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Abstract— In this paper, we investigate the topology conver-
gence problem for the gossip-based Gradient overlay network.
In an overlay network where each node has a local utility
value, a Gradient overlay network is characterized by the
properties that each node has a set of neighbors with the
same utility value (a similar view) and a set of neighbors
containing higher utility values (gradient neighbor set), such
that paths of increasing utilities emerge in the network topology.
The Gradient overlay network is built using gossiping and a
preference function that samples from nodes using a uniform
random peer sampling service. We analyze it using tools from
matrix analysis, and we prove both the necessary and sufficient
conditions for convergence to a complete gradient structure, as
well as estimating the convergence time and providing bounds
on worst-case convergence time. Finally, we show in simulations
the potential of the Gradient overlay, by building a more
efficient live-streaming peer-to-peer (P2P) system than one built
using uniform random peer sampling.

Keywords: Overlay networks; topology convergence; gos-
siping; gradient topology

I. INTRODUCTION

Recent years have witnessed growing interest in using ran-
domized gossiping algorithms to build distributed systems, in
particular in the areas of overlay networks, sensor networks
and cloud computing storage services [1], [2]. Gossip-based,
or pair-wise exchange, algorithms have primarily been used
to implement aggregation algorithms, information dissemi-
nation, peer sampling (the uniform random sampling of a
node from the set of all nodes in a P2P system), and to
construct overlay network topologies. Much of the existing
analysis of gossip-based algorithms has focused on the
convergence properties of aggregation algorithms and peer
sampling services, for both fixed topologies [3] and regular
graphs [4], [5].

However, research in gossiping has also focused on using
the Preferential Connectivity Model [6] to construct overlay
network topologies, where nodes connected initially in a
random graph use a preferential connection function to break
the symmetry of the random graph and build a topology that
contains useful global information. Barabasi first described
how a preferential attachment function in a growing network
can build a scale-free network topology from a random graph
[7]. In particular, he showed how the power-law distribution
of links in the the World Wide Web can emerge when arriving
nodes preferentially attach to existing nodes with higher edge
degree. Information about the structure of the Web’s topology
is currently used, among other things, to build more efficient
search algorithms. Barabasi’s preferential attachment func-
tions are based on global state (the in-degree of nodes). How-

ever, in overlay networks, nodes have only a relatively small
partial view of the system, so preference functions are based
only on local state and the state of the node’s neighbors.
Examples of existing overlay networks that construct their
topologies using gossiping and preference functions include
Spotify, that preferentially connects nodes with similar music
play-lists [8], Sepidar, that preferentially connects P2P live-
streaming nodes with similar upload bandwidth capacity [9],
and T-Man, a framework that provides a generic preference
function for building such overlays [10].

To the best of our knowledge, there has been no analysis
of the convergence properties of such information-carrying
gossip-generated topologies built using preference functions.
These systems, however, do not require the growth of a net-
work to construct a new topology, as systems are constantly
updated using a peer sampling service. In this paper, we
introduce an analysis of the convergence properties for the
Gradient overlay network. The Gradient topology belongs
to this class of gossip-generated overlay networks that are
built from a random overlay by symmetry breaking using a
preference function. Formally, a Gradient topology is defined
as an overlay network where, for any two nodes p and q that
have local utility values U(p) and U(q), if U(p) ≥ U(q)
then dist(p, r) ≤ dist(q, r), where r is a (or the) node with
highest utility in the system and dist(x, y) is the shortest
path length between nodes x and y [11]. In the Gradient
overlay, nodes have two preference functions that build two
sets of neighbors: a similar view and a gradient view. For
the similar view, nodes prefer neighbors with closer utility
values, while for the gradient view, nodes prefer nodes with
higher, but closer, utility values. Together these preference
functions build a topology where gradient paths of increasing
utilities emerge in the system [12], see figure 1.

