
Generalized Reinforcement Learning for Gameplay

Francesco V. Lorenzo1,2, Sahar Asadi1, Alice Karnsund1, Tianze Wang2, Amir H. Payberah2

1 King Digital Entertainment, Sweden
2 KTH Royal Institute of Technology, Sweden

fvlo@kth.se, sahar.asadi@king.com, alice.karnsund@king.com, tianzew@kth.se, payberah@kth.se

Abstract

Reinforcement Learning (RL) is becoming ever more preva-
lent in game development. However, there exist many chal-
lenges to overcome in order to use RL to its full potential.
For example, an RL agent trained in one game environment
cannot easily generalize to replicate the same level of per-
formance in new game environments with different levels
and variations. This paper presents a generalized solution for
match-3 games, such as Candy Crush Friends Saga (CCFS).
Our solution is a two-step process, inspired by human be-
havior in approaching such games: (i) learning basic skills
while progressing through the levels, and (ii) combining and
reusing them in different game states. These skills are not
necessarily related to a level’s objective, but their execution
can indirectly help the player win the level. In this paper, we
propose various basic skills for CCFS with intrinsic rewards,
which do not necessarily have the same objective as the game
level. We show that an agent trained with intrinsic rewards
outperforms the agents that are trained with extrinsic rewards,
despite not knowing how to win a level. Moreover, we show
that by making a hybrid model and combining these basic
skills, the agent can significantly outperform the baselines,
winning more than twice as much as an agent trained with
extrinsic rewards.

Introduction
The use of Reinforcement Learning (RL) in game devel-
opment is becoming more prevalent. However, developing
RL agents for match-3 games, such as Candy Crush Friends
Saga (CCFS)1 is challenging due to the sparsity of rewards
and generalization problem. The former makes the learning
process slower, as showed in popular benchmarks of the Ar-
cade Learning Environment (ALE) (Bellemare et al. 2013),
such as Montezuma’s Revenge2, and the latter prevents an
RL agent trained on one environment to obtain the same
level of performance in new environments with different lev-
els and variations.

One way to tackle the sparsity reward problem is to re-
ward agents progressively as they get closer to achieving the
objective of a level (Karnsund 2019; Fischer 2019). How-
ever, this approach can lead to poor performance, where, in
order to win, agents need to prioritize some other sub-goals

1https://king.com/game/candycrushfriends
2https://en.wikipedia.org/wiki/Montezuma’s Revenge (video game)

before focusing on completing the objective of a level. To
address the challenge of generalization, Shin et al. (Shin et
al. 2020) propose to teach agents more versatile behaviors
that work across levels. To this end, they use common salient
play-styles recognized from human play, in which a set of
skills is utilized to reach the goal. Nevertheless, they manu-
ally define skills through heuristics, introducing human bias,
and limiting the capabilities of agents.

To overcome the sparsity of rewards and generalization
problems, we propose a solution inspired by human players’
behavior: new players that progress through a match-3 game
(e.g., CCFS) usually learn basic skills (e.g., creating special
candies) that are not necessarily related to the particular ob-
jective of the level they are playing. They then combine and
use these skills to complete tasks that can help them win new
levels. Following this observation, we introduce a two-step
solution:

1. First, we teach an agent a set of basic skills that enables
it to approach new levels without starting tabula rasa. To
this end, instead of rewarding the agent for achieving the
objective of a level (extrinsic reward), we teach them the
basic skills by relying on the concept of intrinsic moti-
vation, where an agent rewards itself for achieving goals
that are not directly related to the objective of a level (in-
trinsic reward). Singh et al. (Chentanez et al. 2004) and
J. Schmidhuber (Schmidhuber 2010) study the intrinsic
rewards in more details, while Zheng et al. (Zheng et al.
2020) propose a framework for learning intrinsic reward
functions across multiple lifetimes of experience.

2. Then, we combine these skills by proposing a hybrid ar-
chitecture, called Average Bagging (AB), that allows the
agent to select the most appropriate behavior according to
the board configuration at hand.

