 0.112 0.117

Dropout - after merging 0.114 0.439
Positive class weight 53.022 78.120

Learning rate 0.002 0.001

(continued on next page)
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hyperparameters for the random forest used as the top layer classifier in the modular DL architectures. Tables E.15 and E.17 show the corresponding
hyperparameters and the identified values for the baseline models.
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