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Abstract

Background

Emergency admissions are a major source of healthcare spending. We aimed to derive, val-

idate, and compare conventional and machine learning models for prediction of the first

emergency admission. Machine learning methods are capable of capturing complex interac-

tions that are likely to be present when predicting less specific outcomes, such as this one.

Methods and findings

We used longitudinal data from linked electronic health records of 4.6 million patients aged

18–100 years from 389 practices across England between 1985 to 2015. The population

was divided into a derivation cohort (80%, 3.75 million patients from 300 general practices)

and a validation cohort (20%, 0.88 million patients from 89 general practices) from geo-

graphically distinct regions with different risk levels. We first replicated a previously reported

Cox proportional hazards (CPH) model for prediction of the risk of the first emergency

admission up to 24 months after baseline. This reference model was then compared with 2

machine learning models, random forest (RF) and gradient boosting classifier (GBC). The

initial set of predictors for all models included 43 variables, including patient demographics,

lifestyle factors, laboratory tests, currently prescribed medications, selected morbidities,

and previous emergency admissions. We then added 13 more variables (marital status,

prior general practice visits, and 11 additional morbidities), and also enriched all variables

by incorporating temporal information whenever possible (e.g., time since first diagnosis).

We also varied the prediction windows to 12, 36, 48, and 60 months after baseline and com-

pared model performances. For internal validation, we used 5-fold cross-validation. When

the initial set of variables was used, GBC outperformed RF and CPH, with an area under the

receiver operating characteristic curve (AUC) of 0.779 (95% CI 0.777, 0.781), compared to
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0.752 (95% CI 0.751, 0.753) and 0.740 (95% CI 0.739, 0.741), respectively. In external vali-

dation, we observed an AUC of 0.796, 0.736, and 0.736 for GBC, RF, and CPH, respec-

tively. The addition of temporal information improved AUC across all models. In internal

validation, the AUC rose to 0.848 (95% CI 0.847, 0.849), 0.825 (95% CI 0.824, 0.826), and

0.805 (95% CI 0.804, 0.806) for GBC, RF, and CPH, respectively, while the AUC in external

validation rose to 0.826, 0.810, and 0.788, respectively. This enhancement also resulted in

robust predictions for longer time horizons, with AUC values remaining at similar levels

across all models. Overall, compared to the baseline reference CPH model, the final GBC

model showed a 10.8% higher AUC (0.848 compared to 0.740) for prediction of risk of emer-

gency admission within 24 months. GBC also showed the best calibration throughout the

risk spectrum. Despite the wide range of variables included in models, our study was still

limited by the number of variables included; inclusion of more variables could have further

improved model performances.

Conclusions

The use of machine learning and addition of temporal information led to substantially

improved discrimination and calibration for predicting the risk of emergency admission.

Model performance remained stable across a range of prediction time windows and when

externally validated. These findings support the potential of incorporating machine learning

models into electronic health records to inform care and service planning.

Author summary

Why was this study done?

• We wanted to compare machine learning models to conventional statistical models that

are used for risk prediction.

• We also aimed to unlock the power of embedded knowledge in large-scale electronic

health records.

• Ultimately, we wanted to provide a tool to help healthcare practitioners accurately pre-

dict whether a patient may require emergency care in the near future.

What did the researchers do and find?

• We developed several models for predicting the risk of first emergency admission: 1

Cox proportional hazards (CPH) model and 2 machine learning models. We tested vari-

ous sets of variables in all models. While the interactions in the CPH model were explic-

itly specified, the machine learning models benefited from an automatic discovery of

the variable interdependencies.

• We validated all models (internally and externally) on a large cohort of electronic health

records for over 4.6 million patients from 389 practices across England. For internal val-

idation we used 80% of the data (3.75 million patients from 300 general practices) and
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performed a 5-fold cross-validation. For external validation we used the remaining 20%

of the data (0.88 million patients from 89 general practices) from geographically distinct

regions with different risk levels.

• We found that the use of machine learning methods and the addition of more variables

and temporal information led to substantially improved discrimination and calibration

for predicting the risk of emergency hospital admission. Also machine learning model

performance remained stable across a range of prediction time windows and when

externally validated.

What do these findings mean?

• The improved and more robust prediction of the risk of emergency hospital admission

as a result of the combination of more variables, information about their timing, and

better models could help guide policy and practice to reduce the burden of unscheduled

admissions.

• By deploying such models in practices, physicians would be able to accurately monitor

the risk score of their patients and take the necessary actions in time to avoid unplanned

admissions.

Introduction

Emergency hospital admissions are a major source of healthcare spending [1,2]. In the UK,

there were over 5.9 million recorded emergency hospital admissions in 2017, an increase of

2.6% compared to the preceding year [3]. Given the avoidable nature of a large proportion of

such admissions, there has been a growing research and policy interest in effective ways of

averting them. To guide decision-making, several risk prediction models have been reported

[4–9]. However, on average, models tend to have a poor ability to discriminate risk [1,2,10,11].