The contributions of this work are twofold: (i) we show
that intrinsic motivation represents a successful technique
to design reward functions to teach an agent a set of ba-
sic skills, and (ii) we present that the AB hybrid architec-
ture enables an agent to combine the basic skills to improve
the overall win-rate effectively. Through the experiments,
we discover a strong correlation between learning the basic
skills and the overall win rate. An agent trained with intrin-
sic rewards outperforms the baselines trained with extrin-
sic rewards, despite not knowing how to win a level. More-



Figure 1: Special candies.

Figure 2: Blockers.

over, we observe that the AB architecture significantly out-
performs the baselines, winning more than twice as much as
an agent trained with extrinsic rewards, and even surpasses
human performance on one of the test levels.

Preliminaries
In this section, we briefly present some basic concepts in
Candy Crush Friends Saga (CCFS) and describe the objec-
tives and environment of the game. CCFS is a match-3 game
where the game board is a grid of 9×9 tiles that contain Reg-
ular candies, Special candies, or Blockers. A basic action in
the game, called match, consists of swapping two candies on
the board to create a horizontal or vertical sequence of three
or more candies of the same color. The matched candies are
then eliminated from the board and replaced with new ones
above them, or with random candies if the action involves
the top row.

Candies and Blockers Regular candies are the most com-
mon type of candies that are present in the game. There are
seven types of Regular candies, each with a distinct color,
and only candies of the same colors can be matched together.
Special candies are created by matching at least four candies
of the same color, Regular or Special, in a sequence. There
are six different types of Special candies, each with a dif-
ferent effect (Figure 1)3. A Special candy can be used by
swapping it with another candy without necessarily match-
ing three or more candies of the same color together. Block-
ers (Figure 2) prevent a player from using the tile on which
they are located. Each Blocker has a fixed number of lay-
ers, and each layer is removed by making a match that in-
volves neighboring tiles. When the last layer is removed, the
Blocker is removed from the board, and the tile becomes
free.

Objective Each level in CCFS is associated with an ob-
jective. Players win a level if they reach its objective within
the level specific move limits. There are five different objec-
tives4 in CCFS. In this paper, we consider spread the jam
as the objective of the game, which requires players to cover
the entire board with jam. The jam is initially present in only
a few tiles and is spread by making matches involving tiles
that already covered by jam.

Environment The environment in our study is episodic,
where each episode corresponds to a full gameplay on a

3https://candycrushfriends.fandom.com/wiki/Special Candy
4https://candycrushfriends.fandom.com/wiki/Levels

level. The state space of the environment consists of a three-
dimensional representation of the board (i.e., 9 × 9 × 32).
The first two represent the game board grid, and the third
dimension is a one-hot encoding of any of the 32 different
elements (e.g., Candies, Blockers, etc.), each associated to
a binary layer (Gudmundsson et al. 2018). We define an ac-
tion as swapping any two cells on the game board, thus if we
uniquely index the edges between the tiles as the labels of
the actions, then for a 9× 9 board, the action space consists
of 144 actions (Gudmundsson et al. 2018). An agent policy
is then a mapping from 9× 9× 32 states to 144 actions. We
use DQN (Mnih et al. 2013) as the learning algorithm to im-
plement the policies, but any other RL algorithm could bee
used to implement our solution.

As the baseline reward, we consider Progressive Jam
(PJ) (Karnsund 2019), which is an extrinsic reward, i.e.,
it is given by the environment to agents. Whenever an agent
makes a move that spreads at least one more tile with jam,
it is rewarded with the entire amount J of tiles covered with
jam at that moment, normalized by the total number B of
tiles on the board (i.e., 9 × 9). The reward R for taking an
action at in a state st at time t is defined as:

R(st, at) =

{
J
B , δj > 0

0, δj = 0
(1)

where δj denotes the number of new tiles covered by jam
after the action.

Solution
In this section, we present the two-step process of training
an agent that includes (i) learning the basic skills, and (ii)
combining these skills to make a hybrid architecture.

