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Abstract
With the increasing adoption of large language models (LLMs), ensuring their alignment with social norms has
become a critical concern. While prior research has examined bias detection in various languages, there remains a
significant gap in resources addressing social biases within Persian cultural contexts. In this work, we introduce PBBQ,
a comprehensive benchmark dataset designed to evaluate social biases in Persian LLMs. Our benchmark, which
encompasses 16 cultural categories, was developed through questionnaires completed by 250 diverse individuals
across multiple demographics, in close collaboration with social science experts to ensure its validity. The resulting
PBBQ dataset contains over 37,000 carefully curated questions, providing a foundation for the evaluation and
mitigation of bias in Persian language models. We benchmark several open-source LLMs, a closed-source model,
and Persian-specific fine-tuned models on PBBQ. Our findings reveal that current LLMs exhibit significant social
biases across Persian culture. Additionally, by comparing model outputs to human responses, we observe that LLMs
often replicate human bias patterns, highlighting the complex interplay between learned representations and cultural
stereotypes.Upon acceptance of the paper, our PBBQ dataset will be publicly available for use in future work.
Content warning: This paper contains unsafe content.

1. Introduction

In recent years, the use of large language mod-
els (LLMs) has increased significantly, affecting
nearly every aspect of people’s lives (Gokul, 2023).
This expansion raises concerns about their soci-
etal impact, particularly the biases they may exhibit
(Gallegos et al., 2024). Consequently, a large body
of work has been dedicated to bias detection and
mitigation (Ranjan et al., 2024).

Despite significant progress in detect-
ing biases in LLMs for high-resource lan-
guages(Kiashemshaki et al., 2025) (Choi et al.,
2025) (Zalkikar and Chandra, 2025), their per-
formance on languages with lower resources
compared to English remains sub-optimal, par-
ticularly in generating unbiased outputs (Kalluri,
2023) (Shen et al., 2024). One such language is
Persian, which is widely spoken. Despite some
advancements in Persian-language benchmarks
(Ghahroodi et al., 2024), and datasets (Sabouri
et al., 2022) there remains a lack of established
benchmarks for evaluating social biases in Persian
(Saffari et al., 2025) (Shamsfard et al., 2025).

Moreover, the presence and nature of biases are
often deeply intertwined with the cultural context
(Jin et al., 2024), and Persian is no exception. As
a case in point, jokes have always been effective in
Persian culture, and one of their effects is reinforc-
ing social stereotypes (Abedinifard, 2016) (Abedini-
fard, 2019) (Naghdipour, 2014). Ethnic jokes domi-

nate (82.1%) other types of jokes, mostly targeting
minorities in competition with the majority for socio-
economic and political opportunities (Naghdipour,
2014). Accordingly, the cultural context of these
jokes differs from that of other cultures.

In addition, there are some conflicting stereo-
types across cultures. For example, in the Bias
Benchmark for Question-answering (BBQ) dataset
(Parrish et al., 2022), there is an implication that
people with low socio-economic status value edu-
cational success more than wealthier individuals.
However, in Persian culture, it might actually be
the opposite; wealthier individuals may place more
importance on educational success compared to
poorer ones. Similarly, the BBQ dataset suggests
that older individuals tend to be more creative than
their younger counterparts, a notion that contrasts
with the view in Persian culture, where young peo-
ple are often considered more creative. Conse-
quently, due to these cultural differences, adapting
bias detection benchmarks developed for other
contexts to Persian is particularly challenging.

On that basis, building up on prior work done
on both high- and low-resource settings, especially
those using question-answering (QA) formats in
English (Parrish et al., 2022), Japanese (Yanaka
et al., 2025), Korean (Jin et al., 2024), Chinese
(Huang and Xiong, 2024), and Basque (Zulaika
and Saralegi, 2025), we introduce a Persian Bias
Benchmark for Question-answering (PBBQ): the
first benchmark focused on detecting social biases
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in LLMs in Persian.
To build this benchmark, our first step was to

identify biases that are prevalent within the Per-
sian culture and assess whether these are also re-
flected in the outputs generated by LLMs. For this,
we collected bias topics and stereotypes through
crowdsourcing and consultation with sociological
experts. The stereotypes span 16 categories such
as: Age, Profession, Socio-economic Status, Edu-
cational Background, Disability, Disease, Domestic
Area, Ethnicity, Family Structure, Gender, Prop-
erty Ownership, Nationality, Physical Appearance,
Political Orientation, Religion, and Sexual Orienta-
tion This comprehensive list aligns with categories
used in prior QA bias detection studies.

Then, we aimed to identify which of these stereo-
types are most commonly recognized by Persian
speakers. We released a questionnaire with 307
stereotypes, and asked from 250 respondents
whether they had heard of or believed each one.
To ensure fairness and diversity, we distributed
it across diverse demographic groups, including
age, gender, income level, education level, sexual
orientation, religion, and political orientation.

Afterward, we retained 223 stereotypes by keep-
ing those most recognized and accepted among
Persian speakers and constructed contexts around
them, comprising both ambiguous and disam-
biguated contexts, along with their corresponding
negative and non-negative questions for our QA
dataset. The entire process was carried out us-
ing a combination of artificial intelligence (AI) and
human annotators to ensure that the generated
scenarios and their corresponding questions accu-
rately reflected the targeted stereotypes.

With our QA dataset finalized, we moved to
the benchmarking phase. We evaluated eight
LLMs across three categories: (1) open-source
LLMs, such as LLaMA-3.1-8B-Instruct, Qwen3-
14B, Qwen2.5-7B, Mistral-7B-Instruct, (2) closed-
source LLMs, such as GPT-4o, and (3) Persian-
specific LLMs, such as Maral, Dorna1, and Dorna
Legacy. Our benchmark results showed that, over-
all, models exhibited bias in 12 out of 16 bias top-
ics. In addition, Persian-specific models generally
demonstrated more biased outputs compared to
the other two categories of models.

Ultimately, our key contributions are as follows:

• Stereotype extraction: Identification of
widely accepted stereotypes among Persian
people.

• Dataset Generation: Introduction of PBBQ,
the first QA dataset for social bias detection in
Persian, using extracted stereotypes.

• Cross-family analysis: Benchmarking of
seven models across open-source, closed-

source, and Persian-specific categories to an-
alyze bias presence.

2. Related Work

Social bias refers to the unequal treatment of dif-
ferent social and demographic groups, resulting
from imbalances in power within society, which
leads to unfair comparisons (Gallegos et al., 2024).
These biases can manifest in various forms, for
example, through offensive language directed at
specific groups or the reinforcement of common
stereotypes in how we refer to them. In the context
of Natural Language Processing (NLP), social bias
can result in harmful outcomes. Generally, such
harms are divided into two categories: (1) allo-
cational harms, when individuals experience un-
fair treatment or discrimination, either directly or
indirectly, due to how the system operates, and
(2) representational harms, when certain groups
are portrayed unfairly, such as being stereotyped,
misrepresented, excluded, or described using of-
fensive language (Gallegos et al., 2024), which is
mainly the focus of our work.