This might be in part due to limited access to or use of information about risk predictors and

their timing, in particular when models use hospital admissions data only. In addition, the

relatively non-specific nature of unscheduled hospital admissions—which are often a conse-

quence of a range of health problems as well as provider preferences—suggests the presence of

complex relationships between predictors and outcome, which conventional statistical meth-

ods are limited at capturing.

The growing availability of comprehensive clinical datasets, such as linked electronic health

records (EHRs) with rich information from millions of individuals, together with advances in

machine learning offer new opportunities for development of novel risk prediction models

that are better at predicting risk. Such models have been shown to outperform standard statis-

tical models, particularly, in settings where clinical data have been richer, and relationships

more complex [12–14].

Building on earlier studies and emerging analytical opportunities, we aimed to assess

whether application of 2 standard machine learning techniques could enhance the prediction

of emergency hospital admissions in the general population compared with a high-performing

Cox proportional hazards (CPH) model that also used large-scale EHRs. [8] To better under-

stand when and how machine learning models might achieve a higher performance, we aimed

to develop and compare a series of models. In the first step, we used the same set of variables

Emergency admission risk prediction with machine learning

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002695 November 20, 2018 3 / 18

https://doi.org/10.1371/journal.pmed.1002695


and prediction window (24 months after baseline) as in the previous CPH model. In the next

steps, we added more variables and included information about variable timing to the models.

To further test the hypothesis that the predictive ability of machine learning models is stronger

than that of conventional models when outcomes in the more distant future are to be predicted

(because of their ability to better capture multiple known and unknown interactions), we fur-

ther changed the time horizon for risk prediction to shorter and longer periods.

Methods

Study design, data source, and patient selection

The study was conducted using linked EHRs from the UK Clinical Practice Research Datalink

(CPRD) study since its inception in 1 January 1985 to 30 September 2015 (https://www.cprd.

com) [15]. The CPRD database is pseudo-anonymised patient data from 674 general practices

in the UK, covering approximately 7% of the current UK population, and is broadly represen-

tative of the UK population by age, sex, and ethnicity. It links primary care records with dis-

charge diagnoses from Hospital Episode Statistics [16] and mortality data from national death

registries (Office for National Statistics) with a coding system equivalent to the World Health

Organization International Classification of Diseases–10th Revision (ICD-10) [17]. The CPRD

dataset is one of the most comprehensive prospective primary care databases, the validity of

which has previously been reviewed elsewhere [18,19]. In this study, a subset of the CPRD

dataset—which covers different regions of England—was used. The scientific approval for this

study (protocol no: 17_224R2) was given by the CPRD Independent Scientific Advisory Com-

mittee, and no additional informed consent was required as there was no individual patient

involvement [20].

We considered all patients aged 18 to 100 years with at least 1 year of registration with a

general practice in this study, and excluded those without a valid National Health Service

(NHS) number or missing information on Index of Multiple Deprivation (IMD), an area-

based socioeconomic status indicator, with increasing level of deprivation with higher scores

[21]. Similar to our benchmark CPH model (QAdmissions) [8], the entry date to the study for

each patient was defined as the latest of their 18th birthday or date of first registration with a

practice plus 1 year, provided that this date is before the baseline (1 January 2010). From the

total of 7,612,760 patients in the database, 4,637,297 patients met these selection criteria. On

average we had 405 months of recorded data per patient (minimum 5, maximum 977, stan-

dard deviation 235, median 362), which summed up to a total of over 1.86 billion patient-

months of data. We censored patients at the earliest date of first emergency hospital admission,

death, transfer out of practice, or end of the study.

Predictors

We used 3 different sets of predictors (variables used in the prediction models). In the first set

of predictors, referred to as QA, we included 43 variables from the established QAdmissions

model [8], covering patient demographics (age, sex, and ethnicity), lifestyle factors (socioeco-

nomic status, body mass index [BMI], smoking status, and alcohol consumption), strategic

health authority (SHA) (region), family history of chronic disease, various laboratory tests, 16

comorbidities, 6 prescribed medications, and previous emergency admissions. In the second

set of predictors, referred to as QA+, we extended QA by adding 13 new predictors, including

marital status, 11 new comorbidities, and the number of general practice visits in the year

before baseline. In the third set of predictors, referred to as T (for temporal), we modified

some of the QA+ predictors to hold temporal information: instead of a binary variable for

diagnosis of comorbidities, we considered the time since first recorded diagnosis; instead of
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previous utilisation of healthcare service, we considered time since last use of healthcare ser-

vice; and instead of a binary value for laboratory tests being recorded, we considered time

since the latest laboratory tests. Table 1 shows the complete list of predictors, and how these

predictors have been represented in each of our variable sets.