Basic Skill Learning
We define three basics skills: creating Special candies, us-
ing Special candies, and removing Blockers. Special candies
allow spreading the jam more quickly since they affect mul-
tiple candies at the same time. On the other hand, Blockers
prevent a player from performing matches on the board, so
the jam cannot be spread on the tiles with Blockers. There-
fore, to win a level with spread the jam objective, all Block-
ers must be taken out of the board. However, these skills are
not directly related to achieving the goal of the level (i.e.,
covering the entire board with jam), so it is challenging to
learn them by giving rewards for spreading jam. Nonethe-
less, these skills enable the player to complete most levels.

The first part of our solution deals with exploiting intrin-
sic motivation, in the form of rewards independent of the
level objective, to find a set of functions that can drive an
agent towards learning these skills. In particular, we focus
on creating Special candies, using them, and getting rid of
Blockers. We select a set of functions to learn policies that
can retain good skills proficiency in unseen levels.

Creating Special Candies Special candies can be created
multiple times when playing a level; however, it is not pos-
sible to predict beforehand how many Special candies can
be created on a level. Consequently, normalizing the reward



to keep it constrained in a fixed range is not possible, and
therefore techniques like reward clipping (Mnih et al. 2015)
cannot be used. Moreover, some Special candies can be cre-
ated more often than others, so rewarding an agent when
it creates or uses a Special candy is not possible, as it will
learn to exploit the more frequent ones, which in turn have a
weaker effect.

An effective way to deal with features that have differ-
ent frequencies is to use the frequency itself to balance
the weight given to each feature and constrain the reward
scale. In (Lorenzo et al. 2020), the authors test two types
of frequency normalization for creating Special candies in
CCFS: Rarity of Events (RoE) and Balanced Rarity of Events
(BRoE), where RoE is adapted from a proven method pro-
posed in (Justesen et al. 2018), and BRoE improves RoE by
normalizing RoE (Lorenzo et al. 2020). Given the promising
results of BRoE, we adopt it as the candidate to learn how to
create Special candies.

BRoE rewards an agent if it explores new parts of the en-
vironment, giving smaller rewards to skills that have already
been observed. Normalization is performed by taking into
account the proportion of an event’s occurrence to all the
others, such that the weights given to each one will always
be in the range [0, 1]. The function is defined as follows:

r(st, at) =
∑
x∈X

c
(x)
t ×

[
1− µ

(x)
t∑

x′∈X µ
(x′)
t

]
(2)

where x is the skill (i.e., creating a specific Special candy),
µ
(x)
t is the mean episodic frequency of skill x at episode t,
c
(x)
t is the number of Special candies of type x created by at,

and the denominator of the second term (weight) is the sum
of all the frequencies of creation of all the Special candies.
This method does not reward agents for winning a level or
spreading jam, but it does so for using novel skills. We refer
to (Lorenzo et al. 2020) for more details on the benefits of
this method as opposed to RoE and the experimental results
on the environment.

Using Special Candies The difference between using and
creating Special candies is that the reward is given when a
Special candy is involved in a move on the board, rather than
when the player creates it. When combined with the previ-
ous skill, an agent will learn how to create Special candies
and make proper use of them by understanding their effects.
We define the Candy Usage (CU) reward, which is adapted
from BRoE to use Special candies. We skip the usage reward
akin to RoE after the preliminary tests highlighted the same
findings of (Lorenzo et al. 2020). In formulas:

r(st, at) =
∑
x∈X

u
(x)
t × (1− µ

(x)
t∑

x′∈X µ
(x′)
t

) (3)

where u(x)t is the number of Special candies of type x used
in the action at at time t. The same benefits highlighted for
candy creation are also valid here.

Removing Blockers There are different types of Blockers
in jam levels, each one with its characteristics. Defining a re-
ward function that can work across multiple levels and gen-
eralize to new ones is not trivial. We propose two approaches

to resolve it: damaging Blockers and freeing tiles. In both
cases, the agent will learn the mechanics behind how Block-
ers are stripped of layers and remove them entirely from the
board.