Studying these biases in LLMs is crucial be-
cause of their potential societal impact (Jin et al.,
2024; Zulaika and Saralegi, 2025). Consequently,
several research efforts have been undertaken to
identify and quantify social biases in LLMs. Broadly,
these works fall into two categories: (I) those con-
ducted for English, and (II) those for non-English
languages.

2.1. Bias Benchmarks in English

One of the major benchmarks is BBQ (Parrish
et al., 2022), a multiple-choice QA dataset com-
prising 58,000 questions across nine bias cate-
gories. It includes ambiguous and stereotype-
aligned/unaligned examples derived from real-life
scenarios. In this paper, six models were used
for evaluation, all of which exhibited measurable
bias. CrowS-Pairs (Nangia et al., 2020) is an-
other English dataset containing 1,508 sentence
pairs (stereotypical vs. non-stereotypical). Bias
was analyzed across nine social domains, and
encoder-based models showed substantial bias.
StereoSet (Nadeem et al., 2021) comprises 17,995
context-based examples spanning domains such
as gender, profession, race, and religion. The
dataset evaluates how models associate stereotyp-
ical meanings with different groups.

BOLD (Dhamala et al., 2021) examines social
bias across 23,679 prompts for text generation
in various domains, including profession, gender,
race, religion, and politics. Bias was observed us-
ing metrics such as sentiment, toxicity, and regard.
UnQover (Li et al., 2020) uses an ambiguous QA



format to study bias in gender, ethnicity, and reli-
gion. The study found that larger models tend to
demonstrate more bias. Winogender (Rudinger
et al., 2018) and WinoBias (Zhao et al., 2018) are
also notable for evaluating gender pronoun biases
through controlled templates in English.

However, a major limitation is that US-centric
stereotypes often fail to transfer well across cul-
tures due to significant cultural and linguistic differ-
ences. Additionally, many of these datasets suffer
from limited coverage of bias categories (Jin et al.,
2024). For this reason, it is critical to review related
work done in non-English languages.

2.2. Bias Benchmarks in Non-English

Chinese BBQ (CBBQ) (Huang and Xiong, 2024)
is a social bias benchmark in Chinese, featur-
ing over 100,000 culturally adapted examples.
Their findings indicate that fine-tuned models (e.g.,
SFT/RHF) exhibit reduced bias. KoBBQ (Jin
et al., 2024), the Korean version of BBQ, con-
sists of 76,028 culturally adapted examples across
12 bias categories. The authors evaluated six
LLMs and highlighted the inadequacy of machine-
translated datasets, emphasizing the importance
of culturally sensitive and carefully curated bench-
marks. CrowS-Pairs has been adapted to French
by (Névéol et al., 2022), with 1,467 translated in-
stances and 210 newly created ones. Biases were
observed in French models, although to a lesser
degree than in English.

Multilingual CrowS-Pairs (Reusens et al., 2023)
extends CrowS-Pairs to French, German, and
Dutch, evaluated using mBERT. Among these, En-
glish models demonstrated the highest bias levels.
In Basque, a low-resource language, researchers
introduced BasqBBQ (Zulaika and Saralegi, 2025),
which contains 43,240 examples (20,716 ambigu-
ous and 20,716 disambiguated) across eight cat-
egories. They evaluated six LLMs, finding that
larger models (e.g., 70B) performed better on dis-
ambiguated examples, but ambiguous contexts in-
duced higher negative bias, especially in larger
models. In the Japanese version of BBQ (Yanaka
et al., 2025), researchers constructed a dataset of
50,856 question pairs across five categories. Eval-
uation across 8 models showed that models with
more parameters tended to produce higher bias
scores.

3. PBBQ Dataset

For constructing our PBBQ dataset, we adopted
the structure employed in prior BBQ datasets
across different languages (Parrish et al., 2022)
(Zulaika and Saralegi, 2025) (Jin et al., 2024)
(Huang and Xiong, 2024). The dataset consists of

four main components: (I) bias topics, (II) stereo-
types, (III) ambiguous and disambiguated contexts,
and (IV) negative/non-negative questions.

Briefly, we extracted stereotypes within the se-
lected bias topics, generated ambiguous and dis-
ambiguated contexts based on them, and subse-
quently created negative and non-negative ques-
tions for these contexts. In the following sections,
the definitions and details of the work carried out
for each component will be presented, while Figure
1 provides an overview of this multi-stage pipeline.

3.1. Bias Topics

The first step in dataset generation is the selec-
tion of bias topics to be investigated. To create a
comprehensive list, we examined the aggregation
of topics covered in four previous variants of BBQ:
BBQ, KoBBQ, BasqBBQ, and CBBQ (Parrish et al.,
2022; Jin et al., 2024; Zulaika and Saralegi, 2025;
Huang and Xiong, 2024). Based on this review, we
identified the topics that were less explored across
all four benchmarks and prioritized them. In addi-
tion, topics that were not directly compatible with
the Persian culture were adapted to make them
suitable for Persian cultural contexts.

Through this process, 16 topics were selected:
Age, Profession, Socio-economic Status, Educa-
tional Background, Disability, Disease, Domestic
Area, Ethnicity, Family Structure, Gender, Property
Ownership, Nationality, Physical Appearance, Po-
litical Orientation, Religion, and Sexual Orientation.
Based on these topics, stereotypes were then ex-
tracted with attention to the specific biases present
in the Persian language and culture.

3.2. Bias Stereotypes

To ensure sufficient coverage, we extracted bias
stereotypes using multiple sources. Among Per-
sian people, one of the most widely used platforms
is Telegram (Vaziripour et al., 2018). Accordingly,
several Telegram channels with large audiences
were crawled to extract potential stereotypes. The
links of the channels used can be found in Ap-
pendix A

In addition, following the approach of BBQ (Par-
rish et al., 2022), we, the authors of this pa-
per and native Persian speakers, manually wrote
likely stereotypes that reflect biases toward spe-
cific groups. We developed these stereotypes with
reference to news articles, Wikipedia pages, and
blog posts that discuss biases in Persian society.

After careful generation, all stereotypes were
evaluated by social science experts holding Ph.D.
degrees. Based on their feedback, stereotypes that
were considered less culturally relevant to society
were removed, thereby improving the overall qual-



Figure 1: Overview of dataset construction process, which involves 4 stages: selecting bias topics,
extracting stereotypes, generating contexts from templates, and creating corresponding negative/non-
negative of questions.

Figure 2: An example from the PBBQ dataset. The
green box highlights the bias topic and extracted
stereotype for this instance. The blue box presents
the context templates along with the placeholders
used to populate them. The red box illustrates the
corresponding negative and non-negative ques-
tions derived from the contexts. The purple box dis-
plays the answer for each type of question based
on the provided scenario.

ity of the dataset. At this stage, 307 stereotypes
remained.

To further ensure that the selected stereotypes
reflect commonly recognized biases among Per-
sian speakers, a questionnaire was prepared.
The questionnaire contained all stereotypes, and
250 participants were asked, on a stereotype-by-
stereotype basis, whether they had heard or be-
lieved each stereotype. At the end of the survey,
participants were also invited to report additional
stereotypes they had encountered in Iranian soci-
ety. The statistics of the participants can be found
in Appendix D.