Our analysis of the Gradient overlay, involves proving
that the preference functions cause the system topology to
converge to a gradient structure. We also establish bounds
on the worst-case convergence rate for a given initial graph.
Finally, we show in simulations how the Gradient structure
is used to build a more efficient live-streaming system than
one built using uniform random peer sampling.

II. PROBLEM SETUP

Consider a network whose topology can be described
by a directed graph G(N , E). Each node in the network
is represented by a vertex in the graph, and each link is
represented by a directed edge (see figure 1(a)). We denote
the vertex set by N = {1, . . . , N}, where each node i is
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(b) The graph after converging to a gradient topology.

Fig. 1. The network is described as a directed graph. The nodes are labeled with their respective utility value, and the edges from the similar neighbor
set are shown. Solid edges are used between nodes with equal utility value, and dashed edges between nodes with different utility value.

given a utility value U(i) ∈ Λ from a given utility value set
Λ = {1, . . . , n}.

Let Λu , {i| U(i) = u} be the set consisting of nodes
with utility u, u = 1, . . . , n. Suppose |Λu| = mu, where | · |
represent the number of elements for a finite set. The utility
distance function is denoted as d(i, j) , |U(i)− U(j)|.

The neighbor set Ni(t) of node i at time t consists of
two parts, the similar view Ns

i (t) and the random view
Nr

i (t). Nodes in the similar view are supposed to be the
neighbors whose utility values are close to U(i), while nodes
in the random view are a random sample of the nodes in the
network.
Assumption 1: For every node i ∈ N , if i ∈ Λu then i has
exactly mu similar neighbors, excluding itself.

Ns
i (t) = {i1, i2, · · · , imu

}

III. TOPOLOGY DYNAMICS

For any given initial graph, consider the following algo-
rithm for the topology dynamics:
Algorithm 1. Let t = 1.

Step 1. At time t, node i chooses a random neighbor j
from node set N with equal probability, i.e.,

P{Nr
i (t) = {j}, j ∈ N} = p,

where p satisfies 0 < Np < 1. Notice that the random
neighbor set is empty with probability 1−Np, in which
case we skip Step 2.
Step 2. If the random node j is an improvement of the
similar neighbor set, then we replace the worst node
in Ns

i with j. Thus, if U(j) ≥ U(i) and d(i, j) ≤
maxk∈Ni

d(i, k), then add j to Ns
i and remove u =

arg maxk∈Ns
i
d(i, k) from Ns

i .
Step 3. Let t = t+ 1, then go to Step 1.

This paper considers the problem of whether the system
topology will converge to a gradient structure with the
proposed algorithm, and the convergence rate for a given
initial graph.

For every node i ∈ N , we define

X
(i)
t ,

∑
j∈N s

i (t)

sgn(d(i, j)),

where

sgn(v) =

{
0, if v = 0

1, otherwise
.

Thus, X(i)
t counts the number of nodes in i’s similar neigh-

bor set with a different utility value than U(i).
Let G(t) be the graphs generated by Algorithm 1. Then we

give the definition of gradient convergence as follows (see
also figure 1).

Definition 3.1: G(t) is said to converge to a gradient
topology if limt→∞X

(i)
t = 1 for i ∈ N , and with U(j) =

U(i) + 1, where j is the only node with different utility in
limt→∞Ns

i (t), for i ∈ N , U(i) < n.

IV. CONVERGENCE ANALYSIS

In this section, we propose a gradient convergence analy-
sis, where we focus on the first condition limt→∞X

(i)
t = 1.

The analysis can be extended to handle the second condition,
with similar results. Since each node updates its neighbor
set independently, the analysis on X

(i)
t can be carried out

respectively. Therefore, we let Xt represents X(i)
t , i ∈ N ,

in the following discussions to simplify the notations.
Denote m = maxu{mu}. Then it is not hard to see

that X0 = m is the worst initial condition. In practice, the
sampling probability p in Algorithm 1 can be time-varying,
i.e., p = pt, t = 1, 2, . . . . Furthermore, for all t = 1, 2, . . . ,
one has

P {Xt+1 = k|Xt = k + 1} = kpt (1)

where kpt is the probability of sampling one of the k
remaining nodes with the same utility value.