In damaging Blockers, we reward an agent whenever any
Blocker loses a layer without distinguishing between dif-
ferent Blockers types. To this end, we define the Damag-
ing Blockers (DB) reward function that rewards an agent for
each Blocker x it damages, normalized by the initial number
x0 of Blockers of that type. In formulas:

r(st, at) =
∑
x∈X

d
(x)
t

x0
(4)

where X is the set of all Blockers and d(x)t is the number
of Blockers of type x damaged at time t. For each Blocker
type, the agent will accumulate a reward that adds up to 1
if it completely eliminates it. However, the total reward ac-
cumulated in an episode is equal to the number of different
Blocker types at that level.

In freeing tiles, we define Progressive Tiles (PT) reward
function that rewards an agent when it completely removes
all the Blockers from a tile, making it free. Compared to the
DB reward function, this one is more sparse because it only
rewards when the last layer is removed. However, it intro-
duces less bias as the agent is only rewarded for reaching
the end goal, which is freeing up the board from Blockers.
The PT function rewards an agent more when it gets closer
to completely removing all Blockers, so it will be driven to
get rid of the few remaining ones. This is done by rewarding
the agent with the total number of free tiles F when a new
one is freed every time. In formulas:

r(st, at) =

{
F
B , δf > 0

0, δf = 0
(5)

where δf is the number of new free tiles. The function is
normalized by the total board size B, so the immediate re-
ward for an action is at most 1, while the accumulated re-
ward throughout an episode is unbounded.

Hybrid Architecture
Once a set of basic skills is available in the form of different
policies, the question is how to put them together to improve
the general win-rate of an agent. To answer it, we propose
Average Bagging (AB), an ensemble model to use multiple
policies together to decrease variance (Breiman 1996). As
explained in the previous section, there are 144 actions in the
environment that can be selected by the policies. The bag-
ging is performed by selecting an action with the highest av-
erage Q-value (that shows how good an action is) among all
the policies. An overview of the architecture is highlighted
in Figure 3 (The normalization and summation used in the
figure are explained in the following sections). We propose
two extensions to improve the performances: normalization
and summation.

Normalization When dealing with different reward
scales, working directly with Q-values can be problem-
atic, as a policy trained with higher rewards might over-
shadow the others. Consequently, the effect of averaging



Figure 3: Action selection in AB. Two policies are displayed in the
example. The first step is normalization of the Q-values for each
policy. Then, the Q-value of the first policy is summed to the corre-
sponding one of the second policy. Finally, the argmax operation
is performed to select the action at with the highest sum.

the Q-values and selecting an action would be the same
as just selecting an action directly from that policy. To
address the issue, we propose to use L2-normalization to
bring all the Q-values in the range [0, 1]. Given a vec-
tor q = [q1, q2, . . . , q144], representing the Q-values of a
given policy, the output of this normalization step is a vector
y = [y1, y2, . . . , y144] of the same dimension:

yn =
qn√
qT · q

(6)

Summation The actual implementation of the architecture
uses a trick to speed-up training, inspired by the work of
(Seijen et al. 2017). Instead of performing the average over
the Q-values of different policies, we sum their Q-values and
then pick the action associated with the one with the highest
total value. The result obtained is the same, thanks to a sim-
ple mathematical equivalence. The average is scaled by the
number of points on which it is performed, which is equal
to the number of different policies, denoted by m. All the
144 components of the final vector are scaled by m, which
does not change the maximum value index selected by the
argmax operation. However, summing instead of averaging
is computationally faster in practice, so it is the preferred
option. As a result, the n-th component tn of the resulting
vector t = [t1, t2, . . . , t144] is computed as follows:

tn =

m∑
i=1

y(i)n (7)

where y(i)n is the normalized Q-value of action n taken by
policy i, and the action selected remains the same, that is is:

an = argmax
n

tn (8)

Evaluation
We follow the best practices from the literature to evaluate
our models (Cobbe et al. 2018). We compare our models
with three different baselines in the experiments:

1. The agent plays randomly, with no learning involved.
2. The agent is trained using the PJ extrinsic reward func-

tion, and represents the performances based on the level
objective (i.e., covering the board with jam)

