
IL-GAN: Rare Sample Generation via Incremental
Learning in GANs

Jón R. Baldvinsson∗†, Milad Ganjalizadeh∗†, Abdulrahman AlAbbasi∗, Mårten Björkman†, Amir H. Payberah†

∗Ericsson Research, Stockholm, Sweden
†KTH Royal Institute of Technology, Stockholm, Sweden

Email: jrba@kth.se, {milad.ganjalizadeh, abdulrahman.alabbasi}@ericsson.com, {celle, payberah}@kth.se

Abstract—Industry 4.0 imposes strict requirements on the fifth
generation of wireless systems (5G), such as high reliability, high
availability, and low latency. Guaranteeing such requirements
implies that system failures should occur with an extremely
low probability. However, some applications (e.g., training a
reinforcement learning algorithm to operate in highly reliable
systems or rare event simulations) require access to a broad range
of observed failures and extreme values, preferably in a short
time. In this paper, we propose IL-GAN, an alternative training
framework for generative adversarial networks (GANs), which
leverages incremental learning (IL) to enable the generation to
learn the tail behavior of the distribution using only a few
samples. We validate the proposed IL-GAN with data from
5G simulations on a factory automation scenario and real
measurements gathered from various video streaming platforms.
Our evaluations show that, compared to the state-of-the-art, our
solution can significantly improve the learning and generation
performance, not only for the tail distribution but also for the
rest of the distribution.

Index Terms—generative adversarial networks, rare-event sim-
ulations, incremental learning, tail statistics, URLLC.

I. INTRODUCTION

The Fourth Industrial Revolution (i.e., Industry 4.0) is the
ongoing automation of manufacturing and industrial practices
using modern technology, such as cyber-physical systems,
the Internet of things, and cloud computing. Autonomous
mobile robots and smart factories are examples of Industry
4.0 applications. Such applications typically require high reli-
ability (e.g., 10 years without failure), high availability (e.g.,
99.9999%), and low latency (e.g., <1 ms) [1]. However, ful-
filling such stringent requirements is envisioned with the fifth
generation of mobile networks, 5G, and beyond 5G via ultra-
reliable low latency communication (URLLC) service [2].

A failure in Industry 4.0 applications is typically defined
as an event where either a packet cannot be decoded at the
receiving entity or is received after its corresponding delay
bound [3]. Since we expect extreme system performance
in industry 4.0 applications, the tail distribution of metrics
resulting in failure events is often small. However, when such
rare samples are required, this distribution behavior can cause
a problem, for instance, during the training of a deep rein-
forcement learning (DRL) agent, which acts as an orchestrator

This work was partially supported by Swedish Foundation for Strategic
Research (SSF) under Grant iPhD:ID17-0079.

for any radio access network functionality. In this example,
infrequent encounters with rare events during training may
lead to improper decision-making when attempting to avoid
failure events in deployment [4].

We define a rare event environment as an environment where
the distribution of a selected metric is characterized by a few
head classes occupying most of the instances and a long-tail
having very few instances. Significant research has been done
to speed up simulators in rare event environments and increase
the amount of simulated rare events. For example, the authors
in [5] proposed importance sampling (IS), as an alternative
method to monte carlo (MC) sampling, when MC sampling
is infeasible or inefficient (e.g., in extreme performance envi-
ronments). IS modifies the sampling procedure to increase the
probability of sampling from a specific area of the distribution
and to provide an unbiased result.

At least one rare event (ALOE) [6], is an example of IS,
repeatedly chooses rare events at random and samples the sys-
tem conditionally on the chosen error taking place. ALOE has
higher accuracy on rare events than other sampling methods
in high-dimensional environments. Additionally, ALOE offers
speedup of orders of magnitude over MC methods in rare event
wireless networking environments [7]. However, ALOE has
worse accuracy than other sampling procedures on the events
that do not consider rare events.

Another alternative to governing the occurrence of rare
events is to use generative adversarial networks (GANs).
GANs are generative models that utilize an adversarial learn-
ing process using two separate networks: (i) a generator
network and (ii) a discriminator network. The generator net-
work generates a data sample, and the discriminator network
receives the generated sample and a data sample from a real
dataset. The discriminator’s objective is to detect which data
samples are real, and which are fake. The generator’s objective
is to generate realistic data such that the discriminator is not
able to differentiate between generated data and real data [8].