Data missingness for each variable can be found in Table 2. For laboratory tests and clinical

measurements, we marked the missingness as a binary variable (recorded/not recorded). Clini-

cal diagnoses (morbidities) were assumed to be present only if they had been recorded. Miss-

ing data for BMI (29%), smoking status (17%), and alcohol intake (29%) were imputed using

multiple imputation with chained equations [22–24] and combined using Rubin’s rule. It is

important to note that for these 3 variables, data are not missing at random. Therefore, there is

always a risk of bias when imputation is employed. However, this limitation tends to be largely

relevant to epidemiological studies that seek to identify specific risk factors rather than risk

prediction overall. Nevertheless, we ran the models with and without imputation and observed

that the differences in outcomes between models remain pretty much constant. These results

are reported in S1 Table. Indeed, the fact that the imputed data have not led to substantial bias

in our study can be directly assessed with the calibration plots, which show a good match

between the predicted and actual probabilities of outcomes.

Finally, we ended up with 58, 80, and 121 variables for the QA, QA+, and T predictor sets,

respectively.

Outcome and time windows

The outcome of interest was the first emergency admission to hospital after baseline (1 January

2010), as recorded by the general practice, using the Read Codes shown in S2 Table. The QAd-

missions model reported model performance for outcomes occurring within a 24-month time

window after baseline. In our primary analyses we chose the same time window, but to further

assess model stability for predicting outcomes during different time frames, we varied the pre-

diction window to shorter (12 months) and longer periods (36, 48, and 60 months) after base-

line. Unless stated otherwise, where we refer to the outcome, we consider the 24-month time

window.

Derivation and validation of models

We first replicated the CPH model as the benchmark model [8]. This model was based on the

same predictor variables in [8] and included all the interaction and fractional polynomial

terms as previously reported. Since QAdmissions reported results separately for men and

women, we also analysed the results stratified by sex. However, in the absence of any material

difference by sex, and for brevity, we combined data for men and women in subsequent

analyses.

We compared the CPH model to 2 machine learning models, namely gradient boosting

classifier (GBC) [25] and random forest (RF) [26]. Both GBC and RF models were used as

ensemble models based on decision trees [27], but each represented a distinct family of ensem-

ble learning methods [28]—boosting [29,30] and bagging [31], respectively. Boosting refers to

any ensemble method that can combine several weak learners into a strong learner. The gen-

eral idea of most boosting methods is to train predictors sequentially, each trying to correct its

predecessor. By contrast, bagging uses the same training algorithm multiple times in parallel

(e.g., a RF employs multiple decision trees), but trains them on different random subsets of the

data. When sampling is performed with replacement, this method is called bagging. These 2

models were chosen because they are shown to outperform other machine learning models

on a variety of datasets, are fairly robust and applicable to big datasets, and require little

Emergency admission risk prediction with machine learning

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002695 November 20, 2018 5 / 18

https://doi.org/10.1371/journal.pmed.1002695


Table 1. Predictors considered, and how they are represented in CPRD and in our models.

Category Predictor Representation in CPRD Representation in models In

QA

In

QA+

In

T

Demographics Age Year of birth Computed based on mid-year of year of

birth

� � �

Sex Binary variable (male/female) Binary variable � � �

Ethnicity Ethnicity (categorical value) Categorical variable � � �

Lifestyle and family

history

Socioeconomic status Index of Multiple Deprivation Numeric variable on a scale of 1 to 5 � � �

BMI Weight measurement

recorded repeatedly in various

clinic visits

BMI based on height and most recent

recorded weight

� � �

Smoking status Current tobacco use, in terms

of number of cigars/cigarettes

per day (recorded repeatedly)

Categorical variable for latest status: non-

smoker, ex-smoker, light smoker (less than

10 cigarettes/day), moderate smoker (10–20

cigarettes/day), heavy smoker (more than 20

cigarettes/day), smoker (amount not

recorded)

� � �

Alcohol intake Current alcohol consumption,

in terms of units of alcohol

per day (recorded repeatedly)

Categorical variable for latest status: non-

drinker, ex-drinker, trivial (less than 1 unit/

week), light (1–2 units/week), moderate (3–6

units/week), heavy (7–9 units/week), very

heavy (more than 9 units/week), drinker

(amount not recorded)

� � �

Family history of chronic disease Binary variable (yes/no) Binary variable (yes/no) � � �

Strategic health authority (region) Categorical variable Categorical variable � � �

Marital status Categorical variable Categorical variable � �

Use of care Previous emergency admissions Read Code and date of event Number of occurrences during last year � � �

Time since last occurrence (in days) �

Prior GP visits (consultations) Read Code and date of event Number of occurrences during last year � �

Time since last occurrence (in days) �

Total duration spent in GP visits (minutes) �

Clinical diagnoses

(comorbidities)

Diabetes, atrial fibrillation, cardiovascular

disease, congestive cardiac failure, venous

thromboembolism, cancer, asthma or COPD,

epilepsy, falls, manic depression or

schizophrenia, chronic renal disease, chronic

liver disease or pancreatitis, valvular heart

disease, treated hypertension, rheumatoid

arthritis or SLE, depression (QOF definition)