3. The available human data on those levels, from which we
infer the human win rate.

In the basic skill learning experiments, we use only the
first two baselines, but we consider all three baseline mod-
els in the hybrid architecture experiments. We define trial
as a single run of a model (i.e., an agent’s policy). Given
the high stochasticity in the game and the randomness in-
volved when running a model, we perform multiple trials to
account for the results’ variance. We train each model for
80 000 episodes, where each episode is one full play on a
level, either finishing with a win or a loss. For each model,
we run five parallel trials with different initialized values;
therefore, we have five trained versions of the same agent at
the end of the training.

We test a trained model’s performance both on the lev-
els used during training and the test set. Every inference run
consists of running the trained model for 10 000 episodes.
Every episode is associated with a unique game seed, differ-
ent from the ones used during training. Consequently, when
the model is tested on the same levels of the training set,
it will never face the same initial board configuration and
random behavior seen during training. We perform one in-
ference run for each trial of a given model, so we end up
with five results for the same agent at the end of testing.
These final results are averaged to decrease the variance en-
countered during training, and we report the aggregated val-
ues in this section. We always measure the inference perfor-
mance through zero-shot evaluation, meaning that we leave
all models’ weights untouched after training and avoid fine-
tuning them on the test levels.

The DQN hyperparameters we used in our implementa-
tion are the same among all the experiments, and they are
mostly taken from the DQN paper (Mnih et al. 2015). Other
hyperparameters, such as the discount factor, the target net-
work update, and the prediction network update, are instead
adopted from (Karnsund 2019) that performs hyperparame-
ter search on the CCFS environment.

Special Candies We use three metrics to compare rewards
functions to create and use Special candies: (i) the creation
probability that measures the probability that an agent’s ac-
tion creates a Special candy of a given type, (ii) the usage
probability that measures the probability that an agent’s ac-
tion uses at least one Special candy of a given type, and (iii)
the match-3 probability that measures the probability that an
agent’s action does not create any Special candies, which is
something that we want to minimize. These measures are
averaged over the last 100 episodes through a running mean.
We also measure the agent’s win rate to understand the rela-
tionship between the considered skills and the ability to win
the levels. We scale the win rate value for legal reasons, and
the same applies to all win rates reported in the results.

For the policies trained to create and use Special candies,
we focus on different levels with different possibilities of
making them. In particular, we use levels 61, 82, and 151
in the training set, and levels 62, 147, and 163 in the test set
(Figure 4). We train the two reward functions (i.e., BRoE and
CU) on each level from the training set, separately. Then, we
test them on both the same levels of the training set (using



(a) (b) (c) (d)

Figure 4: (a) and (b) are the training levels 82 and 151, respectively, and (c) and (d) are the testing levels 147 and 163, respectively.

Table 1: Aggregated results in the training and test levels. Random policy and PJ baselines are included.

Reward Win Rate Match-3 (%) Usage (%) Creation (%)

Train Test Train Test Train Test Train Test

Random 4.03 1.77 90.17 89.30 7.03 7.32 1.93 2.10

PJ 7.56 3.20 84.97 83.16 8.29 8.80 1.71 1.90

CU 6.54 3.44 81.30 79.89 10.40 10.83 1.70 1.90

BRoE 7.54 4.03 48.24 62.89 11.93 10.91 9.06 6.71

different initial seeds) and on the test set. Table 1 shows the
aggregated results for all the Special candies, both on the
training and test set.

The CU function to use Special candies has a higher us-
age probability than the baselines, and the BRoE function to
create Special candies has a higher creation probability than
the baselines, considering both the training and test levels.
In particular, the latter also shows a lower match-3 percent-
age than all the other models. Overall, BRoE qualifies as
the best model under all performance metrics, creating up to
three times as many Special candies as the other models, us-
ing more of them, and even having a higher win rate than PJ
on the test levels. The most interesting result is the match-3
percentage of this model, which gets as low as 48% on the
training levels. This means that, on average, an action ev-
ery two creates a Special candy. Moreover, compared to an
agent trained using PJ extrinsic rewards with the win rate of
3.2, the win rate on the test levels is improved to 4.03.