Conditional GAN is a modification of the original GAN
architecture that uses additional and conditional information as
input to the generator and the discriminator. This modification
allows for control over the generated data [9].

As an example of generating rare events, [4] creates a virtual
environment that utilizes a GAN based refiner to pre-train a
DRL scheduler, i.e., to provide the agent with more experience
before its deployment.978-1-6654-3540-6/22 © 2022 IEEE

Inspired by learning to segment the tail (LST) approach
in [10], in this paper, we propose incremental learning GAN
(IL-GAN) through which we enable GANs to learn and
govern the generation of rare events. Unlike LST, our solution
enables efficient sample generation from all datasets with long-
tail distributions; thus, it can benefit machine learning-based
solutions for orchestration and management of Industry 4.0
applications, where failures are expected to happen rarely. Our
main contributions are as follows:

• We design segmentation techniques to split unbalanced
wireless communication datasets into balanced datasets
to be suited and utilized for the training of IL-GAN.

• Using balanced replay and layer freezing, we develop IL-
GAN, an incremental learning framework on top of the
conventional GAN, which augments GANs to uniformly
generate samples, regardless of the frequency of their
occurrence in the dataset. To the best of our knowledge,
this is the first attempt at leveraging incremental learning
to enhance generative models.

• We evaluate IL-GAN using data generated by propri-
ety near-product factory automation simulations and real
measurements. Our evaluations show that IL-GAN out-
performs state-of-the-art GANs in generating URLLC
data. In particular, on the extreme tail, our IL-GAN can
generate data that its Jensen-Shannon (JS) divergence
to real distribution is one-fifteenth of the baseline’s JS
divergence, with little to no impact on the generation of
the samples from the rest of the distribution.

The rest of this paper is organized as follows. We provide
required preliminaries in Section II and explain the data
collection procedure in Section IV. We describe the proposed
IL-GAN in Section III, and present its experimental results in
Section V. Finally, conclusions are summarized in Section VI.

II. PRELIMINARIES

Training GANs is often unstable, and it has been shown
that leveraging Kulback-Leibler (KL) divergence and Jensen-
Shannon (JS) divergence as their training loss functions can
lead to training instability, including vanishing gradients is-
sues [11], [12]. Alternatively, Arjovsky et al. [12] introduced
Wasserstein GAN in which they used the Earth-Mover dis-
tance, formulated as below:

𝑊 (P𝑟 , P𝑔) = inf
𝛾∈∏(P𝑟 ,P𝑔)

E(𝑥,𝑦)∼𝛾
[
| |𝑥 − 𝑦 | |

]
, (1)

where
∏(P𝑟 , P𝑔) denotes the set of all joint distributions

𝛾(𝑥, 𝑦) whose marginals are respectively P𝑟 and P𝑔. In other
words, 𝛾(𝑥, 𝑦) is the amount of mass that needs to be trans-
ported from x to y to transform the distribution P𝑟 into P𝑔.

Using the Kantorovich-Rubinstein duality to remove the
infimum, the loss function becomes

max
𝑤∈𝑊
E𝑥∼P𝑟

[
𝑓𝑤 (𝑥)

]
− E𝑧∼𝑝 (𝑧)

[
𝑓𝑤 (𝑔𝜃 (𝑧))

]
, (2)

where 𝑓𝑤 is the set of 1-Lipschitz functions, 𝑔𝜃 is a parametric
function and 𝑧 is a latent variable, sampled from a fixed noise
distribution 𝑝(𝑧).

Figure 1: The architecture of incremental learning.

Using neural networks as parametric functions, where 𝑓𝑤
is a discriminator network, and 𝑔𝜃 is a generator network,
it becomes very similar to the GAN objective. The output
is no longer a probability; hence, we do not use a sigmoid
function on the output layer of the discriminator. To enforce
the Lipschitz constraint on the discriminator, we use gradient
penalty on the parameters of the discriminator [13].