Read Code and date of entry One separate binary variable for each

disease, 16 variables in total

� �

Time since first diagnosis (in days)—1

separate variable for each disease, 16

variables in total

�

Arthritis, connective tissue disease, hemiplegia,

HIV/AIDS, hyperlipidaemia, learning

disability, obesity, osteoporosis, peripheral

arterial disease, peptic ulcer disease, substance

abuse

Read Code and date of entry One separate binary variable for each

disease, 11 variables in total

�

Time since first diagnosis (in days)—1

separate variable for each disease, 11

variables in total

�

Clinical measures

and laboratory

tests

Systolic blood pressure, haemoglobin,

cholesterol/HDL, liver function test (γ-GT,

aspartate aminotransferase, or bilirubin),

platelets, ESR

Numeric value for result and

date of measurement

Binary (yes/no) variable for if recorded—1

variable per test

� �

Numeric variable for most recent result—1

variable per test

� � �

Binary variable for abnormal result—1

variable per test

� � �

Time since the latest result (in days)—1

variable per test

�

(Continued)
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modification of parameters prior to modelling [32]. These machine learning methods work on

both categorical and numerical variables in any scale, obviating the need for conversion of fea-

tures or normalisation of their values. We tuned the hyperparameters of GBC and RF after a

broad search of parameter space. For brevity, we only report the results with the selected values

for the parameters, which are listed in S3 Table.

To assess the impact of more variables and their timing, all 3 models were repeated using

the extended QA+ and T variables [33]. Consequently, we ended up with 9 different models (3

sets of predictors and 3 modelling techniques) that were compared against each other. In the

final step, we studied the performance of all 9 models for predicting events over shorter and

longer time windows than the original 24-month window.

Evaluation methodology and metrics

To measure the performance of models, both internal and external validation were used. For

external validation, we followed the recommendations of [34] and chose a non-random subset

of data from different SHAs, the regional health commissioning bodies of the NHS. More pre-

cisely, we selected 3 SHAs (North East, North West, and Yorkshire and the Humber) that had

different statistical properties in terms of socioeconomic status and the rate of first emergency

admission as our validation cohort (20% of the total population). We argue that our selection

of 3 SHAs with different statistical characteristics is similar to using an external dataset, and

provides, therefore, a better case for showing whether or not the model is overfitting. This,

however, inevitably means that certain features are not available in the validation cohort. By

taking this approach, we consciously sacrificed model optimisation to assess any possible

model overfitting (and hence poor external validity). For internal validation, we used the

remaining SHAs (80% of the population), and performed a 5-fold cross-validation [35–37].

While our outcome is binary, instead of just predicting 0 or 1 for a patient (being admitted

or not), we predicted the probability of that patient belonging to class 1 (being admitted). This

enabled us to measure the area under the receiver operating characteristic curve (AUC), a dis-

crimination metric, which is equal to the probability that a classifier will rank a randomly cho-

sen positive instance higher than a randomly chosen negative one. Model calibration was

assessed with calibration curves [38], where for a perfectly calibrated model the curve is

mapped to the identity line (y = x). To this end, the prediction space is discretized into 10 bins.

Cases with predicted value in the range [0, 0.1) fall in the first bin, values in the range [0.1, 0.2)

in the second bin, etc. For each bin, the mean predicted value is plotted against the true frac-

tion of positive cases. The reported results for AUC and calibration demonstrate the average

of these values over 5 different folds. The standard deviation across the folds is marked by a

shaded area around the average.

Discrimination and calibration metrics were supplemented with positive and negative pre-

dictive values, as well as precision and recall for all models. Finally, to assess the possibility of

Table 1. (Continued)

Category Predictor Representation in CPRD Representation in models In

QA

In

QA+

In

T

Prescriptions Statin, NSAID, anticoagulant, corticosteroid,

antidepressant, antipsychotic

Date of prescription if

applicable

Binary (yes/no) variable for if prescription

exists

� � �

γ-GT, γ-glutamyl transferase; COPD, chronic obstructive pulmonary disease; CPRD, Clinical Practice Research Datalink; ESR, erythrocyte sedimentation rate; GP,

general practice; HDL, high-density lipoprotein; NSAID, non-steroidal anti-inflammatory drug; QOF, Quality and Outcomes Framework; SLE, systemic lupus

erythematosus.

https://doi.org/10.1371/journal.pmed.1002695.t001
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Table 2. Baseline characteristics of derivation and validation cohorts.