Blockers The primary metric we measure here is the
clearing percentage that represents the percentage of re-
moved Blockers in one episode compared to the initial num-
ber of available ones for each type of Blocker on a given
level. We consider the average of this metric over the last
100 episodes. Although our removal blockers policies (i.e.,
DB and PT reward functions) are defined independent of the
goal of the given levels, we also track the win rate that is the
ratio of the total number of wins during the inference run
and the total number of episodes played, which is 10 000.

We select the training levels such that they cover all the
existing types of Blockers for jam spreading levels, while
their board structures differ from one another. In particular,
we consider three levels 65, 82, and 103 in the training set,

and three different levels 136, 147, and 163 in the test data
set (Figure 4). The DB and PT reward functions are trained
on each level from the training set, separately. For testing,
we first test the trained agents on the same training set levels,
using different seeds, and then we test them on the levels
from the test set. We aggregate the results of the five trials
for each agent. Table 2 shows the win rate and the clearing
percentage of all Blockers together.

Both DB and PT reward functions exhibit a higher clear-
ing percentage than the baselines on the training and test
levels. This confirms that the reward functions can teach an
agent the desired skill. We also notice that PJ extrinsic re-
ward function fails on more challenging levels due to its in-
ability to deal with features like Blockers. An agent trained
with the PT reward function, which is never rewarded for
spreading jam or winning a level, achieves a win rate about
twice as high as the one of PJ, it manages to improve the
average win rate from 0.35 to 0.5 on the test levels and from
1.14 to 2.76 on the training levels. This is an interesting find-
ing that shows the correlation between skills and game ob-
jectives. Moreover, it indicates that this skill is an essential
component to use in hybrid architectures.

Hybrid Architecture The overall purpose of making the
AB hybrid architecture is to win the game; thus, we mea-
sure the win rate. To build the AB model, we do not train
the whole model on different levels; instead, we combine
the basic skills of agents trained on level 82 to access both
skills related to Blockers and Special candies. In particular,
we first concentrate on level 82 to find two combinations
that work well enough, compared to the baselines. We then
test these candidate models on all the other levels where the
sub-policies (the basic skills) have not been trained and as-



Table 2: Aggregated results in the training and test levels. Random
policy and PJ baselines are included.

Reward Win rate Clearing (%)

Train Test Train Test

Random 0.21 0.05 54.81 63.63

PJ 1.14 0.35 65.08 71.18

PT 2.76 0.50 78.92 73.29

DB 1.95 0.34 75.82 71.35

Table 3: Win rate of the two best performing combinations of AB.
The sub-policies are trained on level 82. Results are grouped by
whether L2-normalization was used (Left) or not (Right).

Level Combination Win Rate

L2 None

82 PJ+PT+BRoE 7.02 7.40

PJ+PT+DB+BRoE 7.33 8.08

62 PJ+BRoE 16.44 16.25

PJ+BRoE+CU 17.37 15.83

136 PJ+PT+BRoE 3.84 4.12

PJ+PT+DB+BRoE 3.51 4.41

147 PJ+PT+BRoE 2.39 2.65

PJ+PT+DB+BRoE 2.45 3.01

163 PJ+PT+BRoE 0.1 0.12

PJ+PT+DB+BRoE 0.09 0.14

sess the architecture’s overall generalization capability. We
average the results over the five training trials and report the
performance of the two best performing combinations in Ta-
ble 3. Table 4 presents the win rate of the best AB combi-
nation on each level, compared to the performance of all the
baselines.