Since the Earth-Mover distance is almost continuous and
differentiable everywhere, we should train the discriminator
to optimality because further discriminator training results
in more reliable gradients. Hence, we introduce 𝑛c to limit
the discriminator iterations to control the training time. For
example, if 𝑛c=5, the discriminator’s parameters are updated
five times before the generator’s parameters are trained once.

III. IL-GAN: LEVERAGING INCREMENTAL LEARNING IN
GENERATIVE ADVERSARIAL NETWORKS

Training on data dominated by a large head distribution
and a long-tail distribution is problematic. These infrequent
encounters with data from the tail distribution cause the cor-
responding updates to the model parameter to be overwritten
in favor of the more frequent updates corresponding with data
from the head distribution. Due to this, the conventional GAN
trained on the whole dataset tends to fit well to the head
distribution while ignoring the tail of the distribution. In this
section, we redesign incremental learning, first introduced in
LST [10] for image classification and segmentation tasks, to
enhance generative models in learning and generation of the
data from the tail of the distribution.

The main idea behind incremental learning is to learn seg-
ment by segment and ensure that learning new segments does
not result in forgetting the old ones. The abstract algorithm of
IL-GAN is as follows: first, we divide the data into segments,
then train the model on the data in the first segment, which
includes the head distribution. Such training continues until
some convergence criterion is met or for a fixed number of
epochs. Upon completing the training on the data in segment
one, the model is trained using the data from segment two.
This procedure continues until the model is trained using the
data from all segments. Figure 1 shows the architecture of
incremental learning. During incremental learning, the focus is
on learning new segments. To combat catastrophic forgetting,
we propose balanced replay and freezing for training GANs.

A. Balanced Replay

Balanced replay is a sampling strategy in which the data
is sampled from previous segments and added to the training
data of the current segment being trained. Hence, it balances
previously learned segments and the current segment. Conse-
quently, the model represents all observed segments and the

Figure 2: The simulation setup for generating simulated data.

current segment’s data. Besides, balanced replay allows the
model to modify the weights to remember the old segments
and learn the new segments. Since there is a balance between
the segments during training, the model can learn to generate
data from all segments, including the segments with few
samples (rare event samples). Moreover, since there is still
a representation of the old segments, there should be no
catastrophic forgetting.

B. Freezing

The method of freezing nodes in neural networks is a known
way to keep a feature representation of a batch of data [14].
Freezing prevents parts of the model from being updated again
during backpropagation [15]. The motivation behind freezing
is to keep some of the representation learned in each segment,
thus helping the model remember old classes despite less
representation during training new segments. Different freez-
ing methods exist in the literature, including layer freezing,
vertical freezing, or gradually changing vertical freezing [16].

In this paper, we leverage incremental freezing of vertical
layers. Initially, all weights are unfrozen, but after training of
the first segment, some of the weights and biases between the
input layer and the first layer are frozen. After training on
the second segment, some of the weights between the first
and second layers are frozen. This process continues until
the training on the data from the last segment is completed.
The motivation behind incremental freezing is to keep a
representation of each segment equally in the model. This
approach enables uniform data generation from all segments,
including the rare samples.

IV. DATA COLLECTION

This section describes the data used to train IL-GAN. Since
we could not find real measurements on URLLC service, we
used two datasets, one from factory automation simulations
and one real measurement on the video streaming service. We
hypothesize that training a generative model to generate data
from these datasets accurately is a step in the right direction
to solving the problem using the real URLLC dataset.

A. Data Collection and Processing

Here, we explain the simulated and real datasets.

1) Simulated Data: We perform both link-level and
network-level simulations for a factory automation scenario (as
shown in Figure 2). In the link-level simulations, we modeled
a small factory of size 15×15×11 m3 with stochastic blockers
within. We assumed a single gNodeB with a height of 10 m
in the middle of the factory. We calculate the path gain and
3D channel data for all possible user locations using ray
tracing. Then, we import the channel data to a 3GPP compliant
network-level simulator, where we simulate the physical and
above layers in a multi-cell multi-user network. Besides, we
assume numerology 1 from [17], implying that each slot is
0.5 ms long. The traffic ingress to devices from the control
application is periodic, with 2 ms period, 2.5 ms delay bound,
and size of 64 bytes. We gather two datasets from the simulated
data: (i) channel estimate (CE) data, with 10 000 000 data
points, and (ii) signal to interference & noise ratio (SINR)
and downlink delay data, with 15 000 000 data points.