In designing this questionnaire, we aimed to
maintain diversity among participants by consid-
ering factors such as age, gender, income, and
level of education. Ultimately, the stereotypes with
acceptance rates of higher than 60 percent were
retained through this additional pruning step, and
233 stereotypes remained for the following steps
of dataset construction. The green box in Figure
2 shows one of the selected stereotypes and its
related bias topic.

3.3. Contexts

After finalizing the list of target stereotypes, the
next step was the generation of dedicated contexts.
Accordingly, for each of these stereotypes, ambigu-
ous and disambiguated contexts were created.

3.3.1. Ambiguous context

An ambiguous context provides a description of
a situation where two social groups related to a
stereotype are mentioned, but the negative stereo-
type that is the target of the stereotype is not
clearly assigned to either. The goal of an am-
biguous context is to provide a real-world scenario
involving two groups, one stereotypical and one
non-stereotypical, for the question. Moreover, it
evaluates the model’s behavior in answering the
questions when the model lacks sufficient informa-
tion to determine the answer. On that ground, an
“Unknown” option has been provided as an answer
to questions for these scenarios.

3.3.2. disambiguated context

A disambiguated context, in contrast, clearly spec-
ifies which social group the negative stereotype
applies to. It provides additional information about
the attributes of the two groups - stereotypical and
non-stereotypical, allowing the model to answer
without resorting to the “Unknown” option.

3.3.3. Context Generation Process

For ambiguous context generation, we first created
several templates manually for our selected stereo-



types. Each template contained three main place-
holders. The first two placeholders were names:
one stereotypical name associated with the stereo-
type and one non-stereotypical name. The third
placeholder was for lexical variation, which could
be substituted to diversify the contexts without af-
fecting the targeted bias of the stereotype, and it
was optional. For the manual generation of tem-
plates for ambiguous contexts, three authors of the
paper engaged in the writing process, and each
of them reviewed the templates generated by the
other two. An example of an ambiguous context
template is shown in the blue rectangular box in
Figure 2.

After manually creating templates for ambiguous
contexts, we used an LLM to generate templates
for disambiguated contexts using the same place-
holders. In Figure 2, the blue rectangular box high-
lights an example of a disambiguated context tem-
plate. Specifically, we prompted the GPT-o1-mini
API to generate a disambiguated context template
from each ambiguous context template and its cor-
responding stereotype. The full prompt is provided
in Appendix C.

By filling the placeholders with stereotypical, non-
stereotypical, and lexical-variation terms, multiple
ambiguous contexts and their corresponding dis-
ambiguated contexts were created for each stereo-
type. In addition, to eliminate the effect of word
order, all possible orderings of stereotypical and
non-stereotypical names were included.

3.4. Negative/Non-Negative Questions

After curating the contexts, pairs of negative and
non-negative questions were generated. For each
stereotype, one negative and one non-negative
question were proposed.

A negative question targets the social group
associated with a harmful stereotype, while a
non-negative question targets the group asso-
ciated with the complementary or neutral case.
Each question was designed with three possi-
ble answers: the stereotypical group, the non-
stereotypical group, and an “unknown” option. The
red rectangular box in Figure 2 shows a pair of
Negative/Non-Negative questions.

Ultimately, by generating the ambiguous and dis-
ambiguated contexts together with pairs of neg-
ative and non-negative questions, the main com-
ponents of our question answering dataset were
prepared. Each ambiguous and disambiguated
context was then paired once with a negative ques-
tion and once with a non-negative question. For
each question, the possible answers were the two
names mentioned in the context, the stereotypical
and the non-stereotypical, as well as an "unknown"
option.

3.5. Dataset Statistics

Our dataset is made up of 276 carefully created
template from 233 stereotypes spanning 16 cat-
egories , resulting in a total of 37,742 validated
samples. The distribution of stereotypes and cor-
responding samples per category is presented in
Table 1.

Table 1: Statistics of the generated templates and
samples for each category in our dataset.

Category # Templates # Samples
Political Orientation 15 1296
Socio-economic Status 15 720
Educational Background 15 1632
Disease 12 1956
Domestic Area 15 3324
Ethnicity 15 2720
Family Structure 16 2400
Profession 15 3648
Property Ownership 14 1296
Gender 35 1048
Nationality 24 2904
Age 30 6112
Physical Appearance 10 4140
Disability 15 2808
Religion 15 2280
Sexual Orientation 15 990
Total 276 37742

To evaluate the diversity of texts in this dataset,
we applied four distinct metrics: (I) Self-BLEU
scores (Zhu et al., 2018), assessing n-gram over-
lap across texts to quantify diversity; (II) Type-
Token Ratio (TTR), which measures lexical vari-
ety by comparing the number of unique words to
total words in a text; (III) N-Gram Diversity Score
(NGD) (Padmakumar et al., 2023)(Meister et al.,
2023), extending TTR to longer n-grams by evalu-
ating the ratio of unique n-grams to overall n-gram
counts, thus highlighting sequence diversity; and
(4) Homogenization Score (BERTScore), leverag-
ing BERT embeddings for semantic similarity as-
sessment, where we employed the FaBERT model
(Masumi et al., 2025) to capture nuanced mean-
ings beyond exact n-gram matches. Collectively,
these metrics offer a thorough evaluation of the
dataset’s textual diversity, as shown in Table 2.
Our results reveal that low Self-BLEU scores in-
dicate a high diversity level, while high TTR and
NGD values suggest word and sequence diversity.
Additionally, the low Homogenization BERTScore
reflects enhanced semantic diversity. More expla-
nation of these metrics are discussed in Appendix
B.

4. Experiments

In this section, we evaluate state-of-the-art LLMs
on the PBBQ benchmark, focusing on both ac-



Table 2: Diversity Metrics Across Categories (for
TTR metrics, stop words had been removed)

Category NGD ↑ TTR ↑ Self-BLEU↓ BERTScore↓
Political Orientation 0.78 0.76 0.20 0.5559
Socio-economic Status 0.73 0.64 0.36 0.5397
Educational Background 0.76 0.79 0.23 0.6082
Disease 0.80 0.85 0.14 0.5175
Domestic Area 0.78 0.80 0.17 0.5162
Ethnicity 0.73 0.69 0.32 0.6353
Family Structure 0.78 0.71 0.37 0.5530
Profession 0.69 0.73 0.41 0.5329
Property Ownership 0.76 0.62 0.18 0.5762
Gender 0.79 0.74 0.11 0.3863
Nationality 0.68 0.66 0.44 0.4407
Age 0.73 0.70 0.32 0.4804
Physical Appearance 0.76 0.73 0.26 0.5046
Disability 0.76 0.78 0.29 0.5378
Religion 0.79 0.78 0.15 0.4072
Sexual Orientation 0.75 0.78 0.21 0.5360

Average 0.75 0.74 0.27 0.5188

curacy and bias scores to provide a compre-
hensive assessment of the models’ inherent bi-
ases along with their confidence by measur-
ing their uncertainty. Moreover, we utilize the
lm-harness framework (Gao et al., 2024) and fol-
low the log-probability-based approach outlined in
lm-evaluation-harness. For each sample, all pos-
sible options are appended to the input prompt,
and the models calculate the log probability for the
corresponding tokens. The total score for the i− th
option is given by:

ni−1∑
j=m

logP(xj | x0:j)

where x0:m represents the input prompt and xm:ni

denotes the i − th possible option (EleutherAI,
2021). The option with the highest total log proba-
bility is chosen as the model’s prediction for sample
k:

ŷk = arg max
i∈{1,2,...,Ok}

ni−1∑
j=m

logP(xj | x0:j)

Here, Ok is the number of options for sample k.