The majority of AB combinations, including those using
fewer sub-policies, always have a higher win rate than both
the agent trained with PJ extrinsic rewards and the one play-
ing randomly. Moreover, the best models also have a signif-
icantly higher win rate than the best performing sub-policy
used in the combination, meaning that the bagging technique
gives the expected improvements. The effect of normaliza-
tion seems to be strictly dependant on the skills used in the
combination. For instance, including CU works better with
L2-normalization, whereas models that do not use that skill
perform better without normalization. That can be because
CU overshadows the other sub-policies that have a better
win rate due to a higher reward scale and thus only works
with normalization. Given these results, we cannot claim
that L2-normalization brings any significant improvements
to tested combinations. However, if we extend this architec-
ture with more models, which could present win rates on
a different scale, using L2-normalization might be a safer

Table 4: Win rate of the best AB combination measured on both
train and test levels. All baselines are included.

Level Humans AB PJ Random

82 9.60 8.08 1.33 0.13
62 21.92 17.37 10.21 5.22
136 3.10 4.41 0.81 0.08
147 6.90 3.01 0.55 0.08
163 1.03 0.14 0.01 0

choice.
Finally, it is worth noticing that the best performing model

uses only a subset of all the skills. In particular, PJ, PT, and
BRoE are the three fundamental skills that significantly im-
prove the win rate. DB seems to provide a small benefit to
the hybrid, bringing its performance closer to humans. On
the other hand, adding CU to the hybrid instead worsens the
performance, proving that using all the sub-policies together
does not seem to be the best choice.

Related Work
The generalization ability of RL agents has not always been
the primary focus of research in the field. The most used
benchmarks, like the ALE (Bellemare et al. 2013), report
the performances of an agent over the same environment
where it is trained, thus not making a clear distinction be-
tween training, validation, and testing. This trend is well an-
alyzed by Cobbe et al. (Cobbe et al. 2018), who propose a
new benchmark to measure the RL generalization. In partic-
ular, they create an environment, called CoinRun, where an
agent can be trained over some levels and tested on others
by measuring the zero-shot performance. Separating train-
ing and testing levels enables us to assess how well an agent
is generalized. The authors also show that more training set
levels lead to better performances in the test set.

Florensa et al. (Florensa et al. 2017) propose a hierarchi-
cal model to tackle environments with sparse rewards. They
first let different agents learn different skills, unrelated to the
final goal, in a pre-training environment with proxy rewards.
Then, they train one high-level policy for the downstream
task to solve, which picks one of the pre-trained policies and
sticks to it for τ steps. The weights of the high-level policy
can be jointly optimized with those of the lower-level ones.

Simpkins et al. (Simpkins et al. 2019) try to solve the
problem of reusing RL modules with different reward scales
without having to sum them linearly. They propose an ar-
chitecture where an arbitrator chooses one of the modules
at each timestep and executes the action proposed by that
module. This allows being scale-invariant, as each module
can have Q-values of any magnitude without affecting the
arbitrator’s choice since they are not summed in any way.

A straightforward way to incorporate relevant events into
the reward function is through a linear approach. Lample et
al. (Lample et al. 2017) make use of this idea to train an
agent in the VizDoom environment, where additional posi-
tive rewards are given for events such as picking up ammu-
nition or walking on the map. In contrast, negative rewards
are given for events like wasting ammunition. These rewards
are summed to the one given by the environment, represent-



ing the simplest linear approach to combine intrinsic and ex-
trinsic rewards. A more complex architecture is proposed by
Van Seijen et al. (Seijen et al. 2017) that consists of decom-
posing a reward function in multiple ones, learning a value
function for each reward stream.

An interesting intrinsic-only method is proposed by
Justensen et al. (Justesen et al. 2018), where rewards are
given using an automated heuristic. An expert first defines
a series of relevant events for the task at hand, and the agent
is rewarded for achieving those events: the more the agent
achieves them, the less reward it will gain. The idea is that
this temporal frequency heuristic will allow the agent to ex-
plore more complex behaviors and learn to achieve them.
This approach can be adopted to learn skills that are difficult
to define with a manual reward without introducing human
bias.

Conclusions
We proposed one approach to develop an RL agent to
gameplay Candy Crush Friends Saga (CCFS). The previous
works show that an agent fails to generalize over the test
levels if it is trained using extrinsic rewards. We thus tackle
the generalization problem by drawing inspiration from hu-
man behaviors. Human players learn strategies and patterns
as they progress through the game and combine and reuse
them when they are in a suitable board state. These strate-
gies are not required to be explicitly related to the objective
of a level, but their execution can indirectly help the player
towards achieving it.