2) The Real Dataset: The real dataset is gathered from
Crawdad [18] and consists of wireless networking data
gathered from various video streaming platforms, such as
YouTube, Skype, and Google Hangouts. We extract and cal-
culate the interarrival time (IT) and packet lengths (PL) from
that data. The dataset has 2 494 707 data points.

B. Data segmentation

In this section, we show how the datasets are segmented.
In our data, CE, SINR and IT are continuous metrics, while
delay and PL are discrete metrics. The continuous variables are
normalized to be between 0 and 1, and the discrete variables
are categorized using one-hot encoding.

On the simulated data, the whole CE and SINR dataset are
normalized to be between 0 and 1. Regarding delay data,
since packets can only be transmitted at the beginning of
each slot, samples are separated by 0.5 ms. In our simulations,
packets that are received after their corresponding delay bound
(i.e., 2.5 ms), we logged an identical large delay and did not
differentiate them. Hence, the delay data has four possible
values, which we categorize into four categories.

On real data, the whole IT dataset is from 0 s to 100 s, and
the majority of the samples are below 0.002 s. Normalizing
such a dataset would push most values below 0.00002 sec-
onds. Due to their similarity, the model would have difficulty
distinguishing between the values in this range. To circumvent
this problem, we individually normalize each segment of IT
data. Now values of the first segment are between 0 and 1,
instead of between 0 and 0.002. Thus, it is easier for the model
to differentiate between these low values.

Table I presents the distribution of all the datasets. The table
shows a clear head distribution in the CE dataset. The first
segment has more than half of the data points in the dataset,
and the first three segments include over 99% of the data.
The table also shows that SINR and delay have a clear head
distribution, where 50% and 99% of the data are in the first and
the first three segments, respectively. In the fourth segment,
SINR has 0.001% of the dataset, while the delay data has
around 1.3%. The IT and PL datasets have the biggest head

Table I: Distribution of dataset segments
Type Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Total Samples
CE 54% 23% 22% 0.3% 0.0002% 10 000 000
SINR 49% 38% 12% 0.001% - 15 000 000
Delay 52% 36% 11% 1.3% - 15 000 000
IT 91% 8% 1% 0.1% 0.03% 2 494 707
PL 99% 0.4% 0.1% 0.16% 0.2% 2 494 707

Table II: Parameters of the GANs
Parameter Value Parameter Value
𝑛c 5 Dropout 0.33
Gradient Penalty(𝜆) 10 Layers 5
Latent Space 100 Learning Rate (𝜂) 0.0002
Optimizer Adam Nodes 200

IL-GAN cWGAN
𝑛p for CE [1,3,5, 15,2000] 𝑛p for CE 5
𝑛p for SINR & Delay [1,1,1,10] 𝑛p for SINR & Delay 5
𝑛p for IT&PL [3,5,10,25,500] 𝑛p for IT & PL 10

distribution of the three datasets. The first segment of the IT
data has around 91% of the data, and the first two have around
99% of the data. The first segment of the PL data has around
99% of the data.

Since a failure usually occurs when one or several metrics
crosses a certain threshold, we also generate metrics jointly
(e.g., generating SINR and delay or IT and PL). For such
purpose, we propose putting the data point into the segment
of both the features. Therefore, if a data point has SINR from
segment one and delays from segment three, that data point
will be put into segments one and three. This allows us to
generate more than one feature using a single model, but it
has the disadvantage of possibly creating an imbalance in the
segmented datasets. It will also increase the training time since
more data is used in each segment.