A. Almost Sure Convergence

We propose a both necessary and sufficient condition on
the probabilities pt for the convergence of Algorithm 1.

Theorem 4.1: The graph generated by Algorithm 1 con-
verges to a gradient topology (Xt = 1) with probability 1 if
and only if

lim
T→∞

T∏
t=0

(1− pt) = 0. (2)

Before proving Theorem 4.1, let us take a closer look at
Algorithm 1, and notice especially that the stochastic process
(1) for Xt has the Markov property, hence we can describe
it as a Markov chain.

Xt = m Xt = m&1 … Xt = 2 Xt = 1

(m&1)pt (m&2)pt 2pt pt

1 & (m&1)pt 1 & (m&2)pt 1 & pt 1

Let π(t) denote the (row vector) probability distribution
for the states Xt, i.e.,

πi(t) = P {Xt = i} . (3)

The evolution of π(t) can be written in matrix form as

π(t+ 1) = π(t)Pt, (4)

where Pt is the transition matrix at time t,

Pt =



1−(m−1)pt (m−1)pt 0 ··· 0 0

0 1−(m−2)pt (m−2)pt ··· 0 0

0 0 1−(m−3)pt ··· 0 0

...
...

...
. . . . . . 0

0 0 0 ··· 1−pt pt

0 0 0 ··· 0 1


.

Since Pt is a triangular matrix, the eigenvalues are given by
the diagonal elements, i.e., the eigenvalues of Pt are λi(t) =
1 − (m − i)pt, i = 1, . . . ,m. Notice that λm(t) = 1, and
all other eigenvalues are strictly less than one. Furthermore,
all eigenvalues are distinct, hence the eigenvectors form a
basis for Rm. In the following lemma, we characterize the
eigenvectors.

Lemma 4.1: The eigenvector ξi(t) corresponding to
eigenvalue λi(t) is independent of pt 6= 0, i = 1, . . . ,m.

Proof: The (left-)eigenvectors of Pt satisfy λi(t)ξi(t) =
ξi(t)Pt. Let ξij(t) denote the j:th component of ξi(t), then

(1− (m− i)pt) ξi1(t) = (1− (m− 1)pt) ξ
i
1(t)

(1− (m− i)pt) ξij(t) = (1− (m− j)pt) ξij(t) +

(m− j + 1)ptξ
i
j−1(t) j = 2, . . . ,m

⇓{
(i− 1)ξi1(t) = 0

(i− j)ξij(t) = (m− j + 1)ξij−1(t) j = 2, . . . ,m

⇓{
ξij(t) = 0 if j < i

ξij(t)
i−j

m−j+1 = ξij−1(t) if j > i
(5)

while ξii(t) can be chosen as an arbitrary non-zero value.
Lemma 4.1 implies especially that all Pt are simultane-

ously diagonalizable, hence we can drop the parameter t from
ξi.

Let us now return to the initial probability distribution
π(0), and let us express it in the eigenvector basis as

π(0) =

m∑
i=1

αiξ
i, (6)

for some real numbers αi.
Lemma 4.2: αmξ

m = em, where ei is the Cartesian unit
vector [0, . . . , 0, 1, 0, . . . , 0]T with 1 in position i.