4.1. Model Selection

We selected three categories of LLMs for our study:
(I) open-source LLMs, including LLAMA (Touvron
et al., 2023), QWEN (Bai et al., 2023), and Mis-
tral (Jiang et al., 2023); (II) closed-source LLMs,
such as those from the OpenAI family (Kalyan,
2024); and (III) Persian-specific fine-tuned LLMs,
like Dorna (AI, 2024) (a fine-tuned version of the
LLAMA-3-8B model) and Maral (MaralGPT, 2024)
(a fine-tuned version of the Mistral-7B model).

4.2. Evaluation Metrics

In this study, we aimed not only to measure the
accuracy of models but also to assess their ten-

dency towards specific choices. To achieve this,
we introduce a new metric to measure bias scores
in addition to accuracy.
Accuracy: To measure the accuracy of the models,
we follow the standard approach used in multiple-
choice question datasets. The model receives a
score of 1 for each correct answer and 0 other-
wise. The average of these scores represents the
accuracy of the model, as shown in Equation 1,
where ŷi denotes the prediction for item i and yi its
ground truth.

Accuracy =
1

N

N∑
i=1

δ(ŷi, yi)

where δ(ŷi, yi) =

{
1, if ŷi = yi,

0, otherwise.

(1)

Bias-Score: To identify the tendency of LLMs to-
wards biases, we developed two metrics to mea-
sure bias scores in ambiguous and disambiguated
contexts.

For ambiguous contexts, we propose a metric
inspired by Jin et al. (2024) to quantify systematic
preferences in language model responses. This
metric utilizes the log-probabilities of each choice,
enabling us to analyze the model’s probability dis-
tribution across potential options, rather than focus-
ing solely on the final answer.

The Ambiguous Bias Score (βamb) is formally
defined as Equation 2,

βamb =
1

N

N∑
i=1

[
log p(xt

i)− log p(xc
i )
]

(2)

where N denotes the number of evaluation in-
stances, p(xt

i) represents the probability assigned
to the target (stereotypical) choice in instance i,
and p(xc

i ) represents the probability of the counter-
target (non-stereotypical) choice. This formulation
enables us to quantify the model’s inherent bias by
measuring the average logarithmic difference be-
tween competing choices in semantically ambigu-
ous scenarios. The metric is bounded between
-1 and 1, where a score of 1 indicates maximum
bias toward the target choice, and -1 indicates
maximum bias toward the counter-target choice.
Specifically, a positive βamb indicates a system-
atic preference toward the target choice, while a
negative value suggests a bias toward the counter-
target choice. A score near zero suggests minimal
directional bias in the model’s responses.

For disambiguated contexts, similar to (Jin et al.,
2024), we employ the Disambiguated Bias Score
(∆bias), which measures the disparity between
model performance in scenarios aligned with and
opposed to potential societal biases. This metric is
formally defined as Equation 3,



∆bias = Acc(Qbias)− Acc(Qcounter) (3)

where Acc(Qbias) represents the model’s accu-
racy on disambiguated questions where the cor-
rect answer aligns with stereotypical biases, and
Acc(Qcounter) denotes the accuracy on questions
where the correct answer contradicts such biases
(non-stereotypical). A larger positive ∆bias indi-
cates that the model performs better when the
ground truth aligns with societal biases, suggest-
ing the presence of inherent social biases in the
model’s decision-making process. Conversely, a
score closer to zero indicates more balanced per-
formance across both types of contexts.
Uncertainty score: To measure model confidence,
we adopt the approach of Kim et al. (2024), employ-
ing normalized Shannon entropy (Shannon, 1948),
formally defined as Equation 4,

Uncertainty score = − 1

N

N∑
i=1

pi log pi (4)

a score closer to 0 indicates high consistency, while
a score near 1 reflects selections that are almost
random.

4.2.1. Model-level Results

Table 3 reports the accuracy, bias, and uncertainty
scores of the evaluated models under ambiguous
and disambiguated contexts.

Overall, model accuracy tends to be higher in
the disambiguated setting, suggesting that clearer
context helps models make more reliable predic-
tions. However, this improvement is not consistent
across all systems: while several models show
strong gains after disambiguation, a few experi-
ence notable drops in performance, indicating that
some may rely too heavily on ambiguous cues.

Bias-scores generally decrease once inputs are
disambiguated, implying that additional context can
mitigate—but not fully eliminate—systematic dis-
tortions. The persistence of non-trivial bias values
across both settings highlights that contextual clar-
ity alone is insufficient to ensure fairness in model
predictions.

Uncertainty patterns show mixed trends. In
many cases, models exhibit lower uncertainty un-
der disambiguated inputs, reflecting greater confi-
dence when ambiguity is reduced. Yet, certain sys-
tems demonstrate the opposite effect, becoming
less confident despite improved accuracy, which
points to more complex calibration behaviors.

Taken together, these findings show that disam-
biguation often improves accuracy and reduces
bias for most models, though sometimes at the

expense of higher uncertainty. The observed trade-
offs across model families indicate that perfor-
mance, fairness, and confidence remain interde-
pendent dimensions that are differently balanced
across open-source, closed-source, and domestic
models.

Table 3: Accuracy, Bias Score, and Uncertainty
of various LLMs on the Ambiguous and Disam-
biguated subsets of the PBBQ dataset, averaged
across all 16 categories.

Model Name Ambiguous Disambiguated

Acc Bias-Score Uncertainty-score Acc Bias-Score Uncertainty-score

Mistral-7B-Instruct 0.7656 0.0274 0.4288 0.3539 0.1790 0.5187
Qwen2.5-7B-Instruct 0.5951 0.1273 0.4848 0.7072 0.0189 0.2763
Qwen3-14B 0.6046 0.0922 0.5103 0.7800 -0.0625 0.3184
Llama-3.1-8B-Instruct 0.2173 0.1202 0.8363 0.7967 0.0254 0.5643

GPT 4o 0.9310 0.0620 0.0568 0.7018 -0.0591 0.1256

Maral-7B-alpha-1 0.2311 0.0019 0.9697 0.3824 0.0234 0.9631
Dorna-Llama3-8B-Instruct 0.5241 0.0782 0.8782 0.5947 0.1115 0.7497
Dorna-legacy 0.7046 0.0736 0.7857 0.5591 0.0836 0.7013

4.2.2. Category-level Results

Table 4 presents the average accuracy, bias-score,
and uncertainty score for ambiguous and disam-
biguated contexts.