V. EVALUATIONS AND EXPERIMENTAL RESULTS

A. Performance Metric: Jensen-Shannon Divergence

To evaluate the performance of IL-GAN, we use the JS
divergence, a measurement to compare probability distribu-
tions. JS divergence enables comparisons of the generated
distributions with the true distribution. Although it is based
on KL divergence, unlike KL divergence, it is symmetric
and bounded to be between [0, 1]. The JS divergence, 𝑗 , is
calculated as

𝑗 (𝑃 | |𝑄)=𝐷KL (𝑃 | |𝑀)
2

+ 𝐷KL (𝑄 | |𝑀)
2

, (3)

where 𝐷KL (·| |·), 𝑃 and 𝑄 denote KL divergence, the true
distribution, and the generated distribution, respectively. Ad-
ditionally, 𝑀=0.5(𝑃+𝑄). In other words, 𝑗 (·| |·)=0 means that
the distributions are the same, and 𝑗 (·| |·)=1 means that there
are no common elements in the distributions.

B. GAN Neural Network Model Aspects

For performance evaluation of our IL-GAN, we consider
conditional Wasserstein GAN (cWGAN) from [13] as the
baseline for training and generation. For a fair comparison,
we trained a cWGAN conditioned on each training segment
and leveraged the incremental learning training procedure
described in Section III. Since wireless communication data
can be both categorical and continuous, the generator needs to

be able to generate both types of data. To generate continuous
variables, we normalize the data to be between [0, 1] and, con-
sequently, use the Sigmoid activation function in generator’s
output nodes. We also use the Gumbel-softmax estimator from
[19] to generate one-hot encoded categorical variables.

Throughout IL-GAN’s training, we randomly sample an
equal amount of data from each previous segment as the
current segment is trained. Upon completing the training on the
data belonging to a segment, we incrementally freeze a portion
of the neural network model parameters such that 75% of the
nodes in a layer were frozen. The weights from the labels in
the conditional GAN are never frozen and are not considered
part of the 75% that are frozen.

We use JS divergence as the convergence criterion, both on
segment level and IL-GAN level, i.e., we stop the training
of either a segment or IL-GAN when the JS divergence does
not decrease for a fixed number of iterations, denoted as 𝑛p.
Moreover, 𝑛p is set differently for each segment because, as we
move forward with the training on different segments, many
of the weight becomes frozen, and the number of data points
decreases. Therefore, we set 𝑛p to very low values for the first
segment (e.g., 𝑛p= 1), while it should be set to higher values
for the last segment (e.g., 𝑛p= 2000).

Table II presents our model parameters for both IL-GAN and
cWGAN. The 𝑛c and 𝜆 parameters are explained in Section
II and the values for them are chosen according to [12] and
[20] respectively. The learning rate and optimizer are chosen
according to [20]. The generator and discriminator neural
networks have five hidden layers and 200 nodes in each layer.
Dropout is used for regularization to reduce overfitting.

C. Evaluation Methodologies

In this subsection, we compare the generated data from a
IL-GAN with the generated data from cWGAN in [13]. We
consider two methodologies for evaluating the results:

1) JS method: A similarity measure of the overall generated
distribution to the original data, using JS divergence
(defined in (3)).

2) Visual method: This visually compares the distribution
kernels (e.g., mean) of the last segment distribution
which includes the rare samples. For the latter, we
generate 1 million samples with IL-GAN and cWGAN.

Besides, we perform three sets of experiments as:
1) CE data generation,
2) Joint SINR and delay generation, and
3) Joint IT and PL generation.

D. Results

1) Channel Estimate: As Table III shows, although cW-
GAN performs well on the first three segments, its perfor-
mance dramatically drops on the last two segments. Never-
theless, IL-GAN performs better on all segments, and most
notably, compared to cWGAN, it reduces JS divergence sig-
nificantly on the last two segments.