Predictor Derivation cohort

n = 3,749,932

Validation cohort

n = 887,365

Sex, n (%)

Female 1,937,265 (51.66) 454,424 (51.21)

Male 1,812,667 (48.34) 432,941 (48.79)

Age, mean (SD) 51.0 (19.8) 53.1 (19.9)

Marital status, n (%) Missing 2,960,949 (78.96) 735,198 (82.85)

Single 481,753 (12.85) 44,941 (5.06)

Married/stable relationship 481,753 (12.85) 94,000 (10.60)

Separated/widowed 64,441 (1.72) 13,226 (1.49)

IMD score (socioeconomic status), mean (SD) 2.8 (1.4) 3.3 (1.4)

Family history of chronic disease, n (%) 646,360 (17.24) 196,800 (22.18)

BMI Missing, n (%) 1,094,892 (29.20) 242,324 (27.31)

Mean (SD) 26.1 (5.6) 26.4 (5.8)

Strategic health authority (region), n (%)

North East 0 89,004 (10.03)

North West 0 613,460 (69.13)

Yorkshire and the Humber 0 184,901 (20.84)

East Midlands 150,831 (4.02) 0

West Midlands 518,586 (13.83) 0

East of England 540,346 (14.41) 0

South West 558,036 (14.88) 0

South Central 572,791 (15.27) 0

London 817,870 (21.81) 0

South East Coast 591,472 (15.77) 0

Ethnicity, n (%)

Missing 2,625,523 (70.02) 536,806 (60.49)

White 1,039,476 (27.72) 339,466 (38.26)

Indian 16,740 (0.45) 1,571 (0.18)

Pakistani 6,153 (0.16) 2,395 (0.27)

Bangladeshi 1,958 (0.05) 355 (0.04)

Other Asian 7,466 (0.20) 711 (0.08)

Caribbean 9,786 (0.26) 541 (0.06)

Black African 15,499 (0.41) 1,234 (0.14)

Chinese 3,493 (0.09) 810 (0.09)

Other 23,838 (0.64) 3,476 (0.39)

Smoking status, n (%)

Missing 680,838 (18.16) 143,032 (16.12)

Non-smoker 1,678,287 (44.76) 379,395 (42.76)

Ex-smoker 392,806 (10.48) 90,539 (10.20)

Light smoker (<10 cigarettes/day) 286,113 (7.63) 69,704 (7.86)

Moderate smoker (10–20 cigarettes/day) 345,639 (9.22) 102,533 (11.55)

Heavy smoker (>20 cigarettes/day) 250,567 (6.68) 80,713 (9.10)

Smoker, amount not recorded 115,367 (3.08) 21,321 (2.40)

Alcohol intake, n (%)

Missing 1,089,383 (29.05) 235,862 (26.58)

Non-drinker 360,048 (9.60) 82,905 (9.34)

Ex-drinker 24,802 (0.66) 8,339 (0.94)

Trivial (<1 unit/week) 249,020 (6.64) 46,001 (5.18)

Light (1–2 units/week) 447,954 (11.95) 99,739 (11.24)

Moderate (3–6 units/week) 418,400 (11.16) 101,713 (11.46)

Heavy (7–9 units/week) 161,290 (4.30) 40,942 (4.61)

Very heavy (>9 units/week) 627,261 (16.73) 194,999 (21.98)

Drinker, amount not recorded 371,774 (9.91) 76,865 (8.66)

(Continued)

Emergency admission risk prediction with machine learning

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002695 November 20, 2018 8 / 18

https://doi.org/10.1371/journal.pmed.1002695


Table 2. (Continued)

Predictor Derivation cohort

n = 3,749,932

Validation cohort

n = 887,365

Previous use of healthcare service

No emergency admission, n (%) 3,583,848 (95.57) 834,693 (94.06)

1 emergency admission, n (%) 120,614 (3.22) 36,046 (4.06)

2 emergency admissions, n (%) 30,111 (0.80) 10,546 (1.19)

3+ emergency admissions, n (%) 15,359 (0.41) 6,080 (0.69)

Mean number of days since last admission (SD) 170.7 (103.7) 169.6 (105.8)

Mean number of consultations (SD) 21.7 (24.4) 24.4 (25.9)

Mean consultation duration 124.9 (227.5) 163.0 (374.3)

Mean number of days since last consultation (SD) 300.8 (83.4) 307.4 (78.7)

Clinical values

Systolic blood pressure Missing, n (%) 443,729 (11.83) 98,150 (11.06)

Mean (SD) 127.9 (18.4) 128.6 (19.2)

Cholesterol/HDL Missing, n (%) 2,781,874 (74.18) 593,814 (66.92)

Mean (SD) 3.8 (1.6) 3.8 (1.8)

Haemoglobin Missing, n (%) 2,012,077 (53.66) 4434,005 (48.91)

Haemoglobin < 110 g/l, n (%) 84,396 (2.25) 23,178 (2.61)

Platelets Missing, n (%) 12,056,437 (54.84) 449,522 (50.66)

Platelets > 480 × 109/l, n (%) 21,305 (0.57) 5,900 (0.66)

Liver function test Missing, n (%) 2,285,715 (60.95) 489,673 (55.18)