Overall, accuracy increases across most cate-
gories once the context is disambiguated, reaf-
firming that clearer input information improves
model reliability. However, this trend is not univer-
sal—some categories show inertia or even slight
drops, indicating that disambiguation alone does
not guarantee performance gains when the cues
are subtle or tied to culture.

Bias-scores remain present in nearly all cate-
gories, though their direction and magnitude vary.
In many cases, disambiguation reduces the overall
bias, suggesting that clearer context helps miti-
gate representational distortions. Yet, several cat-
egories still show persistent or shifting bias pat-
terns, reflecting that social and cultural dimensions
continue to influence model behavior even after
disambiguation.

Uncertainty provides an additional perspective
on model confidence. Ambiguous inputs generally
lead to higher uncertainty, showing that models
struggle when contextual information is incomplete.
After disambiguation, uncertainty tends to decline
in most categories, consistent with improved un-
derstanding. Nonetheless, the reduction is un-
even—some dimensions exhibit marked decreases
in uncertainty, while others change only modestly.
In a few socially sensitive categories, uncertainty
remains elevated despite accuracy improvements,
suggesting continued instability in how models pro-
cess contextually complex or identity-related con-
tent.

Taken together, these findings highlight that
while disambiguation generally enhances both ac-
curacy and confidence, its benefits vary across



categories. Domains tied to cultural, political, or so-
cial identity remain the most challenging, indicating
that the interaction between fairness, confidence,
and contextual understanding is highly dependent
on the nature of the underlying social dimension.

Table 4: Accuracy, Bias Score, and Uncertainty
for the Ambiguous and Disambiguated subsets
of the PBBQ dataset, reported per category and
averaged over all evaluated models.

Category Ambiguous Disambiguated

Acc Bias-Score Uncertainty-score Acc Bias-Score Uncertainty-score

Political Orientation 0.4288 0.1029 0.6792 0.6162 0.0831 0.5562
Age 0.5090 0.1147 0.6332 0.6800 0.0583 0.4791
Profession 0.5991 0.0917 0.6019 0.6223 0.0891 0.5311
Education 0.5790 0.1371 0.6134 0.6914 0.0202 0.4968
Disability 0.5593 0.0807 0.6537 0.7095 0.0830 0.5042
Disease 0.6728 0.0652 0.5424 0.4451 0.0203 0.5556
Domestic Area 0.5262 0.0479 0.5622 0.6706 0.0467 0.4700
Ethnicity 0.6820 0.0219 0.5404 0.5657 -0.1070 0.4941
Family Structure 0.5913 0.0345 0.6479 0.6209 0.0300 0.5317
Gender 0.7613 0.0550 0.5796 0.4502 0.0758 0.5519
Property Ownership 0.4844 0.0963 0.6725 0.6263 -0.0201 0.5514
Nationality 0.6700 0.0522 0.6023 0.5234 0.1064 0.5788
Physical appearance 0.4794 0.0720 0.6709 0.7259 0.0447 0.5206
Religion 0.6526 0.0794 0.6061 0.6407 0.0509 0.5310
Socio-Economic Status 0.3656 0.1088 0.6614 0.6600 0.0775 0.5146
Sexual Orientation 0.5861 0.0052 0.6340 0.5039 -0.0187 0.5677

5. Discussion

Do LLMs Perform like Humans?
As discussed in the experimental section, all eval-
uated language models exhibit biases in their out-
puts. These biases primarily arise from the in-
herent limitations and distributions present in their
training data. This raises a key question: To what
extent do these model-generated biases align with
human social biases?

To address this, we examined the alignment be-
tween stereotypical biases produced by the models
and those held by humans. Given Iran’s population
of approximately 90 million, we conducted a survey
with 250 participants, following Cochran’s sampling
method (Cochran, 1977) to ensure a margin of er-
ror below 0.062, which is considered acceptable.
Participants were asked to indicate their agreement
with a set of stereotype-based statements, answer-
ing either “Yes” or “No” For the models, we ana-
lyzed the log-probabilities assigned to the "target
bias choice" (stereotypical choice) and the "counter
bias choice" ((stereotypical choice) in response to
ambiguous prompts, excluding the "unknown" op-
tion. We then computed the Kullback–Leibler (KL)
Divergence between the distribution of human re-
sponses and the model outputs to quantify the
alignment.

The KL divergence values—Qwen-3-14B
(0.1809), Dorna1 (0.1624), Dorna-Legacy
(0.1559), GPT-4o (0.1651), Qwen-2.5-7B (0.2401),
Maral (0.0820), Mistral (0.2436), and LLaMA
(0.1720)—show that Persian-specific models
(Maral, Dorna variants) exhibit lower divergence,
indicating that they reproduce human-like biases
more closely. In addition, the comparison between

Qwen-3-14B and Qwen-2.5-7B shows that the
newer, larger model aligns more closely with
human responses.
why more Ambiguity in Ambiguous Contexts?
Our assessment of LLMs in terms of uncertainty
scores, using the PBBQ dataset as illustrated in
Figure 3, demonstrates that these models exhibit
increased uncertainty when faced with ambiguous
contexts. As noted by Kalai et al. (2025), LLMs
are generally not equipped to respond with uncer-
tainty phrases, such as “I don’t know” During their
post-training phase, techniques like Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) often prioritize encouraging models
to provide definite answers rather than admitting
uncertainty. This issue becomes particularly chal-
lenging in ambiguous situations where responding
with “unknown” would be most appropriate, yet this
kind of response is not available within the models’
explicit output options.

Figure 3: Uncertainty score box plot (0-1) across
models on the PBBQ dataset for both ambiguous
and disambiguated contexts.

6. Conclusion

We developed the first Persian dataset for evaluat-
ing biases in a Question Answering (QA) task. This
achievement marks a significant advancement in
the pursuit of ethical large language models (LLMs)
for low-resource, high-user languages like Persian.
Our dataset, adapted from the BBQ framework,
provides a strong foundation for further dataset
development tailored to bias detection.

In this study, we created this dataset by ana-
lyzing social media and collaborating with subject
matter experts. Our findings indicate that all exam-
ined LLMs exhibit bias, including Persian fine-tuned
ones like Dorna. While Persian-specific fine-tuned
models show better accuracy and bias scores than
their base models in ambiguous contexts, they are
less effective in disambiguated ones.

Furthermore, our results suggest that the perfor-
mance of LLMs is closely linked to the represen-
tation of Persian individuals. This highlights the
importance of culturally and contextually rich data



in training effective Persian LLMs. Looking ahead,
we aim to expand PBBQ to enable a more detailed
analysis of social biases in Persian LLMs. We be-
lieve that PBBQ will serve as a valuable benchmark
for assessing biases.

7. Ethics Statement

The release of our PBBQ dataset raises impor-
tant ethical considerations, given that it contains
instances of social biases and stereotypes. The
dataset is provided strictly for research purposes,
particularly for examining and mitigating bias in
Persian-language models. It must not be used as
training data to generate, reinforce, or disseminate
harmful or discriminatory content targeting specific
demographic groups. We will clearly specify terms
of use and explicitly prohibit any malicious or ex-
ploitative applications. We strongly encourage all
researchers to leverage this dataset for construc-
tive purposes, such as developing fairer and more
inclusive natural language processing systems.