Figure 3 shows the generated distribution of the last two
segments for IL-GAN and cWGAN. On the one hand, the

Table III: JS divergence on the Channel Estimate dataset
Segment cWGAN IL-GAN
1 0.0211 0.0193
2 0.0524 0.0107
3 0.0636 0.0184
4 0.27 0.0548
5 1.0 0.264
Average 0.285 0.0777

0.002

0.004 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

1e−5
Segment 5

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(a) Simulated CE

0.0005

0.0010

0.0015 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5
1e−6

Segment 5

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(b) cWGAN [13]

0.002

0.004 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2
1e−5

Segment 5

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(c) IL-GAN

Figure 3: The distribution of CE rare samples generated by simulations in (a),
cWGAN in (b), and IL-GAN in (c).

cWGAN performs poorly on the last two segments, and the
distribution of segment 5 is not even in the correct area (This
is the reason for JS divergence of 1.0 for cWGAN’s segment 5
in Table III). On the other hand, the IL-GAN generated distri-
bution is very comparable to the true distribution of segment
4. For segment 5, although IL-GAN has the distribution in
the correct area, it is rough to evaluate the generation of the
rare events using solely 159 data points. Nevertheless, IL-GAN
predicted the segment 5 distribution reasonably, achieving 74%
lower JS divergence over the baseline GAN.

2) SINR & Delay: Table IV shows that both models per-
form well on the first three segments. As in the previous exper-
iment, IL-GAN shows significant improvement over the base-
line GAN on the last segment. Figure 4 shows the generation of
the last two segments of SINR. As this figure illustrates, both

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06
Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0001

0.0002 Segment 4

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(a) Simulated SINR

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06 Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0002

0.0004 Segment 4

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(b) cWGAN [13]

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06
Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6
1e−5

Segment 4

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(c) IL-GAN

Figure 4: The distribution of SINR rare samples generated by simulations in
(a), cWGAN in (b), and IL-GAN in (c).

IL-GAN and cWGAN perform well on segment 3, in which
12% of the data exists. Similar to the previous experiment, the
distribution of the generated data from cWGAN on segment
4 is not comparable to the real distribution (i.e., it has not
learned the true distribution of segment 4). Although the IL-
GAN distribution is closer to the true distribution of segment 4,
there are still some problems with the generated distribution. A
possible reason is a discrepancy in the number of data points in
segment 4. Because of the joint generation strategy, described
in Section IV, a majority of the SINR samples in segment 4
training are not actually in SINR segment 4.

Table IV: JS divergence on the SINR & Delay dataset

Segment SINR Delay
cWGAN IL-GAN cWGAN IL-GAN

1 0.0023 0.0093 0.0005 0.0019
2 0.0356 0.047 0.0003 0.0037
3 0.0391 0.0339 0.0018 0.0005
4 0.799 0.444 0.0069 0.0003
Average 0.219 0.133 0.0024 0.0016

3) Interarrival time and Packet Lenght: Table V confirms
that the IL-GAN significantly improves upon cWGAN’s JS
divergence on real measurements on IT and PL, with the

0.05
0.10
0.15 Segment 2

0.005
0.010
0.015

Segment 3

0.005
0.010
0.015

Segment 4

0 200 400 600 800 1000 1200 1400
0.00

0.02 Segment 5

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(a) Real Packet Length

0.1

0.2
Segment 2

0.01
0.02
0.03

Segment 3

0.005
0.010
0.015

Segment 4

0 200 400 600 800 1000 1200 1400
0.00

0.01
Segment 5

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(b) cWGAN [13]

0.1

0.2 Segment 2

0.005
0.010
0.015 Segment 3

0.005
0.010
0.015 Segment 4

0 200 400 600 800 1000 1200 1400
0.000

0.025 Segment 5

Pe
rc
en

ta
ge

 o
f o

cc
ur
en

ce
s (

%
)

(c) IL-GAN

Figure 5: The distribution of PL rare samples from real data in (a), and
generated by cWGAN and IL-GAN in (b) and (c), respectively.

maximum observed enhancement on the PL dataset in all of
our experiments. As Figure 5 illustrates, for the PL dataset,
the cWGAN does not manage to learn the tail distribution in
any meaningful sense, while IL-GAN generates data from the
correct area in every segment. For the PL dataset, the cWGAN
does not manage to learn the tail distribution in any meaningful
sense, while IL-GAN generates data from the correct area in
every segment.