Abnormal liver function test, n (%) 23,217 (0.62) 9,328 (1.05)

ESR Missing, n (%) 2,908,165 (77.55) 683,599 (77.04)

Abnormal ESR, n (%) 96,436 (2.57) 21,828 (2.46)

Comorbidity, n (%)

Diabetes 326,672 (8.71) 83,309 (9.39)

Atrial fibrillation 122,627 (3.27) 49,647 (5.59)

Cardiovascular disease 379,071 (10.11) 104,215 (11.74)

Congestive cardiac failure 140,439 (3.75) 53,742 (6.06)

Venous thromboembolism 99,083 (2.64) 36,791 (4.15)

Cancer 143,923 (3.84) 36,677 (4.13)

Asthma or COPD 753,223 (20.09) 162,853 (18.35)

Epilepsy 103,800 (2.77) 7,690 (0.87)

Falls 354,748 (9.46) 86,801 (9.78)

Manic depression or schizophrenia 33,716 (0.90) 0 (0.00)

Chronic renal disease 272,292 (7.26) 72,221 (8.14)

Chronic liver disease or pancreatitis 68,726 (1.83) 0 (0.00)

Valvular heart disease 49,274 (1.31) 0 (0.00)

Treated hypertension 892,430 (23.8) 193,826 (21.84)

Rheumatoid arthritis or SLE 58,658 (1.56) 0 (0.00)

Depression (QOF definition) 862,357 (23.0) 173,965 (19.6)

Arthritis 52,4936 (14.0) 161,050 (18.15)

Connective tissue disease 32,850 (0.88) 7,079 (0.80)

Hemiplegia 7,097 (0.19) 2,553 (0.29)

HIV/AIDS 29,701 (0.79) 7,176 (0.81)

Hyperlipidaemia 216,304 (5.77) 66,238 (7.46)

Learning disability 18,574 (0.50) 5,069 (0.57)

Obesity 231,123 (6.16) 66,210 (7.46)

Osteoporosis 66,877 (1.78) 20,056 (2.26)

Peripheral arterial disease 56,828 (1.52) 20,761 (2.34)

Peptic ulcer disease 62,122 (1.66) 24,151 (2.72)

Substance abuse 54,517 (1.45) 19,673 (2.22)

(Continued)
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bias in estimates, we stratified AUC by practice and present the findings in a funnel plot by

practice-level rate of emergency admissions [39].

We report our findings in accordance to the Guidelines for Developing and Reporting

Machine Learning Predictive Models in Biomedical Research [40] and Transparent Reporting

of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) [41].

We performed all statistical analyses using Python version 2.7 and R version 3.3.

Results

Basic statistics

The baseline characteristics of the derivation and validation cohorts are shown in Table 2.

Expectedly, the cohorts differed in some respects, such as age and ethnicity. The proportions

of women and men in the derivation and validation cohorts were comparable, but the deriva-

tion cohort had a slightly higher mean IMD than the validation cohort (2.8 versus 3.3).

Hospital admission rates were on average 7.8% for the regions in the derivation cohort. The

admission rates were slightly higher in the validation cohort overall, across all age groups

(except the oldest age group) and between sexes. The North East and North West regions had

the highest admission rates, which were 12% and 11%, respectively. Yorkshire and the Humber

had a rate of 6%, which brought the average rate of outcome to 10.4% in the validation cohort.

The rates of the first emergency admission within 2 years, according to age, sex and SHA, are

provided in S4 Table. Also, the rate of outcome by duration of follow-up, presented in S5

Table, demonstrates increasing rate with longer duration of follow-up.

Model performance

Using QA predictors in the CPH model, AUC was 0.740 (0.741 for men and 0.739 for

women). Applying RF and GBC to the same predictors increased the AUC to 0.752 and 0.779,

respectively (Table 3). Using QA+ predictors, all models showed a slightly higher AUC, with

the largest increase seen for the RF model. When T predictors were used, all models showed

higher AUC values, but again the GBC model showed the best performance (0.805, 0.825, and

0.848 for the CPH, RF, and GBC models, respectively). The corresponding receiver operating

characteristic (ROC) curves for these models are presented in S1 Fig.

Fig 1 illustrates the calibration of all models stratified by predictor set. GBC constantly

exhibited the best calibration across all settings. Using QA+ and T predictors improved the cal-

ibration of RF and GBC models, compared to using QA predictors. However, the opposite was

the case when the extended set of variables was applied to the CPH model: its calibration

Table 2. (Continued)

Predictor Derivation cohort

n = 3,749,932

Validation cohort

n = 887,365

Current prescribed medication, n (%)

Statin 552,982 (14.75) 164,814 (18.57)

NSAID 1505,161 (40.14) 423,637 (47.74)

Anticoagulant 122,803 (3.27) 34,285 (3.86)

Corticosteroid 809,336 (21.58) 214,067 (24.12)

Antidepressant 649,131 (17.31) 210,259 (23.69)

Antipsychotic 114,487 (3.05) 40,060 (4.51)

COPD, chronic obstructive pulmonary disease; ESR, erythrocyte sedimentation rate; HDL, high-density lipoprotein; IMD, Index of Multiple Deprivation; NSAID, non-

steroidal anti-inflammatory drug; QOF, Quality and Outcomes Framework; SLE, systemic lupus erythematosus.

https://doi.org/10.1371/journal.pmed.1002695.t002
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degraded with the addition of new variables. Analysis of positive and negative predictive val-

ues, precision, and recall as complementary metrics (S2–S4 Figs) supported the main findings

of a higher performance of the GBC model, in particular together with T predictors.