Proof: Let us consider ξi1 for i = 1, . . . ,m − 1. By
equation (5),

ξi1 =

m∑
j=1

ξij =

m∑
j=i

ξij =

m−i∑
j=0

ξii+j

We will show by induction that
k∑

j=0

ξii+j =
m− i− k
m− i

ξii+k. (7)

The case when k = 0 is clearly true, thus, assume (7) holds
for k and consider k + 1,
k+1∑
j=0

ξii+j =

k∑
j=0

ξii+j + ξii+k+1 =
m− i− k
m− i

ξii+k + ξii+k+1

=
m− i− k
m− i

−(k + 1)

m− i− k
ξii+k+1 + ξii+k+1

=
m− i− (k + 1)

m− i
ξii+k+1

Using (7) implies that ξi1 = 0, i = 1, . . . ,m−1, and further,
π(0)1 = αmξ

m1. Since π(0) is a probability distribution,
we know that π(0)1 = 1, but (5) tells us that only the last
component of ξm is non-zero, hence the lemma follows.
We are now ready to prove the main theorem.

Proof: (Theorem 4.1) The convergence condition is
equivalent to limT→∞ π(T ) = em. Using (4) and (6) gives
us

π(T ) = π(0)

T−1∏
t=0

Pt =

m∑
i=1

αiξ
i
T−1∏
t=0

Pt =

m∑
i=1

αiξ
i
T−1∏
t=0

λi(t) =

m−1∑
i=1

αiξ
i
T−1∏
t=0

λi(t) + em (8)

Consider the limit limT→∞ π(T ),

lim
T→∞

|π(T )− em| = lim
T→∞

∣∣∣∣∣
m−1∑
i=1

αiξ
i
T−1∏
t=0

λi(t)

∣∣∣∣∣ ≤
m−1∑
i=1

∣∣αiξ
i
∣∣ · lim

T→∞

T−1∏
t=0

(1− pt).

Clearly, this converges to zero if limT→∞
∏T

t=0(1−pt) = 0.
Also, the set of initial probability distributions spawns Rm,

thus, there exists an initial probability distribution π(0) such
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Fig. 2. Convergence rate simulations. The neighbor set measurement Xt, for each node in the network, is shown as a function of the iteration number t.

that αm−1 6= 0. Assume limT→∞
∏T

t=0(1 − pt) = c > 0
(the limit exists, since it is a monotone bounded sequence),
then

lim
T→∞

|π(T )− em| =∣∣∣∣∣
m−2∑
i=1

αiξ
i

(
lim

T→∞

T−1∏
t=0

λi(t)

)
+ cαm−1ξ

m−1

∣∣∣∣∣ (9)

Since the eigenvectors are linearly independent, the RHS of
(9) is non-zero. Thus, we have proved the theorem.

Corollary 4.1: The graph generated by Algorithm 1 con-
verges to a gradient topology with probability 1 if and only
if

lim
T→∞

T∑
t=0

pt =∞. (10)

Proof: This follows from Theorem 4.1, and the relation

lim
T→∞

T∏
t=0

(1− pt) = 0⇔ lim
T→∞

T∑
t=0

pt =∞

for 0 < pt < 1.

B. Convergence Rate Estimation

In this subsection, we investigate the convergence rate of
Xt, with a constant sampling probability pt = p. Define

Ti = inf
t
{Xt = 1 | X0 = i}

as the first time when Xt reaches 1, when starting with
X0 = i. Further, let Mi = E[Ti] denote the expected time
of convergence. Clearly M1 = 0, and for i = 2, . . . ,m we
have

Mi = 1 + P{Xt+1 = i− 1 | Xt = i} ·Mi−1

+ P{Xt+1 = i | Xt = i} ·Mi

= 1 + (i− 1)pMi−1 + (1− (i− 1)p)Mi

⇒

Mi =
1 + (i− 1)pMi−1

(i− 1)p
=

1

(i− 1)p
+Mi−1

Continuing by induction yields

Mi =
1

p

i−1∑
n=1

1

n
.

The worst initial case is when X0 = m, where the
expected convergence time is

Mm =
1

p

m−1∑
n=1

1

n
≤ 1 + ln(m− 1)

p
. (11)

Remark 4.1: Notice that Mm is the expected time for an
individual node to converge, and not the expected time for all
the nodes in the network to converge to a gradient topology.