8. Limitations

Model scale:
We were unable to include language models with
very higher numbers of parameters (e.g., 70B+)
because of budgetary and computational resource
constraints. As a result, our evaluation may not
fully reflect the behavior of the larger state-of-the-
art systems, which could exhibit different patterns
of bias or robustness compared to the models we
tested.
Intersectional biases:
Our benchmark investigates bias topics one at a
time, without analyzing scenarios where multiple
bias topics (e.g., gender and socioeconomic sta-
tus, or age and disability) appear simultaneously.
Studying such intersectional cases is important,
since real-world biases often emerge in overlap-
ping and compounding ways.
Sample size:
The stereotypes in PBBQ were validated using
responses from 250 participants, which provided
valuable diversity across demographics but still rep-
resents a relatively modest sample given the large
Persian people population. A larger and more var-
ied participant pool could have captured additional
perspectives and strengthened the representative-
ness of the dataset.
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A. Links

The social media pages investigated in this study
are listed below. These pages were specifically
selected for their relevance to ethnic and cultural
themes, as well as their popularity and diversity
of content. In addition to these accounts, we an-
alyzed individual posts from X (formerly Twitter),
Instagram and Telegram messenger ensuring a
richer and more representative dataset.

• https://t.me/weeklyofnationaljokes

• https://t.me/shitemarket

• https://t.me/jok_Qomiyati

• https://t.me/JokeNEZH

• https://t.me/ghomiyati_jokes

• https://www.instagram.com/liberalabad

• https://www.instagram.com/hamid.mahi.
sefat/

• https://www.instagram.com/
hamidrezamahisefat

• https://x.com/wrws224559

• https://t.me/feminism_everyday_womxn

• https://x.com/officialsiasi?lang=fa

• https://x.com/judgenz1990?s=11

• https://t.me/amirfar2021

• https://x.com/antipantork1?s=21

• https://t.me/zedde_pesar

• https://t.me/agammdplus

• https://t.me/twtenghelabi

• https://t.me/NotFeminist

• https://t.me/MGTOW_Every_Man

• https://t.me/FemenMeme

• https://t.me/persian_cringe

• https://x.com/hasan_abbasi

• https://x.com/abdolah_abdi

• https://x.com/saeid_mohammad_

• https://x.com/sangtarash_azad

• https://x.com/AN_IRANIST

• https://x.com/Savakzadeh

• https://x.com/Taeb_Mahdi

• https://x.com/mostafatajzade

• https://x.com/Sama19861365

• https://x.com/Forouzandy

• https://x.com/rezahn56

• https://x.com/kurdish_union

• https://x.com/arbabkohestan

• https://x.com/salar_seyf

• https://x.com/nima?s=21

• https://x.com/Raspotini

• https://x.com/Mahmood8141

• https://x.com/hasan_abbasi?s=21

B. Text Diversity Metrics

This section outlines the metrics employed to eval-
uate the diversity and similarity within our dataset.
Each metric provides unique insights into the lexi-
cal and semantic characteristics of the text data.

B.1. Self-BLEU scores

Self-BLEU, a metric to evaluate the diversity of the
generated data. Since BLEU aims to assess how
similar two sentences are, it can also be used to
evaluate how one sentence resembles the rest in a
generated collection. Regarding one sentence as
hypothesis and the others as reference, we can cal-
culate BLEU score for every generated sentence,
and define the average BLEU score to be the Self-
BLEU of the document. A higher Self-BLEU score
implies less diversity of the dataset.

B.2. Type-Token Ratio (TTR)

assesses lexical diversity by calculating the ratio of
unique words to the total word count in a text. It is
defined as:

TTR(T ) =
# unique words (types) in T

# total words (tokens) in T

A higher TTR indicates a richer vocabulary and
greater lexical diversity. To focus on meaningful
variation, stop words have been removed from the
analysis.
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B.3. N-Gram Diversity Score (NGD)

This metric extends the the TTR by evaluating the
diversitytoken sequences. It computes the ratio
of unique n-grams to total n-grams within concate-
nated text data, capturing diversity across multiple
lengths of token sequences:

NGD(D) =

4∑
n=1

# unique n-grams in D⊕
#n-grams in D⊕

where D⊕ represents the dataset concatenated
into a single string. This score highlights diversity
in the order of token sequences, providing a more
nuanced understanding of text variety

B.4. Homogenization Score

This homogenization score uses BERTScore to
measure similarity between documents in Equa-
tion 1. Unlike the other scores, it does not count
the repetition of specific tokens, but instead uses
BERT embeddings to (ideally) capture ’semantic’
similarity beyond verbatim n-gram matches.

hom(D) =
1

|D| − 1

∑
d,d′∈D
d̸=d′

sim(d, d′)

C. Prompts

For clarity, only the English translation of the
prompt used to generate the disambiguated con-
text is reported below.

Prompt for generating the disam-
biguated context

Strict and Mandatory Instructions:
You must complete a text based on the fol-
lowing logic.
1. Story Logic (mandatory):
- Common stereotype: [stereotype]
- Reverse logic (which you must im-
plement): In your story, the character
[answer − negative] must have the trait
[question− negative], and the character
[answer − non− negative] must have the
trait [question− non− negative].
2. Initial text: [ambiguous− context]
3. Final task: Write a continuation of the "ini-
tial text" in one or two sentences that fully
implements the inverted logic described in
Section 1. Do NOT repeat the initial text
under any circumstances. """

D. Attributes of Participants

To ensure diversity among the survey participants,
we collected demographic information. Figure 4
shows the distribution of gender, Figure 5 presents
the distribution of age, and Figure 6 illustrates the
distribution of monthly income. The distributions
of educational attainment, sexual orientation, reli-
gious affiliation, and political orientation are shown
in Figures 7, 8, 9, and 10, respectively.

56%

44%

Male
Female

Figure 4: Gender distribution of participants: 140
male, 110 female



34%

27.2%

20.8% 10.8%

7.2%

18-24
25-34
35-44
45-54
55+

Figure 5: Age distribution of participants: 85 were
aged 18–24, 68 were 25–34 , 52 were 35–44, 27
were 45–54, and 18 were 55+

18.8%35.2%

16.8%
12.8%

8%
3.2%
5.2%

Below 100
100 –200
200 –310
310 –510
510 –750
750+
Prefer not to say

Figure 6: Income distribution (million IRR): 47 were
below 100, 88 were 100–200, 42 were 200–310,
32 were 310–510, 20 were 510–750, 8 were 750+,
and 13 preferred not to say.