Variable importance

In the GBC and RF models, the relative importance of predictors is readily identifiable through

ranking of their repeated selection across multiple trees and higher up the trees. Making use of

this ranking, we report the top variables among the QA, QA+, and T sets in S6 and S7 Tables.

These tables show that, for example, when GBC is used together with the QA set, age, labora-

tory test results (such as cholesterol ratio, haemoglobin, and platelets), systolic blood pressure,

and the number of admissions during the last year are among the top predictors. With the QA

+ set, GBC ranks the number of previous consultations during the last year as the most impor-

tant predictor, followed by age and not only the laboratory test results, but also the frequency

of those tests being reported. Finally, when T variables are used, both the number and the

duration of consultations are shown to be highly predictive, together with age and time since

last admission and consultation, while laboratory test results remain among the top predictors.

Table 3. Cross-validated model discrimination for different predictor sets and modelling techniques: Derivation cohort.

Predictor set Model

CPH RF GBC

AUC 95% CI AUC 95% CI AUC 95% CI

QA (men only) 0.741 0.739, 0.743 0.754 0.752, 0.756 0.777 0.775, 0.779

QA (women only) 0.739 0.738, 0.740 0.755 0.754, 0.756 0.779 0.777, 0.781

QA 0.740 0.739, 0.741 0.752 0.751, 0.753 0.779 0.777, 0.781

QA+ 0.751 0.750, 0.753 0.822 0.818, 0.826 0.834 0.833, 0.835

T 0.805 0.804, 0.806 0.825 0.824, 0.826 0.848 0.847, 0.849

For any given set of predictors, GBC outperforms the other 2 models. Similarly, for any given model, T predictors show the best predictive power.

AUC, area under the receiver operating characteristic curve; CPH, Cox proportional hazards; GBC, gradient boosting classifier; RF, random forest.

https://doi.org/10.1371/journal.pmed.1002695.t003

Fig 1. Cross-validated model calibration for different predictor sets and modelling techniques. (a) QA variables; (b) QA+ variables; (c) T variables. The x-axis

shows the predicted probability of emergency admission, while the y-axis shows the fraction of actual admissions for each predicted probability. The shaded areas

depict the standard deviation across different folds in a 5-fold cross-validation. CPH, Cox proportional hazards; GBC, gradient boosting classifier; RF, random forest.

https://doi.org/10.1371/journal.pmed.1002695.g001
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External validation

The AUC values from the external validation cohort are reported in Table 4, and their corre-

sponding ROC curves are shown in S5 Fig. All models showed a slight decline in AUC com-

pared to internally validated AUC. Note that, while region is one of the input variables for

training the models, this information is missing when external validation is performed because

the regions in the validation cohort are unknown to the constructed models. Yet, the decline

in AUC was, on average, less than 1% for CPH and less than 2% for the RF and GBC models,

and our best model (GBC with T predictors) gave an AUC of 0.826 on the validation data.

This model also showed an excellent calibration (See Fig 2), and the funnel plot in S6 Fig

shows no bias by practice population and admission rate for all practices in both the derivation

and validation cohorts. Other metrics and plots, provided in S7–S9 Figs, also demonstrate the

consistency between the derivation and validation results.

Impact of change in prediction time window

Fig 3 illustrates the AUC of all models when predicting the outcome within 1 to 5 years after

the baseline. Models using QA and QA+ predictors showed better performance in predicting

Table 4. Externally validated model discrimination for different predictor sets and modelling techniques: Valida-

tion cohort.

Predictor set Model

CPH RF GBC

QA 0.736 0.736 0.796

QA+ 0.743 0.799 0.810

T 0.788 0.810 0.826

Predictor set T and GBC modelling constantly perform better than their counterparts. The results conform to the

pattern observed in internal cross-validation.

CPH, Cox proportional hazards; GBC, gradient boosting classifier; RF, random forest.

https://doi.org/10.1371/journal.pmed.1002695.t004

Fig 2. Externally validated model calibration for different predictor sets and modelling techniques. (a) QA variables; (b) QA+ variables; (c) T variables. The x-

axis shows the predicted probability of emergency admission, while the y-axis shows the fraction of actual admissions for each predicted probability. CPH, Cox

proportional hazards; GBC, gradient boosting classifier; RF, random forest.

https://doi.org/10.1371/journal.pmed.1002695.g002
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emergency admissions that occur early than those that occur late during the follow-up period.