V. CONVERGENCE SIMULATION

In this section, we examine the convergence of Algo-
rithm 1 with numerical examples. In all examples, the utility
value set consists of ten distinct values, Λ = {1, . . . , 10}.
In the first two simulation (figure 2(a) and figure 2(b)) the
number of nodes of each utility value is mu = 10, and for
the second simulation (figure 2(c)) mu = 50. Thus, the total
number of nodes in the network is N = 100 and N = 500
respectively.

The similar view Ns
i (0) is initialized with mu nodes

uniformly chosen among all nodes in the network. In the
first and third simulation the sampling probability pt is held
at a constant value of 1

2N . Hence, for each node, and at each
iteration of the algorithm, the random view is empty with
probability 1

2 . Theorem 4.1 guarantees the convergence of the
algorithm for these examples, which is also confirmed by the
simulations. These two simulations should also be compared
to the expected convergence rate given by equation (11), 566
and 4479 iterations respectively.

In the second simulation (figure 2(b)), we also analyze
a decaying probability pt = 1

N
1

(1+t/100)2 . Notice that∑∞
t=0Npt < 101, hence, by Corollary 4.1, there is a positive

probability that the algorithm does not converge to a gradient
topology. This is also confirmed by the simulation, in which
the gradient topology is missing.



VI. LIVE-STREAMING USING THE GRADIENT -
EXPERIMENTS

Here, we evaluate the effect of sampling from the Gradient
overlay compared to a random overlay when building a P2P
live-streaming application called GLive. GLive is based on
nodes cooperating to share a media stream supplied by a
source node. GLive uses an approximate auction algorithm
to match nodes that are willing and able to share the stream
with one another. GLive extends our previous work on tree-
based live-streaming, gradienTv [13] and Sepidar [9], to
mesh-based live-streaming.

Nodes want to establish connections to other nodes that are
as close as possible to the source. They bid for connections
to the best neighbours using the upload bandwidth they
contribute as money. Nodes share their bounded number
of connections with nodes who bid the highest (contribute
the most upload bandwidth). Auctions are continuous and
restarted on failures or free-riding. The desired affect of our
auction algorithm is that the source will upload to nodes
who contribute the most upload bandwidth, who will, in turn,
upload to nodes who contribute the next highest amount of
bandwidth, and so on until the topology is fully constructed.
More details on our approximate assignment algorithm can
be found in [9].

One of the main problems with the lack of global in-
formation about nodes’ upload bandwidths is that it affects
the rate of convergence of auction algorithm. Nodes would
ideally like to bid for connections to other nodes who they
can afford to connect to, rather than win a connection to
a better node and be later removed because a better bid
was received. The traditional way to discover nodes (to
bid on) is using a uniform random peer-sampling service
[5]. Instead, we use the Gradient overlay to sample nodes,
where a node’s utility value is the upload bandwidth it
contributes to the system. As such, the Gradient should
provide other nodes with references to nodes who have well-
matched upload bandwidths. In [9], we showed that using
the Gradient overlay reduced the rate of parent switching for
tree-based live-streaming by 20% compared to random peer
sampling. Here, we show for GLive the effect of sampling
neighbours using random peer sampling (GLive/Random)
versus sampling from the Gradient overlay (GLive/Gradient).

We implemented GLive using Kompics’ discrete event
simulator that provides different bandwidth, latency and
churn models. In our experimental setup, we set the stream-
ing rate to 512Kbps, which is divided into blocks of 16Kb.
Nodes start playing the media after buffering it for 5 seconds.
The size of similar-view in GLive is 15 nodes. In the auction
algorithm, nodes have 8 download connections. To model
upload bandwidth, we assume that each upload connection
has available bandwidth of 64Kbps and that the number
of upload connections for nodes is set to 2i, where i
is picked randomly from the range 1 to 10. This means
that nodes have upload bandwidth between 128Kbps and
1.25Mbps. As the average upload bandwidth of 704Kbps
is not much higher than the streaming rate of 512Kbps,