Table V: JS divergence on the Interarrival time & Packet length dataset

Segment IT PL
cWGAN IL-GAN cWGAN IL-GAN

1 0.0279 0.0168 0.0003 0.0003
2 0.0784 0.0492 0.509 0.186
3 0.1457 0.0908 0.707 0.180
4 0.1927 0.1627 0.6403 0.078
5 0.4393 0.2883 0.543 0.036
Average 0.1767 0.1217 0.4797 0.0963

VI. CONCLUSIONS

In this paper, we developed IL-GAN framework, in which
we leveraged incremental learning on data segments over state-
of-the-art GANs to enhance the training and generation of

the tail distribution. Our IL-GAN has many applications in
wireless communications, for example, (i) in reinforcement
learning assisted URLLC service orchestration, where there
exist only a few samples on the tail of the distribution to
training the agent, or (ii) to serve as a model-free wireless
channel transfer function. We evaluated the performance of
IL-GAN using real measurements on video streaming over
wireless communications and 3GPP compliant simulations on
URLLC service for factory automation use case. Our extensive
evaluations showed that IL-GAN has superior performance
over cWGAN in generating all segments, especially the last
one with only a few samples. Although IL-GAN showed
significant improvement in the joint generation of metrics over
the baseline, our results on joint generation of SINR and delay
suggest that there is still room for further developments in such
joint generations.

REFERENCES

[1] Service requirements for cyber-physical control applications in vertical
domains, 3GPP, TS 22.104 v18.0.0, 2021.

[2] M. Ganjalizadeh et al., “Translating cyber-physical control application
requirements to network level parameters,” in IEEE Int. Symp. Pers.
Indoor Mob. Radio Commun. (PIMRC), 2020.

[3] ——, “An RL-based joint diversity and power control optimization for
reliable factory automation,” in IEEE Glob. Commun. Conf. (GLOBE-
COM), 2021.

[4] A. T. Z. Kasgari et al., “Experienced deep reinforcement learning with
generative adversarial networks (GANs) for model-free ultra reliable
low latency communication,” IEEE Trans. Commun., vol. 69, no. 2, pp.
884–899, 2021.

[5] T. Kloek and H. K. Van Dijk, “Bayesian estimates of equation system
parameters: an application of integration by Monte Carlo,” Economet-
rica: J. Econom. Soc., 1978.

[6] A. B. Owen et al., “Importance sampling the union of rare events with
an application to power systems analysis,” Electron. J. Stat., vol. 13,
no. 1, pp. 231–254, 2019.

[7] V. Elvira and I. Santamaria, “Multiple importance sampling for efficient
symbol error rate estimation,” IEEE Signal Process. Lett., vol. 26, no. 3,
pp. 420–424, 2019.

[8] I. Goodfellow et al., “Generative adversarial nets,” Adv. Neural Inf.
Process. Syst., vol. 27, 2014.

[9] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784 [cs.LG].

[10] X. Hu et al., “Learning to segment the tail,” in Proc. IEEE/CVF Comput.
Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020.

[11] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” 2017 arXiv:1701.04862 [stat.ML].

[12] M. Arjovsky et al., “Wasserstein generative adversarial networks,” in
Proc. 34th Int. Conf. Mach. Learn. (ICML), 2017.

[13] Y. Luo and B.-L. Lu, “EEG data augmentation for emotion recognition
using a conditional Wasserstein GAN,” in 40th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), 2018.

[14] S.-A. Rebuffi et al., “iCaRL: Incremental classifier and representation
learning,” in Proc. IEEE/CVF Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2017.

[15] D. E. Rumelhart et al., “Learning Representations by Back-propagating
Errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. [Online].
Available: http://www.nature.com/articles/323533a0

[16] L. F. Isikdogan et al., “Semifreddonets: Partially frozen neural networks
for efficient computer vision systems,” in Eur. Conf. Comput. Vis.
(ECCV), 2020.

[17] NR; Physical channels and modulation, 3GPP, TS 38.211 v17.1.0, 2022.
[18] S. Sengupta et al., “CRAWDAD dataset iitkgp/apptraffic (v. 2015-11-

26).” [Online]. Available: https://crawdad.org/iitkgp/apptraffic/20151126
[19] E. Jang et al., “Categorical reparameterization with Gumbel-Softmax,”

2016, arXiv:1611.01144 [stat.ML].
[20] I. Gulrajani et al., “Improved training of wasserstein gans,” in Advances

in Neural Information Processing Systems, 2017.