The CPH, RF, and GBC models all exhibited more stable performance for predicting emer-

gency admissions—both in the shorter and longer follow-up time windows—when using T

predictors. These results suggest that variables that capture time since prior events (e.g., time

since first diagnosis of a comorbidity or time since last laboratory test) are stronger predictors

than their binary counterparts.

Discussion

We show that our machine learning models have substantially higher performances in predict-

ing the risk of emergency hospital admission than one of the best available statistical models

based on routinely collected data from the same setting. Stepwise modification of modelling

techniques and variables extracted from EHRs of 4.6 million patients led to an overall

improvement in model discrimination from AUC 0.74 to AUC 0.85 in the internal validation

cohort and from AUC 0.74 to 0.83 in the external validation cohort. Although the benchmark

CPH model also showed an improvement in discrimination properties when additional

Fig 3. Model discrimination for different follow-up periods (from 12 to 60 months after baseline). Colours

differentiate the 3 modelling techniques (GBC, RF, and CPH), whereas line styles indicate the predictor sets (QA, QA

+, and T). AUC, area under the receiver operating characteristic curve; CPH, Cox proportional hazards; GBC, gradient

boosting classifier; RF, random forest.

https://doi.org/10.1371/journal.pmed.1002695.g003
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variables were added, this came at the cost of worsening model calibration, with substantial

overestimation of risk across almost all risk levels. By contrast, calibration of the GBC model

was further enhanced when additional variables were added. We show that model perfor-

mance was retained over longer prediction windows (up to 5 years after baseline) when models

incorporated additional information about the timing of variables (e.g., time since first diagno-

sis of a comorbidity or time since last laboratory test), which is typically ignored in traditional

models.

A few previous studies have applied machine learning techniques to predict the risk of hos-

pital re-admission [42,43] or frequency of emergency department visits [44] and have reported

highly promising findings. However, since these studies used hospital data only, they were

unable to assess the risk of first emergency admission in a non-hospitalised population. On the

other hand, studies investigating the risk of emergency hospital admission, as in our report,

have mainly utilised statistical models [2,4,6–8,10,45]. Although their predictive ability has on

average been limited, some of the more complex models have achieved high levels of accuracy

in risk prediction. To test whether machine learning models could improve such models, we

chose a state-of-the-art statistical model with high performance as our benchmark model [8].

We show that in the presence of large cohorts with rich information about individuals,

machine learning models outperform one of the best conventional statistical models by learn-

ing from the data, with little requirement for transformation of the predictors or model struc-

ture. The stepwise changes to selected variables and their modelling suggested that the better

performance observed was likely due to the higher ability of machine learning models to auto-

matically capture and benefit from existing (a priori unknown) interactions and complex non-

linear decision boundaries.

Our study findings should be interpreted in light of their strengths and limitations. One of

the key strengths of our work is the direct comparison of machine learning models with one of

the best statistical models as the benchmark model. The stepwise changes to modelling tech-

niques, predictors, and time windows for risk prediction revealed when and how model per-

formance could be improved. Another strength of our study is its conservative approach of

non-random data splitting for external validation. Although this approach has been recom-

mended [34], in particular when EHR data are used, it has not been widely adopted. EHR

models typically divide the study database randomly into derivation and validation subsets,

which is more prone to model overfitting. Despite our approach, the generalisability of our

best performing machine learning model to other settings may be limited and requires further

evaluation. The field of machine learning is advancing rapidly. In our study, we employed 2

readily available machine learning models based on their relative flexibility in handling predic-

tors with no need for variable pre-processing. Although this makes the models useful from a

practical point of view, we believe that there is still some room for improving risk prediction

by adopting other techniques and a wider range of variables. Finally, we chose emergency hos-

pital admission as the outcome assuming that its non-specific and complex nature is more

suitable to data-driven machine learning than more specific clinical outcomes such as myocar-

dial infarction, with well-established risk factors and risk markers. Whether machine learning

models can lead to similarly strong improvements in risk prediction in other areas of medicine

requires further research.

The improved and more robust prediction of the risk of emergency hospital admission as a

result of the combination of more variables, information about their timing, and better models

could help guide policy and practice to reduce the burden of unscheduled admissions. By

deploying such a model in practices, physicians would be able to monitor the risk score of their

patients and take the necessary actions in time to avoid unplanned admissions. It is important

to note that hospital admissions in general are affected not only by patient profiles, but also by
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the policies governing care providers regarding whom they admit and what the risk tolerances

are. Notwithstanding the further opportunities for improvement, we believe that routine inte-

gration of our best performing model into EHRs is both feasible (as is the case for QRISK [46,

47]) and likely to lead to better decision-making for patient screening and proactive care.
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