6%

24%

40.8%

22%

5.2%
2%

Less than High School
Diploma
Bachelor’s Degree
Master’s Degree
Ph.D
Post-Ph.D

Figure 7: Education level of participants: 15 had
less than high school, 60 had a diploma, 102 had
a bachelor’s degree, 55 had a master’s degree, 13
had a Ph.D., and 5 had a post-Ph.D

7.6%
79.2%

13.2%

Homosexual
Heterosexual
Prefer not to say

Figure 8: Sexual orientation of participants: 19
identified as homosexual, 198 as heterosexual,
and 33 preferred not to say
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2%2.8%0.8%2.4%
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3.2%

Islam
Christianity
Zoroastrianism
Judaism
Other religions
No religion
Prefer not to say

Figure 9: Religion distribution of participants: 203
reported Islam, 5 Christianity, 7 Zoroastrianism, 2
Judaism, 6 other religions, 19 no religion, and 8
preferred not to say

12%

9.2%
26%

3.2%

21.2%
18.4%

10%

Reformist
Conservative
Monarchist
Communist
Liberal
Republican
Other

Figure 10: Political orientation of participants: 30
were Reformist, 23 were Conservative, 65 were
Monarchist, 8 were Communist, 53 were Liberal,
46 were Republican, and 25 were Other.

E. Overall Results

In this part, you can find more detailed tables of
the obtained results. Tables 5 and 6 respectively
report models accuracy on ambiguous and dis-
ambiguated context for each category, Table 7
provides the bias scores for ambiguous, and Table
8 shows the bias scores for disambiguated cases
and tables 9 and 10 report the uncertainty scores
for the ambiguous and disambiguated contexts.



Table 5: Category-wise ambiguous accuracy (amb-acc) across models.
Model Politics SES Nationality Disease Property Ownership Ethnicity Family Structure Profession Household Gender Age Education Physical Appearance Disability Sexual Orientation Religion

Open-source Models

Qwen2.5-7B-Instruct 0.5602 0.3667 0.8853 0.6044 0.3537 0.5297 0.7650 0.5789 0.4120 0.9609 0.5713 0.4890 0.5241 0.5043 0.7556 0.6605
Qwen3-14B 0.3380 0.2667 0.7965 0.6203 0.9160 0.9669 0.4525 0.5863 0.5926 0.7962 0.3887 0.7831 0.4389 0.5791 0.5333 0.6184
Mistral-7B-Instruct 0.7778 0.6083 0.9070 0.8671 0.5695 0.9604 0.7975 0.8520 0.7037 0.8519 0.6846 0.6140 0.6407 0.6774 0.8722 0.8658
MLlama-3.1-8B-Instruct 0.1296 0.0250 0.2149 0.3386 0.0000 0.1222 0.2650 0.1760 0.1065 0.6275 0.1283 0.2463 0.1296 0.1838 0.3333 0.4500

Close-source Models

GPT 4o 0.6435 0.8250 0.9897 0.9620 0.9986 0.9462 0.9250 0.9350 0.9537 0.9341 0.9090 0.9779 0.9833 1.0000 0.9944 0.9184

Persian Models

Maral-7B-alpha-1 0.1065 0.1167 0.2769 0.3544 0.1245 0.3601 0.1625 0.2171 0.1713 0.2574 0.3082 0.4375 0.0907 0.1496 0.1722 0.3921
Dorna-Llama3-8B-Instruct 0.2685 0.3000 0.4401 0.7563 0.4088 0.5914 0.6250 0.6850 0.4028 0.7553 0.5033 0.3860 0.4444 0.7244 0.5000 0.5947
Dorna-legacy 0.6065 0.4167 0.8492 0.8797 0.8384 0.9791 0.7375 0.7623 0.5324 0.9072 0.5785 0.6985 0.5833 0.6560 0.5278 0.7211

Table 6: Category-wise disambiguated accuracy (dissamb-acc) across models.
Model Politics SES Nationality Disease Property Ownership Ethnicity Family Structure Profession Household Gender Age Education Physical Appearance Disability Sexual Orientation Religion

Open-source Models

Qwen2.5-7B-Instruct 0.6130 0.7867 0.6116 0.5372 0.8190 0.7880 0.7250 0.7944 0.6611 0.3167 0.8136 0.7360 0.8619 0.8915 0.5778 0.7821
Qwen3-14B 0.8222 0.8033 0.6751 0.4427 0.8799 0.8167 0.7495 0.7800 0.8343 0.6565 0.8283 0.8338 0.9228 0.8500 0.7185 0.8668
Mistral-7B-Instruct 0.3815 0.4600 0.2815 0.3390 0.4815 0.1562 0.3695 0.2442 0.3583 0.2349 0.4197 0.3949 0.4903 0.4842 0.2123 0.3547
MLlama-3.1-8B-Instruct 0.7407 0.7683 0.7831 0.7470 0.7689 0.8013 0.7905 0.8335 0.8102 0.5960 0.8149 0.8882 0.9000 0.8923 0.7580 0.8547

Close-source Models

GPT 4o 0.7361 0.7450 0.5129 0.2750 0.7261 0.8451 0.8130 0.8146 0.7981 0.4519 0.8319 0.8353 0.8250 0.7769 0.4654 0.7758

Persian Models

Maral-7B-alpha-1 0.4500 0.4533 0.2598 0.3982 0.4377 0.2632 0.3995 0.3627 0.4250 0.4091 0.4115 0.3522 0.4517 0.4795 0.3383 0.2274
Dorna-Llama3-8B-Instruct 0.6102 0.6367 0.5904 0.3823 0.6449 0.4338 0.5735 0.6205 0.5806 0.5018 0.6982 0.7346 0.6828 0.6654 0.5037 0.6558
Dorna-legacy 0.5759 0.6267 0.4726 0.4390 0.6065 0.4211 0.5465 0.5284 0.5426 0.4345 0.6219 0.7559 0.6728 0.6359 0.4568 0.6084

Table 7: Category-wise bias-score on ambiguous context across different models.
Model Politics SES Nationality Disease Property Ownership Ethnicity Family Structure Profession Household Gender Age Education Physical Appearance Disability Sexual Orientation Religion

Open-source Models

Qwen2.5-7B-Instruct 0.1533 0.1265 0.0827 0.1328 0.1319 0.0964 0.0316 0.1441 0.1631 0.0309 0.1967 0.2637 0.1267 0.2201 -0.0223 0.1592
Qwen3-14B 0.0936 0.1243 0.0523 0.1576 0.0774 0.0273 0.0774 0.0909 0.0558 0.0409 0.2095 0.1198 0.1257 0.1220 -0.0172 0.1174
Mistral-7B-Instruct 0.0064 0.0364 0.0075 -0.0330 -0.0084 0.0046 0.0155 0.0236 0.0669 0.0067 0.0361 0.1447 0.0485 0.0680 0.0045 0.0101
MLlama-3.1-8B-Instruct 0.0776 0.1617 0.1328 0.1212 0.0416 0.0224 0.0424 0.2304 0.2077 0.1303 0.2107 0.2477 0.0446 0.0705 0.0581 0.1229

Close-source Models

GPT 4o 0.3252 0.1415 0.0133 0.0339 0.0136 0.0271 0.0486 0.0573 0.0481 0.0622 0.0881 0.0265 0.0202 0.0000 0.0052 0.0805