We identified a set of basic skills that a player should ex-
ecute to improve its win rate. In particular, we focus on cre-
ating Special candies (BRoE), using Special candies (CU),
and two removing Blockers skills: damaging Blockers (DB)
and progressive tiles (PT). We design a set of candidate in-
trinsic reward functions for learning the defined skills and
train one agent for each function. After obtaining a suitable
set of policies, we designed an architecture that allows a new
agent to use the learned skills. Through the Average Bagging
(AB) hybrid architecture, we combine the sub-policies’ val-
ues associated with each basic skill and pick the action with
the highest average value.

Through the experiments, we show that BRoE and CU
improve the creation and usage of Special candies, respec-
tively. We also observe that BRoE outperforms all the base-
line policies under all performance metrics, creating up to
three times as many Special candies as the other models and
using more of Special candies. BRoE also shows a higher
win rate than Progressive Jam (PJ) extrinsic reward on the
test levels. Moreover, DB and PT reward functions exhibit a
higher clearing percentage than the baselines on the training
and test levels. Finally, we observe that the AB architecture
that combines different basic skills outperforms the base-
lines, winning more than twice as much as an agent trained
with PJ extrinsic reward and surpassing human performance
on one test level.

Given the benefits of AB, a promising direction for future
work would be to extend the architecture by making use of a
weighted average, and learning the set of weights. The aim

is to find a set that works across levels and improve gener-
alization on the test levels even more, hopefully closing the
gap with human performance.

References
Bellemare et al., M. 2013. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelli-
gence Research 47: 253–279.

Breiman, L. 1996. Bagging predictors. Machine learning 24(2):
123–140.

Chentanez et al., N. 2004. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems 17:
1281–1288.

Cobbe et al., K. 2018. Quantifying generalization in reinforcement
learning. arXiv preprint arXiv:1812.02341 .

Fischer, M. 2019. Using Reinforcement Learning for Games with
Nondeterministic State Transitions. Master’s thesis, Linköping
University.

Florensa et al., C. 2017. Stochastic neural networks for hierarchical
reinforcement learning. arXiv preprint arXiv:1704.03012 .

Gudmundsson et al., S. 2018. Human-like playtesting with deep
learning. In Conference on Computational Intelligence and Games
(CIG), 1–8. IEEE.

Justesen et al., N. 2018. Automated curriculum learning by reward-
ing temporally rare events. In 2018 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 1–8. IEEE.

Karnsund, A. 2019. DQN Tackling the Game of Candy Crush
Friends Saga: A Reinforcement Learning Approach. Master’s the-
sis, KTH Royal Institute of Technology.

Lample et al., G. 2017. Playing FPS games with deep reinforce-
ment learning. In Thirty-First AAAI Conference on Artificial Intel-
ligence.

Lorenzo et al., F. 2020. Use All Your Skills, Not Only The Most
Popular Ones. In 2020 IEEE Conference on Games (CoG), 682–
685. IEEE.

Mnih et al., V. 2013. Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602 .

Mnih et al., V. 2015. Human-level control through deep reinforce-
ment learning. Nature 518(7540): 529–533.

Schmidhuber, J. 2010. Formal theory of creativity, fun, and intrin-
sic motivation (1990–2010). IEEE Transactions on Autonomous
Mental Development 2(3): 230–247.

Seijen et al., H. 2017. Hybrid reward architecture for reinforcement
learning. In Advances in Neural Information Processing Systems,
5392–5402.

Shin et al., Y. 2020. Playtesting in Match 3 Game Using Strategic
Plays via Reinforcement Learning. IEEE Access 8: 51593–51600.

Simpkins et al., C. 2019. Composable modular reinforcement
learning. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, 4975–4982.

Zheng et al., Z. 2020. What Can Learned Intrinsic Rewards Cap-
ture? In International Conference on Machine Learning, 11436–
11446. PMLR.