nodes have to find good matches as parents in order for good
streaming performance. The media source is a single node
with 40 upload connections, providing five times the upload
bandwidth of the stream rate. We assume 11 utility levels,
such that nodes contributing the same amount of upload
bandwidth are located at the same utility level. Latencies
between nodes are modeled using a latency map based on
the King data-set [14]. We assume the size of sliding window
for downloading is 32 blocks, such that the first 16 blocks
are considered as the in-order set and the next 16 blocks are
the blocks in the rare set. A block is chosen for download
from the in-order set with 90% probability, and from the rare
set with 10% probability. In the experiments, we measure the
following metrics:

1) Playback continuity: the percentage of blocks that a
node received before their playback time. We consider
the case where nodes have a playback continuity of
greater than 99%;

2) Playback latency: the difference in seconds between
the playback point of a node and the playback point
at the media source.

We compare the playback continuity and playback latency
of GLive/Gradient and GLive/Random in the following sce-
narios:

1) Churn: 500 nodes join the system following a Poisson
distribution with an average inter-arrival time of 100
milliseconds, and then till the end of the simulations
nodes join and fail continuously following the same
distribution with an average inter-arrival time of 1000
milliseconds;

2) Flash crowd: first, 100 nodes join the system following
a Poisson distribution with an average inter-arrival time
of 100 milliseconds. Then, 1000 nodes join following
the same distribution with a shortened average inter-
arrival time of 10 milliseconds;

3) Catastrophic failure: 1000 nodes join the system fol-
lowing a Poisson distribution with an average inter-
arrival time of 100 milliseconds. Then, 500 existing
nodes fail following a Poisson distribution with an
average inter-arrival time 10 milliseconds;

Figures 3 shows the percentage of the nodes that have
playback continuity of at least 99%. We see that all the nodes
in GLive/Gradient receive at least 99% of all the blocks very
quickly in all scenarios, while it takes slightly more time
for GLive/Random. That is because nodes in GLive/Random
randomly sample nodes to run the auction algorithm against,
while GLive/Gradient runs the auction algorithm against
nodes that contribute similar amounts of upload bandwidth.
Random sampling takes longer time to find good matches
for delivering the stream. One point to note is that the 5
seconds of buffering cause the spike in playback continuity
at the start, which then drops off as nodes are joining the
system. To summarize, using the Gradient overlay instead
of random sampling produces better performance when the
system is undergoing large changes - such as large numbers
of nodes joining, failing over a short period of time. Figure
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Fig. 3. Playback continuity of the systems in different scenarios.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Time (s)

gradient
random

(a) Churn.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Time (s)

gradient
random

(b) Flash Crowd.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Time (s)

gradient
random

(c) Catastrophic failure.

Fig. 4. Playback latency of the Gradient versus Random sampling in different scenarios.

4 shows the playback latency of the systems in the different
scenarios. As we can see, although there is only a small
difference between the systems, although, GLive/Gradient
consistently maintains relatively shorter playback latency
than GLive/Random for all experiments. The playback la-
tency includes both the 5 seconds buffering time and the time
required to pull the blocks over the live-streaming overlay
constructed using the auction algorithm.

VII. CONCLUSIONS

In this paper, we introduced the topology convergence
problem for the gossip-generated Gradient overlay network.
We showed the necessary and sufficient conditions for con-
vergence to a complete gradient structure We characterized
the convergence time and provided bounds on the worst-
case convergence time. Our experiments show the potential
advantages of topologies built using preference functions. We
showed how nodes can use implicit information captured
in the Gradient topology to more efficiently find suitable
neighbours compared to random sampling. As such, our work
on proving convergence properties of the Gradient topol-
ogy should have significance for other future information-
carrying topologies. In future work, we will examine modi-
fications to the topology construction algorithm that improve
convergence time, as well as further applications of the
topology in building P2P applications.
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