Persian Models

Maral-7B-alpha-1 -0.0016 0.0030 0.0022 -0.0036 0.0009 -0.0028 -0.0005 0.0031 0.0029 0.0052 0.0028 0.0076 0.0070 0.0026 -0.0008 0.0020
Dorna-Llama3-8B-Instruct 0.0800 0.1305 0.0739 0.0599 0.0692 0.0045 0.0188 0.0989 0.1397 0.0864 0.1012 0.1429 0.0929 0.0479 0.0161 0.0887
Dorna-legacy 0.0884 0.1466 0.0526 0.0528 0.0567 -0.0047 0.0425 0.0856 0.0866 0.0778 0.0721 0.1438 0.1104 0.1143 -0.0023 0.0548

Table 8: Category-wise Bias-Score on disambiguated context across different models.
Model Politics SES Nationality Disease Property Ownership Ethnicity Family Structure Profession Household Gender Age Education Physical Appearance Disability Sexual Orientation Religion

Open-source Models

Qwen2.5-7B-Instruct 0.2556 -0.0067 0.1095 -0.2793 -0.0225 -0.0860 0.0020 0.1562 0.1519 0.1281 0.0020 -0.1574 -0.0139 0.0085 -0.0050 0.0589
Qwen3-14B -0.0981 -0.0867 -0.0300 -0.1951 0.0090 0.0662 -0.0690 0.1308 -0.1574 -0.0533 -0.1415 -0.1676 -0.0267 -0.0350 -0.1633 0.0179
Mistral-7B-Instruct 0.3333 0.3267 0.0651 0.3683 0.2446 -0.1358 0.2090 0.0789 -0.0389 -0.1210 0.3401 0.2309 0.3039 0.4111 0.1378 0.1095
MLlama-3.1-8B-Instruct 0.2259 0.0433 0.2913 -0.1256 -0.0198 -0.2052 -0.0290 0.0929 0.0722 0.1459 0.0570 0.0118 -0.0656 0.0513 -0.1844 0.0442

Close-source Models

GPT 4o -0.0981 -0.0233 -0.1229 -0.1183 -0.1017 0.1913 -0.1180 0.1653 -0.0444 -0.2206 -0.0609 -0.0971 -0.0244 -0.0974 -0.0778 -0.0968

Persian Models

Maral-7B-alpha-1 -0.8222 0.0867 -0.2386 0.2037 0.1787 0.4558 -0.2550 0.4589 -0.1537 -0.1418 0.0865 -0.2574 0.2856 0.2479 0.1481 0.0905
Dorna-Llama3-8B-Instruct 0.4981 0.1667 0.4928 0.1280 0.0135 -0.4812 0.3050 -0.0913 0.0056 0.3782 0.0780 0.3015 -0.1022 0.0487 -0.0642 0.1074
Dorna-legacy 0.3704 0.1133 0.2841 0.1805 0.0722 -0.6611 0.1950 -0.2788 0.0037 0.4909 0.1048 0.2971 0.0011 0.0291 0.0593 0.0758

Table 9: Category-wise uncertainty score on ambiguous context across different models
Model Politics SES Nationality Disease Property Ownership Ethnicity Family Structure Profession Household Gender Age Education Physical Appearance Disability Sexual Orientation Religion

Open-source Models

Qwen2.5-7B-Instruct 0.5039 0.5836 0.3853 0.3839 0.3598 0.4461 0.5144 0.5170 0.6220 0.2662 0.5084 0.5366 0.5618 0.5824 0.5502 0.4346
Qwen3-14B 0.6950 0.6924 0.5183 0.3535 0.0476 0.0867 0.6828 0.5320 0.6215 0.5364 0.5637 0.4870 0.6188 0.6005 0.6377 0.4908
Mistral-7B-Instruct 0.4697 0.5444 0.3356 0.3809 0.5227 0.2340 0.3038 0.3290 0.5428 0.3672 0.5261 0.3663 0.5257 0.5326 0.4737 0.4064
MLlama-3.1-8B-Instruct 0.8869 0.7476 0.8833 0.8047 0.8448 0.8773 0.9153 0.7828 0.8220 0.8572 0.7285 0.8281 0.8792 0.8561 0.8077 0.8597

Close-source Models

GPT 4o 0.1745 0.1228 0.0192 0.0486 0.0589 0.0476 0.0776 0.0419 0.0552 0.0242 0.0803 0.0436 0.0424 0.0006 0.0110 0.0607

Persian Models

Maral-7B-alpha-1 0.9691 0.9559 0.9668 0.9761 0.9393 0.9713 0.9656 0.9690 0.9841 0.9669 0.9697 0.9764 0.9755 0.9585 0.9851 0.9866
Dorna-Llama3-8B-Instruct 0.8810 0.8510 0.9134 0.8262 0.9175 0.9004 0.9099 0.8705 0.8784 0.8489 0.8673 0.8491 0.9193 0.8917 0.8321 0.8942
Dorna-legacy 0.8538 0.7939 0.7963 0.5654 0.8073 0.7600 0.8139 0.7730 0.8541 0.7697 0.8213 0.8198 0.8445 0.8072 0.7741 0.7162

Table 10: Category-wise uncertainty score on disambiguated context across different models
Model Politics SES Nationality Disease Property Ownership Ethnicity Family Structure Profession Household Gender Age Education Physical Appearance Disability Sexual Orientation Religion

Open-source Models

Qwen2.5-7B-Instruct 0.3393 0.2626 0.3788 0.3850 0.0922 0.1467 0.2972 0.2974 0.2585 0.3948 0.1956 0.2833 0.2635 0.1671 0.3907 0.2686
Qwen3-14B 0.3647 0.3629 0.4271 0.3973 0.0297 0.0828 0.4386 0.3789 0.3604 0.3787 0.2582 0.2939 0.2537 0.3525 0.3841 0.3311
Mistral-7B-Instruct 0.5693 0.5446 0.5441 0.4657 0.4881 0.5508 0.4694 0.4882 0.5828 0.4488 0.5433 0.4829 0.5175 0.4785 0.5873 0.5374
MLlama-3.1-8B-Instruct 0.5704 0.4845 0.6336 0.6264 0.6457 0.5518 0.5498 0.5455 0.5464 0.6435 0.4301 0.5246 0.5681 0.5470 0.5908 0.5703

Close-source Models

GPT 4o 0.1099 0.1579 0.1344 0.1004 0.1254 0.1132 0.0927 0.0952 0.1115 0.2180 0.0999 0.0840 0.1435 0.1304 0.1612 0.1316

Persian Models

Maral-7B-alpha-1 0.9758 0.9553 0.9753 0.9569 0.9505 0.9777 0.9547 0.9623 0.9816 0.9497 0.9495 0.9757 0.9742 0.9194 0.9734 0.9774
Dorna-Llama3-8B-Instruct 0.7582 0.6749 0.7838 0.7886 0.7423 0.7815 0.7390 0.7660 0.8055 0.7385 0.6742 0.7123 0.7677 0.7547 0.7566 0.7518
Dorna-legacy 0.7622 0.6742 0.7536 0.7246 0.6858 0.7482 0.7123 0.7153 0.7645 0.6435 0.6822 0.6175 0.6764 0.6840 0.6978 0.6794
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